Fast Control Plane Analysis
Using an Abstract Representation

Aditya Akella

Aaron Gember-Jacobson, Raajay Viswanathan and
Ratul Mahajan

UW-Madison and Microsoft

Control plane is...

 Essential & configuration errors may cause

security/availability problems 2l IIEIIES

Microsoft:
* Complex > errors may not be | isconfigured

immediately apparent network device led
to Azure outage

— . ¥ —— 30 July 2012 | By Yevgeniy Sverdlik
CO N t o | O u t N g || RO u t N g “The service interruption was triggered by
| table

.| process

p I ane a misconfigured network device that

disrupted traffic to one cluster in our West

Europe sub-region,” Mike Neil, general

= FO r'wada rd i N g manager for Windows Azure, wrote in a
ta b I e blog post.

“Once a set device limit for external

connections was reached, it triggered
previously unknown issues in another
network device within that cluster, which
further complicated network management

it
and recovery.

Important functional invariants

Always blocked

)

Always traverse middlebox Always equivalent paths

Challenge: Invariants violated under some
(combinations of) failures

Analyze current data plane [HSA, Generate data planes [Batfish]
Veriflow] = ~

I

rForwarding Forwarding
Table Table Proactive
Verification

Blocked, isolated, waypoints, equivalence ...
* Properties of paths, not paths themselves Higher-level abstraction

* Data centers, enterprises use a limited Fast analysis
set of control plane constructs

Abstract Representation for
Control planes (ARC)

Src:U Dst: T
0 0] 3

1 3 0 9

3
0 o 1

1 3 0 0|
Dst:U Src:T

Control plane configuration Abstract representation

/ Encodes the network’s forwarding behavior)
under all possible infrastructure faults

* Proactive verification boils down to checking
simple graph-level properties = fast

* |gnore which protocols used and how
N P Y,

Key requirements of ARC

1) Sound & Complete: each digraph contains

every feasible path and no infeasible paths
—> verification of invariants

2) Precise: assign edge weights such that the min-cost

path matches the real path
— counter-examples, equivalence testing

0 I
: : -

 Why weighted digraphs?

* How to ensure soundness, completeness,
precision?

Routing protocols used today

OSPF , BGP { AS, n@

« Commonality: cost-based path selection algorithm
* Differences: granularity & currency
* Also must account for:

— Traffic class specificity

— Route redistribution

— Route selection based on administrative distance

Challenge: determining the structure and
edge weights of the graphs

Extended topology graphs (ETGs)

* One per traffic class

* Vertices: routing processes Sound and complete
(for OSPF, BGP, redistr...)

* Edges: flow of data enabled by

exchange of routing information

0:9 @ DB

- O 7 04 X
20

g Edge-weights based on h
configured costs and

\admlnlstratlve dlstances) 5

ETG edge weights

Inter-device: OSPF weights;

unit cost per hop for BGP (each router is an AS) Precise

(for DAG
redistribution,
AD graphs)

Intra-device: redistribution only: no cost within
process; fixed-cost between processes + scaling

ARC properties

Construct Sound &
Complete
OSPF v
RIP v
eBGP v
Static Routes v
ACLs v
Route filters v
Route selection (based on v
Administrative Distance)
Route redistribution v

Sound and complete for 100%

Precise for 96%

Verification

* Always traverse middlebox:
1) remove all edges with middleboxes
2) Src and Dst in same connected component?

Verification

* Always reachable with < k link failures:
max-flow on unit-weight ETG > k?

Tt =

3 edge-disjoint paths Max-flow = 3 @

Invariant

Always blocked

Always reachable
with < k failures

Always traverse
waypoint (chain)

Always isolated

Equivalence

Verification

Graph property

Separate connected
components

Max flow > k

Separate connected
components

No common edges

Same structure & weights

Required ARC
Properties

~
Sound & Complete

Sound & Complete
Sound & Complete

Sound & Complete

Sound, Complete,
& Precise

)

/

[Precision required to produce counter—examples]/

Implementation and evaluation

* Implemented in Java using Batfish (parsing)
and JGraphT (graph algorithms)

https://bitbucket.org/uw-madison-networking-research/arc

* Configurations from 314 data
center networks operated by a ﬁi ﬁi

large online service provider

v

e 4-core 2.8GHz CPU
24GB RAM

15

Time to Build ETGs (sec)

Evaluation: time to generate ARC

| M Parse Configs
00— Build ETGs
™ Most time is spent parsing
Networks
O(10) F S 1.0 g
— 0.8
i i (Fast (<10 sec? o /
c ! L 0.
3 IS even for large S0al
N _ networks | /
Ot — — = 001 —
& & L F 0 10 10° 10 10°
i ¢ @C’@ Qé{b # of Traffic Classes
Q N

16

00

5

Time to Verify (ms)
250

0

Evaluation: verification time

| e

| | | | |
0 100 200 300 0 100 200 300 0 100 200 300

Networks Networks Networks
Always blocked Always reachable Always isolated

with < k failures

<500 ms <1sec Up to 16 min
(Batfish: 694 days!)

Verification time is proportional to the
number of traffic classes; easily parallelized 17

Next steps

e Precision under fewer assumptions
e Generality of ARCs
e Other uses...

Next steps: automated repair

% = 1) Transform ETGs to have
—_— desired attributes (e.g.,
Fgd e

1 blocked)
\ 2) Translate to config
ﬁ changes (e.g., remove

edge - add ACL)

Repairs

~
Challenge: finding a minimal repair

(e.g., many ACLs vs. remove BGP neighbor)
without side-effects

Next steps: Transition to SDN

Controller uses ETGs to
drive forwarding plane
configurations

Minimize controller
involvement, churn?

Different underlying
network topology?

20

Next steps: synthesis

* Operators require fine-grained control over
routing: waypoints, isolation, traffic
engineering
— Intents =2 configurations

* Distributed routing based on shortest path —
very difficult to program!

* One approach: input data planes =2 resilient
ARCs = configs

Synthesis

* Edge weights
* Input path to dst must be
the shortest path
* Unigueness of shortest path

* Route filtering
e Disable edges for a destination
to ensure path is shortest

e Backup paths
* Weights such that backup path
is chosen during link failures

22

Summary

* Presented an abstract representation for
control planes

— Fast and simple verification under arbitrary failures
— Verification is based on graph-level properties
— Up to 5 orders of magnitude speed-up

e Useful for repair, transition, synthesis, ...

a)

Try it!
https://bitbucket.org/uw-madison-
networking-research/arc y

_

23

Backup

Evaluation: verification time

£ =
- £+, | © Single Lir_1k
-G;J - > - Up to 3 Links
> Q7 =
e -
o) o v
£ ©
| =
o & I: O
I I I [I | | I I
0 100 200 300 0 25 50 75 100
Networks Networks
Always blocked Always blocked
using ARC using Batfish
<500 ms > 694 days!

Verification with ARCis3to 5
orders of magnitude faster!

25

Verification

* Always blocked: Src and Dst in same
connected component?

TS

26

Fast Control Plane Analysis
Using an Abstract Representation

Aditya Akella

Aaron Gember-Jacobson, Raajay Viswanathan and
Ratul Mahajan

UW-Madison and Microsoft

28

Fast Control Plane Analysis
Using an Abstract Representation

Aditya Akella

/;@I@

WISCONSIN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

29

