
Better 2-round adaptive MPC

Ran Canetti, Oxana Poburinnaya
TAU and BU BU

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively
during the execution

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)

Adaptive Security of MPC

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)

Adaptive Security of MPC

xi ri

xj rj

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)
2. simulate ri of corrupted parties, consistent with

communication and xi

Adaptive Security of MPC

xi ri

xj rj

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:

Example: encryption
c = Enc(m; r)

Adaptive Security of MPC

xi ri

xj rj

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate fake ciphertext c (without knowing m)

Example: encryption
c = Enc(m; r)

Adaptive Security of MPC

xi ri

xj rj

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate fake ciphertext c (without knowing m)
2. upon corruption, learn m and provide consistent r, sk

Example: encryption
c = Enc(m; r)

Full Adaptive Security

Full adaptive security:
● No erasures

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02)

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full adaptive security for randomized functionalities:
● Randomness of the computation remains hidden even when all parties are

corrupted

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02)

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full adaptive security for randomized functionalities:
● Randomness of the computation remains hidden even when all parties are

corrupted

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02)

Example: F internally chooses random primes p, q, and outputs N = pq.
Most protocols (e.g. CLOS02) reveal p, q, when all parties are corrupted.

Full Adaptive Security
of

parties
of rounds assumptions

Canetti, Goldwasser,
Poburinnaya’15

2 2 OWF
 subexp iO

Dachman-Soled, Katz,
Rao’15

n 4 OWF
 iO

Garg, Polychroniadou’15 n 2 TDP
 subexp. iO

Only 3 fully adaptively secure protocols with constant rounds - but with a CRS*
Only one of them is 2 round MPC.

*need a CRS even for HBC case!

Full Adaptive Security

Q1: can we build 2 round MPC with global (non-programmable) CRS?

of
parties

of rounds assumptions

Canetti, Goldwasser,
Poburinnaya’15

2 2 OWF
 subexp iO

Dachman-Soled, Katz,
Rao’15

n 4 OWF
 iO

Garg, Polychroniadou’15 n 2 TDP
 subexp. iO

Full Adaptive Security

Q1: can we build 2 round MPC with global (non-programmable) CRS?

of
parties

of rounds assumptions global CRS

Canetti, Goldwasser,
Poburinnaya’15

2 2 OWF
 subexp iO

+

Dachman-Soled, Katz,
Rao’15

n 4 OWF
 iO

+

Garg, Polychroniadou’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

Full Adaptive Security

Q1: can we build 2 round MPC with global (non-programmable) CRS?

of
parties

of rounds assumptions global CRS

Canetti, Goldwasser,
Poburinnaya’15

2 2 OWF
 subexp iO

+

Dachman-Soled, Katz,
Rao’15

n 4 OWF
 iO

+

Garg, Polychroniadou’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Full Adaptive Security

Q1: can we build 2 round MPC with global (non-programmable) CRS?

of
parties

of rounds assumptions global CRS randomized
functionalities

Canetti, Goldwasser,
Poburinnaya’15

2 2 OWF
 subexp iO

+ +

Dachman-Soled, Katz,
Rao’15

n 4 OWF
 iO

+ +

Garg, Polychroniadou’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

-

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Full Adaptive Security

Q3: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

of
parties

of rounds assumptions global CRS randomized
functionalities

Canetti, Goldwasser,
Poburinnaya’15

2 2 OWF
 subexp iO

+ +

Dachman-Soled, Katz,
Rao’15

n 4 OWF
 iO

+ +

Garg, Polychroniadou’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

-

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Full Adaptive Security

Q3: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

of
parties

of rounds assumptions global CRS randomized
functionalities

Canetti, Goldwasser,
Poburinnaya’15

2 2 OWF
 subexp iO

+ +

Dachman-Soled, Katz,
Rao’15

n 4 OWF
 iO

+ +

Garg, Polychroniadou’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

-

This work n 2 injective OWF
 iO

+ +
(comp. close)

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Our results :

Theorem (informal):
Assuming indistinguishability obfuscation for circuits and injective one way functions,
there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:

- the CRS is global;
- even randomized functionalities can be computed.

Part I:

Our results :

Theorem (informal):
Assuming indistinguishability obfuscation for circuits and injective one way functions,
there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:

- the CRS is global;
- even randomized functionalities can be computed.

The first two-round fully adaptive MPC without subexp. iO assumption;
The first two-round fully adaptive MPC with global CRS.

Part I:

Our results :

Theorem (informal):
Assuming indistinguishability obfuscation for circuits and injective one way functions,
there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:

- the CRS is global;
- even randomized functionalities can be computed.

The first two-round fully adaptive MPC without subexp. iO assumption;
The first two-round fully adaptive MPC with global CRS.

Part I:

Part II:
Theorem (informal):
Assuming iO for circuits and TDPs, there exists RAM-efficient statistically sound NIZK.

Our results :

Theorem (informal):
Assuming indistinguishability obfuscation for circuits and injective one way functions,
there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:

- the CRS is global;
- even randomized functionalities can be computed.

The first two-round fully adaptive MPC without subexp. iO assumption;
The first two-round fully adaptive MPC with global CRS.

Theorem (GP15, our work):
Assuming subexp. iO for circuits and RAM-efficient statistically sound NIZK,
there exists 2-round, fully-adaptively-secure, RAM-efficient byzantine MPC protocol.

Part I:

Part II:
Theorem (informal):
Assuming iO for circuits and TDPs, there exists RAM-efficient statistically sound NIZK.

Part I: HBC protocol with global CRS

First attempt

x1 x2 xn...

PK

xi = EncPK(xi)

First attempt

x1 x2 xn...

PK
- decrypt each using SK
- output f(x1, …, xn)

xi = EncPK(xi)

First attempt

x1 x2 xn...

PK
- decrypt each using SK
- output f(x1, …, xn)

xi = EncPK(xi)

- decrypt each using SK
- output f(x1, …, xn)

x1 x2 xn...

y = f(x1, x2, …, xn)

First attempt

x1 x2 xn...

PK
- decrypt each using SK
- output f(x1, …, xn)

xi = EncPK(xi)

- decrypt each using SK
- output f(x1, …, xn)

x1 x2’ xn...

y’ = f(x1, x2’…, xn)

Second attempt

x1r1 x2r2 xnrn...

PK

= EncPK(xi||ri)

x1 x2 xn...

xi = Commit(xi; ri)

opening of
comm

xiri

Second attempt

...

PK
- decrypt each using SK
- verify each
- output f(x1, …, xn)

= EncPK(xi||ri)

x1 x2 xn...

xi = Commit(xi; ri)

opening of
comm

x1r1 x2r2 xnrn

xiri

Second attempt

x1r

1

x2r

2

xnr

n...

PK
- decrypt each using SK
- verify each
- output f(x1, …, xn)

= EncPK(xi||ri)

- decrypt each using SK
- verify each
- output f(x1, …, xn)

y = f(x1, x2, …, xn)

x1 x2 xn...

xi = Commit(xi; ri)

...

x1 x2 xn...

opening of
comm

x1r1 x2r2 xnrn

xiri

x1r1 x2r2 xnrn

Second attempt

x1r

1

x2r

2

xnr

n...

PK
- decrypt each using SK
- verify each
- output f(x1, …, xn)

= EncPK(xi||ri)

- decrypt each using SK
- verify each
- output f(x1, …, xn)

y = f(x1, x2’, …, xn)

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2’r2’ xnrn...

x1 x2’ xn...

x1r1 x2r2 xnrn

xiri

Our protocol
PK

= EncPK(xi||ri|| ...)

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

xiri

Our protocol

x1r1 x2r2 xnrn

...

PK

= EncPK(xi||ri|| ...)

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

y = f(x1, x2, …, xn)

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

xiri

Our protocol

x1r1 x2’r2’ xnrn

...

PK

= EncPK(xi||ri|| ...)

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

⊥

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

xiri

Our protocol

x1r1 x2’r2’ xnrn

...

PK

= EncPK(xi||ri|| ...)

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

⊥

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

each completely determines x1, …, xn and therefore y.
xiri

The adversary cannot mix and match encryptions

xiri

Required primitives
PK

x1 x2 xn...

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Required primitives
PK

x1 x2 xn...

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Commitments

Problem:
equivocal commitments require local CRS

Required primitives
PK

x1 x2 xn...

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Commitments

Solution:
semi-honest commitments (no CRS)

Com(0) = (r, prg(s)); Com(1) = (prg(s), r)

Property:
honestly generated is statistically binding.

Problem:
equivocal commitments require local CRS

Required primitives
PK

x1 x2 xn...

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Encryption

Problem:
cannot use security of encryption

since SK is in the program

Required primitives
PK

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Encryption

Problem:
cannot use security of encryption

since SK is in the program

Required primitives
PK

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Encryption

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c

GM

PK, SK

Challenger

Required primitives
PK

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Encryption

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK

GM

PK, SK

Challenger

Required primitives
PK

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Encryption

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Challenger

Required primitives
PK

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Encryption

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Challenger

Solution:
Puncturable randomized encryption (PRE)

(from iO and injective OWFs)

Property:
simulation-secure

even when almost all SK is known

Required primitives
PK

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Encryption

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Challenger

Solution:
Puncturable randomized encryption (PRE)

(from iO and injective OWFs)

Property:
simulation-secure

even when almost all SK is known*

*: Simulation-secure analog of Sahai-Waters PDE

Achieving globality and full adaptive security

PK
...

...SK{ }

Simulation: not global

Achieving globality and full adaptive security

PK
...

...SK{ }

Simulation: not global

Solution: Modify the protocol to choose PK, during the execution.

PK

x1 x2 xn
...

x1
x2 xn...

SK

SK

Achieving globality and full adaptive security

PK
...

...SK{ }

Simulation: not global

Solution: Modify the protocol to choose PK, during the execution.

PK

x1 x2 xn
...

x1
x2 xn...

SK

SK PK SK

x1 x2 xn
...

x1
x2 xn...

Gen(rgen)

, rgen

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

Any MPC protocol
RAM-efficient

garbling
 (e.g. CH’16)

RAM-efficient
protocol

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

Any MPC protocol
RAM-efficient

garbling
 (e.g. CH’16)

RAM-efficient
protocol

Only works for n-1 corruptions!

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

Any MPC protocol
RAM-efficient

garbling
 (e.g. CH’16)

RAM-efficient
protocol

Only works for n-1 corruptions!
For full adaptive security:

Any randomness-
hiding MPC protocol

RAM-efficient
garbling

 (e.g. CH’16)

RAM-efficient
protocol

How to make the protocol RAM-efficient: two ways

Our MPC protocol
(which is

randomness-hiding)

RAM-efficient
garbling

 (e.g. CH’16)

RAM-efficient
protocol

How to make the protocol RAM-efficient: two ways

Our MPC protocol
(which is

randomness-hiding)

RAM-efficient
garbling

 (e.g. CH’16)

RAM-efficient
protocol

or

Our MPC protocol iO for RAM RAM-efficient
protocol

(requires subexp. iO)

Part II: Byzantine protocol and NIZK for RAM

Part II: Byzantine protocol and NIZK for RAM

GP’15 doesn’t compute randomness-hiding functionalities, i.e.IK02
approach doesn’t work.

Any randomness-
hiding MPC protocol

RAM-efficient
garbling

 (e.g. CH’16)

RAM-efficient
protocol

Malicious case
Observation: GP’15 works with circuits only because of NIZK proof of the statement f(x1, …, xn) = y.
In all NIZK proofs so far: the work of verifier ~ circuit size of f.

Malicious case

Theorem (Garg-Polychroniadou’15):
Assuming iO for RAM, one way functions, and NIZK proofs for RAM,
there exists 2-round, fully-adaptively-secure, RAM-efficient MPC protocol against malicious adversaries.

Observation: GP’15 works with circuits only because of NIZK proof of the statement f(x1, …, xn) = y.
In all NIZK proofs so far: the work of verifier ~ circuit size of f.

Malicious case

Theorem (Our work):
Assuming garbling scheme for RAM and NIZK proofs for circuits, there exists statistically sound NIZK proof
system for RAM.

Theorem (Garg-Polychroniadou’15):
Assuming iO for RAM, one way functions, and NIZK proofs for RAM,
there exists 2-round, fully-adaptively-secure, RAM-efficient MPC protocol against malicious adversaries.

Observation: GP’15 works with circuits only because of NIZK proof of the statement f(x1, …, xn) = y.
In all NIZK proofs so far: the work of verifier ~ circuit size of f.

Defs: NIZK, Garbling
NIZK proof system:
Let language L be defined by relation R(x; w)
Prove(x, w) → ᵨ
Verify(x, ᵨ) → accept / reject

Defs: NIZK, Garbling
NIZK proof system:
Let language L be defined by relation R(x; w)
Prove(x, w) → ᵨ
Verify(x, ᵨ) → accept / reject

*: everything also depends on |x|, |w|.

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient*:

- work of P only depends on |R|RAM
- |ᵨ| only depends on |R|RAM
- work of V depends on RAM complexity of R

Defs: NIZK, Garbling
NIZK proof system:
Let language L be defined by relation R(x; w)
Prove(x, w) → ᵨ
Verify(x, ᵨ) → accept / reject

*: everything also depends on |x|, |w|.

Garbling scheme:
KeyGen(r) → k
GarbleProg(k, f) →

GarbleInput(k, x) →
f

x

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient*:

- work of P only depends on |R|RAM
- |ᵨ| only depends on |R|RAM
- work of V depends on RAM complexity of R

Defs: NIZK, Garbling
NIZK proof system:
Let language L be defined by relation R(x; w)
Prove(x, w) → ᵨ
Verify(x, ᵨ) → accept / reject

*: everything also depends on |x|, |w|.

Garbling scheme:
KeyGen(r) → k
GarbleProg(k, f) →

GarbleInput(k, x) →
f

x

Correctness: can compute f(x)
Security: garbled values only reveal f(x)
RAM-efficient*:

- work of the garbler only depends on |f|RAM
- size of garbled values depends on |f|RAM
- work of the evaluator depends on RAM

complexity of f

*: everything also depends on |x|

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient*:

- work of P only depends on |R|RAM
- |ᵨ| only depends on |R|RAM
- work of V depends on RAM complexity of R

Defs: NIZK, Garbling
NIZK proof system:
Let language L be defined by relation R(x; w)
Prove(x, w) → ᵨ
Verify(x, ᵨ) → accept / reject

*: everything also depends on |x|, |w|.

Garbling scheme:
KeyGen(r) → k
GarbleProg(k, f) →

GarbleInput(k, x) →
f

x

*: everything also depends on |x|

Exists under iO for circuits + OWFs
(Canetti-Holmgren’16)

Correctness: can compute f(x)
Security: garbled values only reveal f(x)
RAM-efficient*:

- work of the garbler only depends on |f|RAM
- size of garbled values depends on |f|RAM
- work of the evaluator depends on RAM

complexity of f

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient*:

- work of P only depends on |R|RAM
- |ᵨ| only depends on |R|RAM
- work of V depends on RAM complexity of R

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Prover Verifier

x ∊ L
w

x ∊ L

Convince that ∃w such that R(x; w) = 1

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Convince that ∃w such that R(x; w) = 1

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

Prover Verifier

x ∊ L
w

x ∊ L

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Convince that ∃w such that R(x; w) = 1

Proof ᵨ = R(*,*) x, w

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

Accept if Eval() = 1R(*,*) x, w

Prover Verifier

x ∊ L
w

x ∊ L

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Proof ᵨ = R(*,*) x, w

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

Accept if Eval() = 1R(*,*) x, w

● Verifier doesn’t learn anything about w

Prover Verifier

x ∊ L
w

x ∊ L

Convince that ∃w such that R(x; w) = 1

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Proof ᵨ = R(*,*) x, w

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

Accept if Eval() = 1R(*,*) x, w

● Verifier doesn’t learn anything about w
● Malicious prover can garble all-one function

Prover Verifier

x ∊ L
w

x ∊ L

Convince that ∃w such that R(x; w) = 1

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

x ∊ L

R(*,*) x, w

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

x ∊ L

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

Accept if Eval() = 1R(*,*) x, w

● Verifier doesn’t learn anything about w
● Correctness of garbling guaranteed by NIZK: idea works for

perfectly correct garbling scheme for RAM

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R(*,*) x, w

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

x ∊ L

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

Accept if Eval() = 1R(*,*) x, w

● Verifier doesn’t learn anything about w
● Correctness of garbling guaranteed by NIZK: idea works for

perfectly correct garbling scheme for RAM
● Problem: don’t have perfectly correct garbling scheme for RAM

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R(*,*) x, w

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover

x ∊ L
w

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w
What might go wrong?

- Can verify that garbling was done correctly for some r
- cannot verify that r was chosen at random

NIZK proof: “garbling done correctly, for correct R and x” Verifier
x ∊ L

Accept if Eval() = 1R(*,*) x, w

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R(*,*) x, w

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover

x ∊ L
w

KeyGen(r) → k
GarbleProg(k, R) →

GarbleInput(k, (xw)) →

R(*,*)

x, w

What might go wrong?
Consider garbling which is incorrect for one bad key k’:

- For k ≠ k’ the evaluation is always correct
- for k’ GarbleProg always outputs all-one function.

NIZK proof: “garbling done correctly, for correct R and x” Verifier
x ∊ L

Accept if Eval() = 1R(*,*) x, w

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R(*,*) x, w

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Malicious Prover

x ∉ L

output 1 x, 0

KeyGen(r’) → k’

GarbleProg(k’, R) →

GarbleInput(k’, x, 0) →

output 1

x, 0

What might go wrong?
Consider garbling which is incorrect for one bad key k’:

- For k ≠ k’ the evaluation is always correct
- for k’ GarbleProg always outputs all-one function.

NIZK proof: “garbling done correctly, for correct R and x” Verifier accepts
x ∊ L

Accept if Eval() = 1R(*,*) x, w

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Malicious Prover

x ∉ L

Crucial observation:
the garbling scheme of CH15 is perfectly correct with abort, i.e.:
for any key k evaluation of garbled program on garbled input wither
gives correct output, or ⊥ .

NIZK proof: “garbling done correctly, for correct R and x”
x ∊ L

R(*,*) x, w

Verifier accepts

Accept if Eval() = 1R(*,*) x, w

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

KeyGen(r’) → k’

GarbleProg(k’, R) →

GarbleInput(k’, x, 0) →

output 1

x, 0

output 1 x, 0

Summary: two round adaptively secure protocols

Semi-honest case:
● global CRS
● RAM-efficient
● computes randomized functionalities
● from iO and injective OWFs (no subexp iO)

Malicious case (GP15 + our RAM efficient NIZK):
● RAM-efficient
● from subexp iO and TDP

Open questions

Fully adaptive constant round HBC protocol without a CRS?
Fully adaptive constant round malicious protocol without subexp iO?

Questions?

