
Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

Aaron Gember-Jacobson, Raajay Viswanathan and 
Ratul Mahajan

UW-Madison and Microsoft

1



Control
plane

Control plane is…

• Essential

• Complex

2

Routing
process
Routing
process

Data
plane

Forwarding 
tableTo: A

Routing
process

→ configuration errors may cause 
security/availability problems

→ errors may not be 
immediately apparent

Routing
table

Routing
table

Routing
table



Always traverse middlebox

Important functional invariants

3

Always blocked Always isolated

Always equivalent paths

Challenge: Invariants violated under some 
(combinations of) failures



Analyze current data plane [HSA, 

Veriflow]

4

Forwarding 
Table’

Forwarding 
Table’

Forwarding 
Table’

Forwarding 
Table’’

Forwarding 
Table’’

Forwarding 
Table’’

Forwarding 
Table’’’

Forwarding 
Table’’’

Forwarding 
Table’’’

Generate data planes [Batfish]

→ time consuming→ cannot verify invariants 
always hold

Blocked, isolated, waypoints, equivalence …

• Properties of paths, not paths themselves

• Data centers, enterprises use a limited
set of control plane constructs

Higher-level abstraction
Fast analysis

Proactive 
Verification



Abstract Representation for
Control planes (ARC)

5

• Encodes the network’s forwarding behavior 
under all possible infrastructure faults

Control plane configuration Abstract representation

B I C O

B O

D I

D O
3C I

0

3

0 0

Dst:TSrc:U

0 0

Dst:U Src:T

0 0

1

1

1 1

C O D I

D OC I

0 0

3

3

…

• Encodes the network’s forwarding behavior 
under all possible infrastructure faults

• Proactive verification boils down to checking 
simple graph-level properties  fast

• Ignore which protocols used and how



B C

OSPFT
D

U

1

31

T

T

T

Key requirements of ARC
1) Sound & Complete: each digraph contains 

every feasible path and no infeasible paths 
 verification of invariants

2) Precise: assign edge weights such that the min-cost
path matches the real path 
 counter-examples, equivalence testing

6

B I C O

B O

D I

D OC I

Dst:TSrc:U

Dst:U Src:T

0 0

3

0

3

0 0

1

1

1 1

C O D I

D OC I

0 0

0 0

3

3



• Why weighted digraphs?

• How to ensure soundness, completeness, 
precision?

7



Routing protocols used today

• Commonality: cost-based path selection algorithm

• Differences:

• Also must account for:

– Traffic class specificity

– Route redistribution 

– Route selection based on administrative distance

8

BGP AS1 AS2OSPF Router1 Router2

4 IV
Dijsktra’s algorithm Path length 

& preference
AD=110 AD=20

Challenge: determining the structure and 
edge weights of the graphs

granularity & currency



Extended topology graphs (ETGs)
• One per traffic class

• Vertices: routing processes

• Edges: flow of data enabled by 
exchange of routing information

9

Z

B

X

BGP1

OSPF3

T

S

Y

1

2

A

3

SRC:S

DST:T

A.1I

A.1O B.1I

B.1O Z.1I

Z.1O

Z.3I

Z.3O

Y.3O

Y.3I

X.3I

X.3O

Edge-weights based on 
configured costs and 

administrative distances
1

1

1

1

0 0 0

000

0.4

0.4

0.6

0.6

Sound and complete
(for OSPF, BGP, redistr…)



ETG edge weights
• Inter-device: OSPF weights;

unit cost per hop for BGP (each router is an AS)

• Intra-device: redistribution only: no cost within 
process; fixed-cost between processes

10

Z

B

X

BGP1

OSPF2

T

S

Y

1

2

A

3

A.1I

A.1O B.1I

B.1O Z.1I

Z.1O

Z.3I

Z.3O

Y.3O

Y.3I

X.3I

X.3O

2

2 3

3

1

1

1

1

0 0 0

000

+ scaling

1

0.2

0.2

0.3

0.3

Shortest
path = 5

Gap = 1

2

Shortest
path = 1 

Longest
path = 0.5

SRC:S

DST:T

≤

Precise
(for DAG 

redistribution, 
AD graphs)



ARC properties

Construct Sound & 
Complete

Precise

OSPF  Single area

RIP  

eBGP  Select by AS path length, local pref.

Static Routes  

ACLs  

Route filters  

Route selection (based on 
Administrative Distance)

 No redistribution OR redistribution 
costs congruent with ADs

Route redistribution  Acyclic & costs congruent with ADs

11

Sound and complete for 100% Precise for 96%



Verification

• Always traverse middlebox:
1) remove all edges with middleboxes
2) Src and Dst in same connected component?

12

DO

DI

EO

EI

FO

FI

GO

GI

CO

CI

BO

BIDST:S

SRC:U

E

F G

CB

D US

OSPF



Verification

• Always reachable with < k link failures:
max-flow on unit-weight ETG ≥ k?

13

Max-flow = 3

DO

DI

EO

EI

FO

FI

GO

GI

CO

CI

BO

BIDST:S

SRC:U

E

F G

CB

D US

OSPF

3 edge-disjoint paths

∞1



Verification
Invariant Graph property Required ARC 

Properties

Always blocked
Separate connected
components

Sound & Complete

Always reachable 
with < k failures

Max flow ≥ k Sound & Complete

Always traverse 
waypoint (chain)

Separate connected 
components

Sound & Complete

Always isolated No common edges Sound & Complete

Equivalence Same structure & weights
Sound, Complete, 
& Precise

14

Precision required to produce counter-examples



Implementation and evaluation

• Implemented in Java using Batfish (parsing) 
and JGraphT (graph algorithms)
https://bitbucket.org/uw-madison-networking-research/arc

• Configurations from 314 data
center networks operated by a
large online service provider

• 4-core 2.8GHz CPU
24GB RAM

15



Evaluation: time to generate ARC

16

Fast (< 10 sec) 
even for large 

networks

Most time is spent parsing



Evaluation: verification time

17

Always blocked Always reachable
with < k failures

Always isolated

< 500 ms
(Batfish: 694 days!)

Up to 16 min< 1 sec

Verification time is proportional to the 
number of traffic classes; easily parallelized



Next steps

• Precision under fewer assumptions

• Generality of ARCs

• Other uses…

18



Next steps: automated repair

19

Configurations ARC

Repairs

Challenge: finding a minimal repair
(e.g., many ACLs vs. remove BGP neighbor) 

without side-effects

1) Transform ETGs to have 
desired attributes (e.g., 
src and dst→ always 
blocked)

2) Translate to config
changes (e.g., remove 
edge → add ACL)



Controller

Next steps: Transition to SDN

20

Configurations ARC

Controller uses ETGs to 
drive forwarding plane 
configurations

Minimize controller 
involvement, churn?

Different underlying 
network topology?



Next steps: synthesis

• Operators require fine-grained control over 
routing: waypoints, isolation, traffic 
engineering
– Intents  configurations 

• Distributed routing based on shortest path –
very difficult to program! 

• One approach: input data planes  resilient 
ARCs configs

21



Synthesis

22

S1

S2

S3

S4

S5 S6

1

1

1

1

1
1

3

3

• Edge weights
• Input path to dst must be 

the shortest path
• Uniqueness of shortest path

• Route filtering
• Disable edges for a destination 

to ensure path is shortest 

• Backup paths
• Weights such that backup path 

is chosen during link failures



Summary

• Presented an abstract representation for 
control planes 

– Fast and simple verification under arbitrary failures

– Verification is based on graph-level properties

– Up to 5 orders of magnitude speed-up

• Useful for repair, transition, synthesis, …

23

Try it!
https://bitbucket.org/uw-madison-

networking-research/arc



Backup

24



Evaluation: verification time

25

Always blocked
using ARC

Always blocked
using Batfish

< 500 ms > 694 days!

Verification with ARC is 3 to 5 
orders of magnitude faster!



Verification

• Always blocked: Src and Dst in same 
connected component?

26

B C

T
D

U

1

31

T

T

T
OSPF

S

CI

CO

DO

DI

DST:S SRC:T

CI

CO

DO

DI

DST:U SRC:T

T S

T U

?

?



Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

Aaron Gember-Jacobson, Raajay Viswanathan and 
Ratul Mahajan

UW-Madison and Microsoft

28



Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

29


