Better 2-round adaptive MPC

Ran Canetti, Oxana Poburinnaya
TAU and BU BU

Adaptive Security of MPC

Adaptive corruptions:
g g adversary can decide who to corrupt adaptively during the
execution

Adaptive Security of MPC

execution

Adaptive corruptions:

adversary can decide who to corrupt adaptively during the

Simulator:

1. simulate communication (without knowing x., ..

., xn)

Adaptive Security of MPC

Adaptive corruptions:

adversary can decide who to corrupt adaptively during the

execution

1. simulate communication (without knowing x., ..

Simulator:

., xn)

Adaptive Security of MPC

execution

Adaptive corruptions:

adversary can decide who to corrupt adaptively during the

Simulator:

1. simulate communication (without knowing x., ..

., xn)

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x., ..., X)
2. simulate r, of corrupted parties, consistent with
communication and x.

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:

: c=Enc(m;r) ¢
Example: encryption >

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate fake ciphertext ¢ (without knowing m)

: c = Enc(m;r)
Example: encryption >

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate fake ciphertext ¢ (without knowing m)
2. upon corruption, learn m and provide consistent r, sk

N c=Enc(m;r) _
Example: encryption .

Full Adaptive Security

Full adaptive security:
e No erasures

Full Adaptive Security
v—1

Full adaptive security: i/m g

e No erasures \@//
4

e Security even when all parties are corrupted g

Full Adaptive Security

§

{4
& \ZQ
Full adaptive security: i%i /o
e No erasures N 7 sﬁi\
i ¢

e Security even when all parties are corrupted "’ g

Full Adaptive Security

= S
Full adaptive security: { " /
e No erasures \ > scg
e Security even when all parties are corrupted ik— ¢ LN

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02)

Full Adaptive Security

S ¢ 7

Full adaptive security: i/m ¢ /ZQ

e No erasures \M// — i\/V
e Security even when all parties are corrupted i‘*’ g 3

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02)

Full adaptive security for randomized functionalities:
e Randomness of the computation remains hidden even when all parties are
corrupted

Full Adaptive Security

e No erasures
e Security even when all parties are corrupted ik’ ¢

Full adaptive security: i/m ¢ //

Fully adaptively secure, constant rounds protocols appeared only recently: CGP15, DKR15, GP15.
Before: number of rounds ~ depth of the circuit (e.g. CLOS02)

Full adaptive security for randomized functionalities:
e Randomness of the computation remains hidden even when all parties are
corrupted

Example: F internally chooses random primes p, g, and outputs N = pq.
Most protocols (e.g. CLOSO02) reveal p, g, when all parties are corrupted.

Full Adaptive Security

of # of rounds assumptions
parties
Canetti, Goldwasser, 2 2 OWF
Poburinnaya’15 subexp iO
Dachman-Soled, Katz, n 4 OWF
Rao’15 iO
Garg, Polychroniadou’15 n 2 TDP
subexp. iO

Only 3 fully adaptively secure protocols with constant rounds - but with a CRS*
Only one of them is 2 round MPC.

*need a CRS even for HBC case!

Full Adaptive Security

of # of rounds assumptions
parties
Canetti, Goldwasser, 2 2 OWF
Poburinnaya’15 subexp iO
Dachman-Soled, Katz, n 4 OWF
Rao’15 iO
Garg, Polychroniadou’15 n 2 TDP
subexp. iO

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Full Adaptive Security

of # of rounds assumptions global CRS
parties

Canetti, Goldwasser, 2 2 OWF +
Poburinnaya’15 subexp iO

Dachman-Soled, Katz, n 4 OWF +
Rao’15 iO

Garg, Polychroniadou’15 n 2 TDP -

subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Full Adaptive Security

of # of rounds assumptions global CRS
parties

Canetti, Goldwasser, 2 2 OWF +
Poburinnaya’15 subexp iO

Dachman-Soled, Katz, n 4 OWF +
Rao’15 iO

Garg, Polychroniadou’15 n 2 TDP -

subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Full Adaptive Security

of # of rounds assumptions global CRS randomized
parties functionalities

Canetti, Goldwasser, 2 2 OWF T +
Poburinnaya’15 subexp iO

Dachman-Soled, Katz, n 4 OWF + +
Rao’15 iO

Garg, Polychroniadou’15 n 2 TDP - -

subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Full Adaptive Security

of # of rounds assumptions global CRS randomized
parties functionalities

Canetti, Goldwasser, 2 2 OWF T +
Poburinnaya’15 subexp iO

Dachman-Soled, Katz, n 4 OWF + +
Rao’15 iO

Garg, Polychroniadou’15 n 2 TDP - -

subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Q3: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)

Full Adaptive Security

of # of rounds assumptions global CRS randomized

parties functionalities
Canetti, Goldwasser, 2 2 OWF T +
Poburinnaya’15 subexp iO
Dachman-Soled, Katz, n 4 OWF + +
Rao’15 iO
Garg, Polychroniadou’15 n 2 TDP - -

subexp. iO (even in HBC case)
This work n 2 injective OWF + +
i0 (comp. close)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Q2: can we compute all randomized functionalities (even not adaptively well formed, e.g. N = pq)?

Q3: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)

Our results :
Part I:

Theorem (informal):
Assuming indistinguishability obfuscation for circuits and injective one way functions,

there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:

- the CRS is global,;
- even randomized functionalities can be computed.

Our results :
Part I:

Theorem (informal):

Assuming indistinguishability obfuscation for circuits and injective one way functions,

there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:
- the CRS is global,;
- even randomized functionalities can be computed.

The first two-round fully adaptive MPC without subexp. iO assumption;
The first two-round fully adaptive MPC with global CRS.

Our results :
Part I:

Theorem (informal):

Assuming indistinguishability obfuscation for circuits and injective one way functions,

there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:
- the CRS is global,;
- even randomized functionalities can be computed.

The first two-round fully adaptive MPC without subexp. iO assumption;
The first two-round fully adaptive MPC with global CRS.

Part Il:

Theorem (informal):
Assuming iO for circuits and TDPs, there exists RAM-efficient statistically sound NIZK.

Our results :
Part I:

Theorem (informal):

Assuming indistinguishability obfuscation for circuits and injective one way functions,

there exists 2-round, fully-adaptively-secure, RAM-efficient semi-honest MPC protocol where:
- the CRS is global,;
- even randomized functionalities can be computed.

The first two-round fully adaptive MPC without subexp. iO assumption;
The first two-round fully adaptive MPC with global CRS.

Part Il:

Theorem (informal):
Assuming iO for circuits and TDPs, there exists RAM-efficient statistically sound NIZK.

Theorem (GP15, our work):
Assuming subexp. iO for circuits and RAM-efficient statistically sound NIZK,
there exists 2-round, fully-adaptively-secure, RAM-efficient byzantine MPC protocol.

Part |: HBC protocol with global CRS

First attempt

- = Enc,,(x)

First attempt

- decrypt each |:| using SK
- output f(x, ..., X_)

X, | = Enc,,(x)

First attempt

- decrypt each |:| using SK
- output f(x, ..., X_)

X, | = Enc,,(x)

B -

- decrypt each |:| using SK
- output f(x1, xn)

y=f(x1,x2, ...,xn)

First attempt

X, | = Enc,,(x)

B .

- decrypt each |:| using SK
- output f(x1, xn)

y =X, X, ..., X)

- decrypt each |:| using SK
- output f(x, ..., X_)

8 8 ¢

Second attempt

X, | = Commit(x; r.)

- - EnCPK(Xi”ri‘)\opening of

comm

1% Xn

68 mm_m o8

Second attempt

X
i

X,

Commit(x;; r)

comm

EnCPK(Xi”ri‘)\Qpening of

- decrypt each [| using SK
- verify each | |
- output f(x, ..., X_)

-3

X1l'

1

Xolz

Second attempt

- decrypt each [| using SK
_ - verify each | |
X | = Commlt(xi, ri) - output f(x,, ..., X)
Wil EnCPK(Xi”ri‘)\Qpening of
comm
X X X
X1 X2 Xn < 1 2 n >
8 8 X1r1 X2I'2 ann 8 g
- decrypt each |] using SK -

- verify each [| < %
- output f(x, ..., X_)

Second attempt

- decrypt each [| using SK
- verify each | |

X | = COmmit(xi; ri) - output f(x, ..., X_)
x| = Encg, (x[|r)
) X X X
X, || %, X 1| %2 n
- 88 >
XiT Xl X 8 g
- decrypt each |] using SK % ' - - S

- verify each [|

- output f(x1, xn)

Our protocol

X, | = Commit(x; r.)

! = Enco (1N (1. [)

i gE g e

Our protocol

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

X
i

= Encg (x|inll I)

Commit(x;; r)

HEjN
X1 X2 L Xn
X1r1 X2r2 ann < >
000 pog . [poo g g g g
X1r1 X2r2 ann
gog oog . HEn
- decrypt each D using SK < >
- check that JJOare the same in each ||
- verify each D

- output f(x1, xn)

Our protocol

X
i

H|E|N

XM Sz

OO0 oo

Commit(x;; r)

= Encg (x|inll I)

Xn rn

HjEn

- decrypt each D using SK
- check that JOare the same in each ||
- verify each D

- output f(x1, xn)

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

X1 X2 Xn
< D
g g X1I'1 x2r2 ann g g
000 oog | [poo
< D

Our protocol

- decrypt each D using SK
- check that JJOare the same in each ||

X, | = Commit(x;r) - verify each [_]
- output f(x1, xn)
i = Enc,, (x||Ir]].--[])
000 PK\ il
X1 X2 Xn
X1r1 X2,r2’ ann < >
I I HiEN \
X1r1 X2r2 ann
I I od
- decrypt each D using SK < >
- check that JJOare the same in each [_]
- i X .
verify each D each 000 completely determines Xys wees X and therefore y.
- output f(x1, xn)
The adversary cannot mix and match encryptions

Required primitives

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

X1 X2 Xn
< D
8 8 X1I'1 X2I'2 ann 8 g
000 oog | [poo

Required primitives

- decrypt each D using SK
- check that JJOare the same in each ||

Commitments - verify each []

- output f(x, ..., X_)

Problem:
equivocal commitments require local CRS
X1 X2 X
" n
< D
g g X1r1 X2r2 ann g g
I I L1000

Required primitives

- decrypt each D using SK
- check that JJOare the same in each ||

Commitments - verify each [_]

- output f(x1, xn)

Problem:
equivocal commitments require local CRS
X1 X2 Xn
Solution: ¢ N
semi-honest commitments (no CRS) \ ‘
Com(0) = (r, prg(s)); Com(1) = (prg(s). 1) % %
I I HHN
< D

Property:

honestly generated D is statistically binding.

Required primitives

Encryption

Problem:

cannot use security of encryption
since SK is in the program

- decrypt each D using SK

- check that JJOare the same in each ||
- verify each D

- output f(x1, xn)

000 oog | [poo

Required primitives

Encryption

Problem:

cannot use security of encryption
since SK is in the program

- decrypt each D using SK

- check that JJOare the same in each ||
- verify each D

- output f(x1, xn)

000 oog | [poo

Required primitives

- decrypt each D using SK
- check that JJOare the same in each ||

Encryption - verify each I:I
- output f(x1, xn)
Problem:
cannot use security of encryption
since SKis in the program X 1] %2 Xn
o < > o -
A,)
I I L1000
Challenger PK GM
m
~ PK, SK

¢ = Enc(m) or simulated ¢

Required primitives

- decrypt each D using SK
- check that JJOare the same in each ||

Encryption - verify each I:I
- output f(x1, xn)
Problem:
cannot use security of encryption
since SKis in the program X 1] %2 Xn
o < > o -
A,)
I I L1000
Challenger PK GM
m
~ PK, SK

¢ = Enc(m) or simulated c, SK

Required primitives

- decrypt each D using SK
- check that JJOare the same in each ||

Encryption - verify each I:I
- output f(x1, xn)

Problem:

cannot use security of encryption
since SKis in the program X 1] %2 Xn
I I L1000
Challenger PK GM
m

-~ PK, SK
¢ = Enc(m) or simulated c, SK{c}

Required primitives

Encryption

Problem:

cannot use security of encryption
since SK is in the program

Solution:
Puncturable randomized encryption (PRE)
(from iO and injective OWFs)

Property:
simulation-secure
even when almost all SK is known

- decrypt each D using SK
- check that JJOare the same in each ||

- verify each D
- output f(x1, xn)

000 oog | [poo

. P

Challenger PK GM
m

-~ PK, SK
¢ = Enc(m) or simulated ¢, SK{c} ’

Required primitives

Encryption

Problem:

cannot use security of encryption
since SK is in the program

Solution:
Puncturable randomized encryption (PRE)
(from iO and injective OWFs)

Property:
simulation-secure
even when almost all SK is known*

*: Simulation-secure analog of Sahai-Waters PDE

- decrypt each D using SK
- check that JJOare the same in each ||

- verify each D
- output f(x1, xn)

000 oog | [poo

. P

Challenger PK GM
m

-~ PK, SK
¢ = Enc(m) or simulated ¢, SK{c} ’

Achieving globality and full adaptive security

Simulation: not global

. o
ﬂB @“ oot oo oo “g

Achieving globality and full adaptive security

Simulation: not global
8% oog pon Qoo gg

Solution: Modify the protocol to choose PK, during the execution.

Achieving globality and full adaptive security

Simulation: not global

83 Dodood - [ooO gg

Solution: Modify the protocol to choose PK, during the execution.

L &P~
> ~

nod odd - odo

How to make the protocol RAM-efficient

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x,, ..., X ; r) = garbled f, garbled Xys enes X

1,

How to make the protocol RAM-efficient

F(x

1,

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:
ey X r) = garbled f, garbled Xys enes X

Any MPC protocol

RAM-efficient

EEI garbling —
(e.g. CH16)

RAM-efficient
protocol

How to make the protocol RAM-efficient

F(x

1,

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:
ey X r) = garbled f, garbled Xys enes X

Any MPC protocol

RAM-efficient

EEI garbling —
(e.g. CH16)

RAM-efficient
protocol

Only works for n-1 corruptions!

How to make the protocol RAM-efficient

F(x

1,

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

Any MPC protocol

ey X r) = garbled f, garbled Xys enes X
oL RAg'\g'r‘;T;'rfée”t RAM-efficient
——]
(e.9. CH'16) loiece

Only works for n-1 corruptions!
For full adaptive security:

Any randomness-
hiding MPC protocol

RAM-efficient

EBj garbling RAM-efficient
/]
(e.9. CH'16) PABIEEE!

How to make the protocol RAM-efficient: two ways

Our MPC protocol
(which is
randomness-hiding)

I

RAM-efficient
garbling
(e.g. CH16)

RAM-efficient
protocol

How to make the protocol RAM-efficient: two ways

Our MPC protocol
(which is
randomness-hiding)

Our MPC protocol

I

RAM-efficient
garbling
(e.g. CH16)

or

RAM-efficient
protocol

iO for RAM

(requires subexp. iO)

RAM-efficient
protocol

Part |l: Byzantine protocol and NIZK for RAM

Part |l: Byzantine protocol and NIZK for RAM

Any randomness-
hiding MPC protocol

o

RAM-efficient
garbling
(e.g. CH'16)

RAM-efficient
protocol

GP’15 doesn’t compute randomness-hiding functionalities, i.e.IK02
approach doesn’t work.

Malicious case

Observation: GP’15 works with circuits only because of NIZK proof of the statement f(x, ..., x) = .
In all NIZK proofs so far: the work of verifier ~ circuit size of f.

Malicious case

Observation: GP’15 works with circuits only because of NIZK proof of the statement f(x, ..., x) = .
In all NIZK proofs so far: the work of verifier ~ circuit size of f.

Theorem (Garg-Polychroniadou’15):
Assuming iO for RAM, one way functions, and NIZK proofs for RAM,
there exists 2-round, fully-adaptively-secure, RAM-efficient MPC protocol against malicious adversaries.

Malicious case

Observation: GP’15 works with circuits only because of NIZK proof of the statement f(x, ..., x) = .
In all NIZK proofs so far: the work of verifier ~ circuit size of f.

Theorem (Garg-Polychroniadou’15):
Assuming iO for RAM, one way functions, and NIZK proofs for RAM,
there exists 2-round, fully-adaptively-secure, RAM-efficient MPC protocol against malicious adversaries.

Theorem (Our work):
Assuming garbling scheme for RAM and NIZK proofs for circuits, there exists statistically sound NIZK proof

system for RAM.

Defs: NIZK, Garbling

NIZK proof system:

Let language L be defined by relation R(x; w)
Prove(x, w) — &

Verify(x, m) — accept / reject

Defs: NIZK, Garbling

NIZK proof system:

Let language L be defined by relation R(x; w)
Prove(x, w) — &

Verify(x, m) — accept / reject

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient™:
- work of P only depends on [R|;,,,
- |=| only depends on |R|;
- work of V depends on RAM complexity of R

*: everything also depends on |x], |w|.

Defs: NIZK, Garbling

NIZK proof system:

Let language L be defined by relation R(x; w)
Prove(x, w) — &

Verify(x, m) — accept / reject

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient™:
- work of P only depends on [R|;,,,
- |=| only depends on |R|;
- work of V depends on RAM complexity of R

*: everything also depends on |x], |w|.

Garbling scheme:
KeyGen(r) — k
GarbleProg(k, f) —

Garblelnput(k, x) —

Defs: NIZK, Garbling

NIZK proof system:

Let language L be defined by relation R(x; w)
Prove(x, w) — &

Verify(x, m) — accept / reject

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient™:
- work of P only depends on [R|;,,,
- |=| only depends on |R|;
- work of V depends on RAM complexity of R

Garbling scheme:
KeyGen(r) — k
GarbleProg(k, f) — | ¢

Garblelnput(k, x) —

*: everything also depends on |x], |w|.

Correctness: can compute f(x)
Security: garbled values only reveal f(x)
RAM-efficient™:
- work of the garbler only depends on |[f|;,,,
- size of garbled values depends on [f|,,,
- work of the evaluator depends on RAM
complexity of f

*: everything also depends on ||

Defs: NIZK, Garbling

NIZK proof system:

Let language L be defined by relation R(x; w)
Prove(x, w) — &

Verify(x, m) — accept / reject

Completeness;
Statistical soundness;
Zero-knowledge;
RAM-efficient™:
- work of P only depends on [R|;,,,
- |=| only depends on |R|;

- work of V depends on RAM complexity of R

Garbling scheme:
KeyGen(r) — k
GarbleProg(k, f) — | ¢

Garblelnput(k, x) —

*: everything also depends on |x], |w|.

Correctness: can compute f(x)
Security: garbled values only reveal f(x)
RAM-efficient™:
- work of the garbler only depends on |[f|;,,,
- size of garbled values depends on [f|,,,
- work of the evaluator depends on RAM
complexity of f

Exists under iO for circuits + OWFs
(Canetti-Holmgren'16)

*: everything also depends on ||

NIZK + Garbled RAM — NIZK for RAM

Attempt 1
Convince that 3w such that R(x; w) =1
Prover Verifier
XEL X E L

NIZK + Garbled RAM — NIZK for RAM

Attempt 1

Convince that 3w such that R(x; w) =1

&
Prover

XEL

KeyGen(r) — k
GarbleProg(k, R) —

R(*,*)

Garblelnput(k, (xw)) —

X, W

=
2

Verifier

X€EL

NIZK + Garbled RAM — NIZK for RAM

Attempt 1

Convince that 3w such that R(x; w) =1

Proofx=| R() [[X W
Prover Verifier
XEL X€EL
i
Accept if Eval(R(* *) X. W) =1
KeyGen(r) — k s
GarbleProg(k, R) — | R(%.)

Garblelnput(k, (xw)) —

X, W

NIZK + Garbled RAM — NIZK for RAM

Attempt 1
Convince that 3w such that R(x; w) =1
@ * * 5\
@ Proof = | R(™) || X W
Prover Verifier
X €L X €L
w
Accept if Eval(R(* *) X. W) =1
KeyGen(r) — k s
GarbleProg(k, R) — | R(%.)

Garblelnput(k, (xw)) —

X, W

e \Verifier doesn’t learn anything about w

NIZK + Garbled RAM — NIZK for RAM

Attempt 1
Convince that 3w such that R(x; w) =1
® . ,
@ Proof = | R(™) || X W
Prover Verifier
X €L X €L
w
Accept if Eval(R(* *) X. W) 1
KeyGen(r) — k s
GarbleProg(k, R) — | R(%.)
Garblelnput(k, . e \Verifier doesn’t learn anything about w
arblelnput(k, (xw)) X, W e Malicious prover can garble all-one function

NIZK + Garbled RAM — NIZK for RAM

Attempt 2

Convince that 3w such that R(x; w) =1

R(*,*) X, W

Prover NIZK proof: “garbling done correctly, for correct R and x” Vegfll_er
X

XEL

W Accept if Eval(R | x w)

KeyGen(r) — k
GarbleProg(k, R) —

R(*,*)

Garblelnput(k, (xw)) —

X, W

and if NIZK verifies.

NIZK + Garbled RAM — NIZK for RAM

Attempt 2
Convince that 3w such that R(x; w) =1
% R(*,*) X, W %
Prover NIZK proof: “garbling done correctly, for correct R and x” Veélfll_er
X
X€EL
w Accept if Eval(| Rex sy [y |) =1

KeyGen(r) — k
GarbleProg(k, R) —

and if NIZK verifies.

R(*,*)

Garblelnput(k, (xw)) —

X, W

e Verifier doesn’t learn anything about w
e Correctness of garbling guaranteed by NIZK: idea works for
perfectly correct garbling scheme for RAM

NIZK + Garbled RAM — NIZK for RAM

Attempt 2
Convince that 3w such that R(x; w) =1
% R(*,*) X, W %
Prover NIZK proof: “garbling done correctly, for correct R and x” Veélfll_er
X
X€EL
w

KeyGen(r) — k
GarbleProg(k, R) —

R(*,*)

Accept if Eval(R(* *)

xw|)=1

and if NIZK verifies.

Garblelnput(k, (xw)) —

X, W

e Verifier doesn’t learn anything about w
e Correctness of garbling guaranteed by NIZK: idea works for

perfectly correct garbling scheme for RAM

e Problem: don’t have perfectly correct garbling scheme for RAM

NIZK + Garbled RAM — NIZK for RAM

Attempt 2
Convince that 3w such that R(x; w) =1
: .
@ R(*,%) X, W
Prover NIZK proof: “garbling done correctly, for correct R and x” Veélfll_er
X
X€EL
w Accept if Eval(| Rex sy [y |) =1

KeyGen(r) — k
GarbleProg(k, R) —

R(*,*)

and if NIZK verifies.

Garblelnput(k, (xw)) —

X, W

What might go wrong?

- Can verify that garbling was done correctly for some r
- cannot verify that r was chosen at random

NIZK + Garbled RAM — NIZK for RAM

Attempt 2

Convince that 3w such that R(x; w) =1

R(*,*) X, W

Prover NIZK proof: “garbling done correctly, for correct R and x” Vegfll_er
X

X€eL

W Accept if Eval(R | x w)

and if NIZK verifies.

KeyGen(r) — k

GarbleProg(k, R) —| R(.7) What might go wrong?
Consider garbling which is incorrect for one bad key k':
- For k # k' the evaluation is always correct
- for k’ GarbleProg always outputs all-one function.

Garblelnput(k, (xw)) — | x, w

NIZK + Garbled RAM — NIZK for RAM

Attempt 2

Convince that 3w such that R(x; w) =1

e -
@ output 1 x, 0 @

Verifier accepts
X €L

Malicious Prover NIZK proof: “garbling done correctly, for correct R and x”

x &L

Accept if Eval(R(* *) X. W) =1

and if NIZK verifies.

KeyGen(r') —» K

GarbleProg(k’, R) — output 1 What might go wrong?
Consider garbling which is incorrect for one bad key k':
- For k # k' the evaluation is always correct
- for k’ GarbleProg always outputs all-one function.

Garblelnput(k’, x, 0) - [,

NIZK + Garbled RAM — NIZK for RAM

Attempt 2

Convince that 3w such that R(x; w) =1

@

Malicious Prover NIZK proof: “garbling done correctly, for correct R and x”

>

output 1 X, 0 @

Verifier accepts
X €L

x &L

KeyGen(r') —» K
GarbleProg(k’, R) —

output 1

Garblelnput(k’, x, 0) —

x, 0

Accept if Eval(R(* *) X. W) =1

and if NIZK verifies.

Crucial observation:
the garbling scheme of CH15 is perfectly correct with abort, i.e.:
for any key k evaluation of garbled program on garbled input wither
gives correct output, or L .

Summary: two round adaptively secure protocols

Semi-honest case:
global CRS
RAM-efficient
computes randomized functionalities
from iO and injective OWFs (no subexp iO)

Malicious case (GP15 + our RAM efficient NIZK):
e RAM-efficient
e from subexp iO and TDP

Open questions

Fully adaptive constant round HBC protocol without a CRS?
Fully adaptive constant round malicious protocol without subexp iO?

Questions?

