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Control
plane

Control plane is…

• Essential

• Complex
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→ configuration errors may cause 
security/availability problems

→ errors may not be 
immediately apparent
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Always traverse middlebox

Important functional invariants
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Always blocked Always isolated

Always equivalent paths

Challenge: Invariants violated under some 
(combinations of) failures



Analyze current data plane [HSA, 

Veriflow]
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Generate data planes [Batfish]

→ time consuming→ cannot verify invariants 
always hold

Blocked, isolated, waypoints, equivalence …

• Properties of paths, not paths themselves

• Data centers, enterprises use a limited
set of control plane constructs

Higher-level abstraction
Fast analysis

Proactive 
Verification



Abstract Representation for
Control planes (ARC)
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• Encodes the network’s forwarding behavior 
under all possible infrastructure faults

Control plane configuration Abstract representation
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…

• Encodes the network’s forwarding behavior 
under all possible infrastructure faults

• Proactive verification boils down to checking 
simple graph-level properties  fast

• Ignore which protocols used and how
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Key requirements of ARC
1) Sound & Complete: each digraph contains 

every feasible path and no infeasible paths 
 verification of invariants

2) Precise: assign edge weights such that the min-cost
path matches the real path 
 counter-examples, equivalence testing
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• Why weighted digraphs?

• How to ensure soundness, completeness, 
precision?
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Routing protocols used today

• Commonality: cost-based path selection algorithm

• Differences:

• Also must account for:

– Traffic class specificity

– Route redistribution 

– Route selection based on administrative distance
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BGP AS1 AS2OSPF Router1 Router2

4 IV
Dijsktra’s algorithm Path length 

& preference
AD=110 AD=20

Challenge: determining the structure and 
edge weights of the graphs

granularity & currency



Extended topology graphs (ETGs)
• One per traffic class

• Vertices: routing processes

• Edges: flow of data enabled by 
exchange of routing information
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ETG edge weights
• Inter-device: OSPF weights;

unit cost per hop for BGP (each router is an AS)

• Intra-device: redistribution only: no cost within 
process; fixed-cost between processes
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ARC properties

Construct Sound & 
Complete

Precise

OSPF  Single area

RIP  

eBGP  Select by AS path length, local pref.

Static Routes  

ACLs  

Route filters  

Route selection (based on 
Administrative Distance)

 No redistribution OR redistribution 
costs congruent with ADs

Route redistribution  Acyclic & costs congruent with ADs
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Sound and complete for 100% Precise for 96%



Verification

• Always traverse middlebox:
1) remove all edges with middleboxes
2) Src and Dst in same connected component?

12

DO

DI

EO

EI

FO

FI

GO

GI

CO

CI

BO

BIDST:S

SRC:U

E

F G

CB

D US

OSPF



Verification

• Always reachable with < k link failures:
max-flow on unit-weight ETG ≥ k?
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Verification
Invariant Graph property Required ARC 

Properties

Always blocked
Separate connected
components

Sound & Complete

Always reachable 
with < k failures

Max flow ≥ k Sound & Complete

Always traverse 
waypoint (chain)

Separate connected 
components

Sound & Complete

Always isolated No common edges Sound & Complete

Equivalence Same structure & weights
Sound, Complete, 
& Precise
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Precision required to produce counter-examples



Implementation and evaluation

• Implemented in Java using Batfish (parsing) 
and JGraphT (graph algorithms)
https://bitbucket.org/uw-madison-networking-research/arc

• Configurations from 314 data
center networks operated by a
large online service provider

• 4-core 2.8GHz CPU
24GB RAM
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Evaluation: time to generate ARC
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Fast (< 10 sec) 
even for large 

networks

Most time is spent parsing



Evaluation: verification time
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Always blocked Always reachable
with < k failures

Always isolated

< 500 ms
(Batfish: 694 days!)

Up to 16 min< 1 sec

Verification time is proportional to the 
number of traffic classes; easily parallelized



Next steps

• Precision under fewer assumptions

• Generality of ARCs

• Other uses…
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Next steps: automated repair
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Configurations ARC

Repairs

Challenge: finding a minimal repair
(e.g., many ACLs vs. remove BGP neighbor) 

without side-effects

1) Transform ETGs to have 
desired attributes (e.g., 
src and dst→ always 
blocked)

2) Translate to config
changes (e.g., remove 
edge → add ACL)



Controller

Next steps: Transition to SDN
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Configurations ARC

Controller uses ETGs to 
drive forwarding plane 
configurations

Minimize controller 
involvement, churn?

Different underlying 
network topology?



Next steps: synthesis

• Operators require fine-grained control over 
routing: waypoints, isolation, traffic 
engineering
– Intents  configurations 

• Distributed routing based on shortest path –
very difficult to program! 

• One approach: input data planes  resilient 
ARCs configs
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Synthesis
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• Edge weights
• Input path to dst must be 

the shortest path
• Uniqueness of shortest path

• Route filtering
• Disable edges for a destination 

to ensure path is shortest 

• Backup paths
• Weights such that backup path 

is chosen during link failures



Summary

• Presented an abstract representation for 
control planes 

– Fast and simple verification under arbitrary failures

– Verification is based on graph-level properties

– Up to 5 orders of magnitude speed-up

• Useful for repair, transition, synthesis, …
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Try it!
https://bitbucket.org/uw-madison-

networking-research/arc



Backup
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Evaluation: verification time
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Always blocked
using ARC

Always blocked
using Batfish

< 500 ms > 694 days!

Verification with ARC is 3 to 5 
orders of magnitude faster!



Verification

• Always blocked: Src and Dst in same 
connected component?

26

B C

T
D

U

1

31

T

T

T
OSPF

S

CI

CO

DO

DI

DST:S SRC:T

CI

CO

DO

DI

DST:U SRC:T

T S

T U

?

?



Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

Aaron Gember-Jacobson, Raajay Viswanathan and 
Ratul Mahajan

UW-Madison and Microsoft

28



Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

29


