Don’t disturb my Flows:
Consistent Migration of Flows in SDNs

Klaus-Tycho Förster

Joint work with Sebastian Brandt, Laurent Vanbever, and Roger Wattenhofer
A Small Sample Network
Green wants to send as well.
This would work
So lets go back
But Red is a bit Slow..
Congestion Again!
"some switches can ‘straggle,’ taking substantially more time than average (e.g., 10-100x) to apply an update"

Jin et al., SIGCOMM 2014
So let's go Back ...
First, Red switches
Then, Blue ...
And then, Green ...
Consistent Migration of Flows

Introduced in SWAN (Hong et al., SIGCOMM 2013)
Idea: Flows can be on the old or new route

For all edges: \(\sum_{VF} \max (\text{old}, \text{new}) \leq \text{capacity} \)
Consistent Migration of Flows

Introduced in SWAN (Hong et al., SIGCOMM 2013)

Idea: Flows can be on the old or new route

For all edges: $\sum_{VF} \max \text{(old, new)} \leq \text{capacity}$

No ordering exists ($2/3 + 2/3 > 1$)
Consistent Migration of Flows

Approach of SWAN: use slack x (i.e., %)
Here $x = \frac{1}{3}$
Move slack $x \Rightarrow \lfloor \frac{1}{x} \rfloor - 1$ staged partial moves
Consistent Migration of Flows

Approach of SWAN: use slack x (i.e., %)

Here $x = 1/3$

Move slack $x \Rightarrow [1/x] - 1$ staged partial moves

Update 1 of 2
Consistent Migration of Flows

Approach of SWAN: use slack x (i.e., %)

Here $x = 1/3$

Move slack $x \Rightarrow \lceil 1/x \rceil - 1$ staged partial moves

Update 1 of 2
Consistent Migration of Flows

Approach of SWAN: use slack x (i.e., \%)
Here $x = \frac{1}{3}$
Move slack $x \Rightarrow [\frac{1}{x}] - 1$ staged partial moves

Update 2 of 2
Consistent Migration of Flows

No slack on flow edges?
Consistent Migration of Flows

Alternate routes?
Consistent Migration of Flows

Think: variable swapping of b & g

1. $x := b$
2. $b := g$
3. $g := x$
Consistent Migration of Flows

Think: variable swapping of \(b \) & \(g \)

1. \(x := b \), 2. \(b := g \), 3. \(g := x \)
Consistent Migration of Flows

Think: variable swapping of b & g

1. $x := b$, 2. $b := g$, 3. $g := x$
Consistent Migration of Flows

SWAN: LP-approach with binary search
1 update? 2 updates? 4 updates? ...
Consistent Migration of Flows

SWAN: LP-approach with binary search
1 update? 2 updates? 4 updates? ...

\[\varepsilon \]
Consistent Migration of Flows

SWAN: LP-approach with binary search

\[\Theta(1/\varepsilon) \text{ updates} \]
Consistent Migration of Flows

Open problem: Can we decide in \textit{(polynomial)} time?
To Slack or not to Slack?

Slack of x on all flow edges?

$\frac{1}{x} - 1$ updates
To Slack or not to Slack?

What if not?
Try to create slack
To Slack or not to Slack?

Combinatorial approach

Augmenting paths
Combinatorial Approach

Move single commodities at a time
Combinatorial Approach

Where to increase flow?
Combinatorial Approach

Where to push back flow?
Combinatorial Approach

Resulting residual network
Combinatorial Approach

We found an augmenting path \Rightarrow create slack on e
High-level Algorithm Idea

No slack on flow edges? Find augmenting paths
 On both initial and desired state
 Success? Use SWAN method to migrate

Can’t create slack on some flow edge?
 Consistent migration impossible
 By contradiction (else augmenting paths would create slack)

Runtime: $O(Fm^3)$
 (F being #commodities, m being #edges)
Are we done?

Consistent Migration = Lossless Migration?
Moving Flows with High Latency

ping of old path

ping of new path
Moving Flows with High Latency

ping of old path

ping of new path
Moving Flows with High Latency
Moving Flows with High Latency

Graph 1:
- **UDP:**
 - RTT in ms
 - sec: 10, 15, 20, 25, 30

Graph 2:
- **TCP:**
 - RTT in ms
 - sec: 10, 15, 20, 25, 30

Diagram:
- Nodes: s, u, w, v, t
- Edges:
 - High latency
 - Low latency
 - Capacity = 1
 - Size = 1

- Flow paths:
 - s → u → v → t (solid line)
 - s → w → v → t (dashed line)
Moving Flows with High Latency

packet loss equivalent to latency-Δ
Overview and Outlook

Consistent migration of flows
Decidable in *polynomial* time

Lossless migration
- Fixed delays: *NP-hard*, Arbitrary delays: *Polynomially* decidable

Unsplittable/Integer flow migration: *NP-hard*

Migrate to new **demands**
- Single-dest: *Polynomial* #updates, Multi-Dest: **Ongoing work**
Don’t disturb my Flows: Consistent Migration of Flows in SDNs

Klaus-Tycho Förster
Joint work with Sebastian Brandt, Laurent Vanbever, and Roger Wattenhofer