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Adaptive Security of MPC

xi ri

xj rj

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the 
execution

Simulator:
1. simulate fake ciphertext c (without knowing m)
2. upon corruption, learn m and provide consistent r, sk

Example: encryption
c = Enc(m; r)



Full Adaptive Security

Full adaptive security:
● No erasures



Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted



Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted



Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02) 



Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full adaptive security for randomized functionalities:
● Randomness of the computation remains hidden even when all parties are 

corrupted

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02) 



Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full adaptive security for randomized functionalities:
● Randomness of the computation remains hidden even when all parties are 

corrupted

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02) 

Example: F internally chooses random primes p, q, and outputs N = pq.
Most protocols (e.g. CLOS02) reveal p, q, when all parties are corrupted.



Full Adaptive Security
# of 

parties
# of rounds assumptions

Canetti, Goldwasser, 
Poburinnaya’15

2 2 OWF 
 subexp iO

Dachman-Soled, Katz, 
Rao’15

n 4 OWF
 iO

Garg, Polychroniadou’15 n 2 TDP 
 subexp. iO

Only 3 fully adaptively secure protocols with constant rounds - but with a CRS*
Only one of them is 2 round MPC.

*need a CRS even for HBC case!
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Q1: can we build 2 round MPC with global (non-programmable) CRS?

# of 
parties

# of rounds assumptions global CRS randomized 
functionalities

Canetti, Goldwasser, 
Poburinnaya’15

2 2 OWF 
 subexp iO

+ +

Dachman-Soled, Katz, 
Rao’15

n 4 OWF
 iO

+ +

Garg, Polychroniadou’15 n 2 TDP 
 subexp. iO

-
(even in HBC case)

-

This work n 2 injective OWF
 iO

+ +
(comp. close)

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?
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there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:

- the CRS is global;
- even randomized functionalities can be computed.

The first two-round fully adaptive MPC without subexp. iO assumption;
The first two-round fully adaptive MPC with global CRS.

Theorem (GP15, our work):
Assuming subexp. iO for circuits and RAM-efficient statistically sound NIZK,
there exists 2-round, fully-adaptively-secure, RAM-efficient byzantine MPC protocol.
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Part II:
Theorem (informal):
Assuming iO for circuits and TDPs, there exists RAM-efficient statistically sound NIZK.



Part I: HBC protocol with global CRS
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x1r1 x2’r2’ xnrn

...

PK
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- verify each 
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- check that          are the same in each  
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xiri

The adversary cannot mix and match encryptions

xiri
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x1r1 x2r2 xnrn

...

- decrypt each         using SK
- check that          are the same in each  
- verify each 
- output f(x1, …, xn) 

Commitments

Solution: 
semi-honest commitments (no CRS)

Com(0) = (r, prg(s)); Com(1) = (prg(s), r)

Property:
honestly generated       is statistically binding.

Problem: 
equivocal commitments require local CRS
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Required primitives 
PK

x1 x2 xn...

...

- decrypt each         using SK
- check that          are the same in each  
- verify each 
- output f(x1, …, xn) 

Encryption

Problem: 
cannot use security of encryption 

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Challenger

Solution: 
Puncturable randomized encryption (PRE)

(from iO and injective OWFs)

Property:
simulation-secure 

even when almost all SK is known*

*: Simulation-secure analog of Sahai-Waters PDE
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Achieving globality and full adaptive security

PK
...

...SK{                  }

Simulation: not global

Solution: Modify the protocol to choose PK,                 during the execution.       

PK

x1 x2 xn
...

x1
x2 xn...

SK

SK PK SK

x1 x2 xn
...

x1
x2 xn...

Gen(rgen)

, rgen
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How to make the protocol RAM-efficient: two ways

Our MPC protocol
(which is

randomness-hiding)

RAM-efficient 
garbling

 (e.g. CH’16)

RAM-efficient 
protocol

or

Our MPC protocol iO for RAM RAM-efficient 
protocol

(requires subexp. iO)
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GP’15 doesn’t compute randomness-hiding functionalities, i.e.IK02 
approach doesn’t work.

Any randomness-
hiding MPC protocol

RAM-efficient 
garbling

 (e.g. CH’16)

RAM-efficient 
protocol
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Theorem (Our work):
Assuming garbling scheme for RAM and NIZK proofs for circuits, there exists statistically sound NIZK proof 
system for RAM.
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NIZK proof system:
Let language L be defined by relation R(x; w)
Prove(x, w) → ᵨ
Verify(x, ᵨ ) → accept / reject

*: everything also depends on |x|, |w|.

Garbling scheme:
KeyGen(r) → k
GarbleProg(k, f) →

GarbleInput(k, x) → 
f

x

*: everything also depends on |x|

Exists under iO for circuits + OWFs 
(Canetti-Holmgren’16)

Correctness: can compute f(x)
Security: garbled values only reveal f(x)
RAM-efficient*:

- work of the garbler only depends on |f|RAM 
- size of garbled values depends on |f|RAM 
- work of the evaluator depends on RAM 

complexity of f

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient*:

- work of P only depends on |R|RAM 
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Attempt 2

Prover Verifier

x ∊ L
w

x ∊ L

R(*,*) x, w

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) → 

R(*,*)

x, w

Accept if Eval(                            ) = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1
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What might go wrong?
Consider garbling which is incorrect for one bad key k’:

- For k ≠ k’ the evaluation is always correct
- for k’ GarbleProg always outputs all-one function.
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NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Malicious Prover

x ∉ L

output 1 x, 0

KeyGen(r’) →  k’

GarbleProg(k’, R) →

GarbleInput(k’, x, 0) → 

output 1

x, 0

What might go wrong?
Consider garbling which is incorrect for one bad key k’:

- For k ≠ k’ the evaluation is always correct
- for k’ GarbleProg always outputs all-one function.

NIZK proof: “garbling done correctly, for correct R and x” Verifier accepts
x ∊ L

Accept if Eval(                            ) = 1R(*,*) x, w

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1



NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Malicious Prover

x ∉ L

Crucial observation:
the garbling scheme of CH15 is perfectly correct with abort, i.e.:
for any key k evaluation of garbled program on garbled input wither 
gives correct output, or ⊥ .

NIZK proof: “garbling done correctly, for correct R and x”
x ∊ L

R(*,*) x, w

Verifier accepts

Accept if Eval(                            ) = 1R(*,*) x, w

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

KeyGen(r’) →  k’

GarbleProg(k’, R) →

GarbleInput(k’, x, 0) → 

output 1

x, 0

output 1 x, 0



Summary: two round adaptively secure protocols

Semi-honest case:
● global CRS
● RAM-efficient
● computes randomized functionalities
● from iO and injective OWFs (no subexp iO)

Malicious case (GP15 + our RAM efficient NIZK):
● RAM-efficient
● from subexp iO and TDP



Open questions

Fully adaptive constant round HBC protocol without a CRS?
Fully adaptive constant round malicious protocol without subexp iO?



Questions?


