Adaptively Secure Succinct Garbled RAM
with Persistent Memory

Ran Canetti, Yilei Chen, Justin Holmgren, Mariana Raykova

DIMACS workshop
MIT Media Lab
June 8~10, 2016

: June 11, 2016, Boston, heavy snow.

: June 11, 2016, Boston, heavy snow. Alice finds a
time algorithm for factoring.

: June 11, 2016, Boston, heavy snow. Alice finds a
time algorithm for factoring.

Alice

: June 11, 2016, Boston, heavy snow. Alice finds a
time algorithm for factoring.

. Instead of submitting to STOC, she thinks it’s cool
to write a program and show off to her friends.

> Factoring.hs RSA2048

> Factoring.hs RSA2048

Running time 7 hrs 34 mins
25195908475...20720357

= 83990...4079279 x 3091701...723883

Next question

. It is slow on her laptop (quasi-polynomial time, you
know) ... cannot fit into a party.

. It is slow on her laptop (quasi-polynomial time, you
know) ... cannot fit into a party.

: So she turns to cloud, but clouds are big brothers

. It is slow on her laptop (quasi-polynomial time, you
know) ... cannot fit into a party.

: So she turns to cloud, but clouds are big brothers
: She heard that one can delegate the computation

in a way that the server learns only the output of
the computation but nothing else

> sudo apt-get install FHE

> sudo apt-get install FHE
> FHE Factoring.hs

> sudo apt-get install FHE
> FHE Factoring.hs
Turning the program into circuits ...

> sudo apt-get install FHE

> FHE Factoring.hs

Turning the program into circuits ...
N

> sudo apt-get install FHE

> FHE Factoring.hs

Turning the program into circuits ...
NC

>

> sudo apt-get install Yao

>Yao Factoring.hs

> sudo apt-get install FHE

> FHE Factoring.hs

Turning the program into circuits ...

AC

>

> sudo apt-get install Yao

>Yao Factoring.hs

Still turning the program into circuits ...

> sudo apt-get install FHE

> FHE Factoring.hs

Turning the program into circuits ...

AC

>

> sudo apt-get install Yao

>Yao Factoring.hs

Still turning the program into circuits ...
ACACACACACACAC

>

> sudo apt-get install GRAM_Lu_Ostrovsky
> GRAM _Lu Ostrovsky Factoring.hs

> sudo apt-get install GRAM_Lu_Ostrovsky

> GRAM _Lu Ostrovsky Factoring.hs

Warning: Program size as big as the running time,
continue (y) or not (n)

> sudo apt-get install GRAM_Lu_Ostrovsky

> GRAM _Lu Ostrovsky Factoring.hs

Warning: Program size as big as the running time,
continue (y) or not (n)

n

>

> sudo apt-get install PRAM

> sudo apt-get install PRAM
> PRAM Factoring.hs

> sudo apt-get install PRAM
> PRAM Factoring.hs
Done -> PRAM_Factoring

> sudo apt-get install PRAM
> PRAM Factoring.hs

Done -> PRAM_Factoring

> PRAM _Factoring RSA2048

> sudo apt-get install PRAM

> PRAM Factoring.hs

Done -> PRAM_Factoring

> PRAM _Factoring RSA2048

Warning: cannot adaptively choose functions or
inputs, security at user’s own risk, continue (y) or
not (n)

> sudo apt-get install PRAM

> PRAM Factoring.hs

Done -> PRAM_Factoring

> PRAM _Factoring RSA2048

Warning: cannot adaptively choose functions or
inputs, security at user’s own risk, continue (y) or
not (n)
n

Garbling/randomized encoding for RAM with persistent memory

31

Garbling/randomized encoding for RAM with persistent memory

Gen => msk

32

Garbling/randomized encoding for RAM with persistent memory

Gen => msk

msk + Do => G(Do)

33

Garbling/randomized encoding for RAM with persistent memory

Gen => msk

o+ 58
o+ [0

34

Garbling/randomized encoding for RAM with persistent memory

Gen => msk

msk + -
msk + -

35

Garbling/randomized encoding for RAM with persistent memory

msk + Do => G(Do)

msk + Pi1 = G(P1)

Eval G(Do) G(P1) => P1(Do) G(D+1)

36

Garbling/randomized encoding for RAM with persistent memory

msk + Do => G(Do)

msk + P1 => | G(P1)
Eval G(Do) G(P1) => P1(Do) G(D+1)

msk + Pz = G(P2)

37

Garbling/randomized encoding for RAM with persistent memory

msk + Do => G(Do)

msk + P11 = G(P1)
Eval G(Do) G(P1) => P1(Do) G(D1)
msk + Pz = G(P2)

Eval | G(D1) G(P2) => P2(D1) G(D2)

38

Garbling/randomized encoding for RAM with persistent memory

;

;:.j
| FYTTY FY PP PR U PP ISP Y [P Y [P, on NS (OO PTY FRor oo FFRE1 Yy YT PETOL LT U

G(Do)

39

Garbling/randomized encoding for RAM with persistent memory

Adaptively

simulation
? secure

P1(Do)

Garbling/randomized encoding for RAM with persistent memory

P1(Do)

Adaptively

simulation
secure

G(D+1)

41

Garbling/randomized encoding for RAM with persistent memory

?

G(Do)

?

G(D+)

=>

=>

G(Do)

G(P1)

G(P1)

<=

P1(Do)

P2(D+1)

Adaptively

simulation
secure

G(D+1)

42

Garbling/randomized encoding for RAM with persistent memory

Adaptively

simulation
? | == G(Do) secure

G(Do) | G(P1) <=|PiDo)| = G(D1)

G(Dn1) G(Pz2) <=|P2D») G(D2)

43

Theorem

[Main Theorem]

Adaptively secure succinct garbled RAM with persistent memory
from indistinguishability obfuscation for circuits,
and poly-to-1 collision-resistant hash function.

45

Starring

Indistinguishability Obfuscator

47

Indistinguishability Obfuscator for circuits

Defined by [Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang ‘01]

Security:

iO[F,] = iO[F,]
if F, and F, have identical functionality

Candidate constructions:

[Garg-Gentry-Halevi-Raykova-Sahai-Waters ‘13], [Barak-Garg-Kalai-Paneth-Sahai ‘14],
[Brakerski-Rothblum “14], [Pass-Seth-Telang ‘14], [Zimmerman ‘15], [Applebaum-Brakerski ‘15],
[Ananth-Jain ‘15], [Bitansky-Vaikuntanathan ‘15], [Gentry-Gorbunov-Halevi ‘15], [Lin ‘16], ...

Cryptanalyses:

[Cheon-Han-Lee-Ryu-Stehle ‘15], [Coron et al ‘15], [Miles-Sahai-Zhandry ‘16], ... 48

Poly-to-one
Collision Resistant Hash function

49

Poly-to-one collision resistant hash functions

H is collision resistant + each image has at most poly preimages.

[Thm] Exists for constant c, assuming Factoring or Discrete-log is hard.

50

The rest of the talk:

1. The main idea of the construction.
2. The technical heart: adaptively-enforceable accumulator.
3. Wrap up, and the easiest ways to think of our scheme.

Starting point: Canetti-Holmgren’s selective secure scheme.

52

Starting point: Canetti-Holmgren’s selective secure scheme.

Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

53

You never know how hard
it 1s to use 1O before
actually play with it.

[said Justin Holmgren, June 22, 2015, sunny |

Starting point: Canetti-Holmgren’s selective secure scheme.

Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

95

Starting point: Canetti-Holmgren’s selective secure scheme.

Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

f

Indistinguishable as long as
transc = (g, op) are the same.
[KLW-technique]

56

Starting point: Canetti-Holmgren’s selective secure scheme.

Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

f f

Indistinguishable as long as g can be different
transc = (q, op) are the same. [encrypt the state]
[KLW-technique]

Y

Starting point: Canetti-Holmgren’s selective secure scheme.

Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

f f f

Indistinguishable as long as g can be different Memory content
transc = (g, op) are the same. [encrypt the state] can be different
[KLW-technique] [encrypt the data]

58

Starting point: Canetti-Holmgren’s selective secure scheme.

Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

f f f f

Indistinguishable as long as g can be different Memory content Hide access
transc = (g, op) are the same. [encrypt the state] can be different pattern.
[KLW-technique] [encrypt the data] [oram]

59

Starting point: Canetti-Holmgren’s selective secure scheme.

Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

f f f f

Indistinguishable as long as g can be different Memory content Hide access
transc = (g, op) are the same. | [encrypt the state] can be different pattern.
[KLW-technique] [encrypt the data] [oram]

60

Canetti-Holmgren (ITCS16)

61

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

62

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator

(i0O-friendly) Accumulator
(i0-friendly) Splittable signature

63

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator

(i0O-friendly) Accumulator
(i0-friendly) Splittable signature

Accumulator
iO-friendly Merkle-tree

Setup(1*, §) samples Acc.PP « Acc.Setup(1*, §) and samples a PPRF F.

GbMem(SK, s) —+ & computes an accumulator ac, corresponding to s, generates (sk, vk) < Spl.Setup({1*; (0, 0))
and computes . + Spl.Sign(sk, (L, L, ac., ReadWrite(0 ++ 0))). & is then defined as a memory config-
uration which contains both (ac,, o) and storeg.

GbPrg(SK, M;,T;,1) — M; first transforms M; so that its initial state is L. Note this can be done without
loss of generality by hard-coding the “real” initial state in the transition function. GbPrg then computes
C; « i0(C), where C; is described in Algorithm 1. Finally, we define M; not by its transition function,
but by pseudocode, as the RAM machine which:

1. Reads (acg, o) from memory (recall these were inserted under the names (ac,,o,)). Define op; =
ReadWrite(0 — 0), go = L, and itrg = L.
2. Fori=40,1,2,...:
(a) Compute store;.,aci+1, v, m; + Acc.Update(Acc.PP, store;, op;).
(b) Compute out; + C;(i,g;, itr;, ac;, 0p;, 0;, vy, 8C; 1, T5).
(e) If out; parses as (y, o), then write (ac;1y, o) to memory, output y, and terminate.
(d) Otherwise, out; must parse as (gi1, itriy1,3Cit1, 0P,)s Cit1.

We note that M, can be compiled from C; and Acc.PP. This means that later, when we prove security,
it will suffice to analyze a game in which the adversary receives C; instead of M;. This also justifies
our relatively informal deseription of M;.

Input: Time ¢, state g, iterator itr, accumulator ac, operation op, signature ¢, memory value v, new
accumulator ac’, proof =
Data: Puncturable PRF ¥, RAM machine M; with transition function d;, Accumulator verification
key vkacc, index i, iterator public parameters ltr.PP, time bound T}
1 (sk,vk) < Spl.Setup(1%; F(i,1));
2 if ¢ > T; or Spl.Verify(vk, (g, itr,ac,op),a) = 0 or Acc.Verify(vkac, ac,op,ac’, v, 7) = 0 then return ;
3 out + d;(g,v);
4 if out € ¥ then
5 (sk’,vk') + Spl.Setup(1*; F(i + 1,0));
[return out, Sign(sk’, (L, L, ac’, ReadWrite(0 ++ 0))
7 else
8 Parse out as (g',0p');
9 itr' ¢ ltr.Iterate(ltr.PP, (g, itr, ac, op));
10 (sk',vk') « Spl.Setup(1*; F(i,t + 1));
11 return (g',itr’, ac’, op’), Sign(sk’, (¢', itr', ac’, op’))

Alporithm 1: Transition function for M;, with memory verified by a signed accumulator.

What is written in eprint 2015/1074

64

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Setup(1*, §) samples Acc.PP « Acc.Setup(1*, §) and samples a PPRF F.

Koppula-Lewko-Waters (STOC15)

(iO-friendly) Iterator G(Do) TR0). e s o
(i0O-friendly) Accumulator

(i0-friendly) Splittable signature

wnsforms M; so that its initial state is L. Note this can be done without

ng the “real” initial state in the transition function. GbPrg then computes

. o . ribed in Algorithm 1. Finally, we define M; not by its transition function,
but by pseudocode, as the RAM machine which:

1. Reads (acg, o) from memory (recall these were inserted under the names (ac,,o,)). Define op; =
ReadWrite(0 — 0), go = L, and itrg = L.
2. Fori=40,1,2,...:
(a) Compute store;.,aci+1, v, m; + Acc.Update(Acc.PP, store;, op;).
(b) Compute out; + C;(i,g;, itr;, ac;, 0p;, 0;, vy, 8C; 1, T5).
(e) If out; parses as (y, o), then write (ac;1y, o) to memory, output y, and terminate.
(d) Otherwise, out; must parse as (gi1, itriy1,3Cit1, 0P,)s Cit1.

We note that M, can be compiled from C; and Acc.PP. This means that later, when we prove security,
it will suffice to analyze a game in which the adversary receives C; instead of M;. This also justifies
our relatively informal deseription of M;.

Input: Time ¢, state g, iterator itr, accumulator ac, operation op, signature ¢, memory value v, new
accumulator ac’, proof =
Data: Puncturable PRF ¥, RAM machine M; with transition function d;, Accumulator verification
key vkacc, index i, iterator public parameters ltr.PP, time bound T}
ACC u m u I ato r 1 (sk,vk) < Spl.Setup(1%; F(i,1));
2 if ¢ > T; or Spl.Verify(vk, (g, itr,ac,op),a) = 0 or Acc.Verify(vkac, ac,op,ac’, v, 7) = 0 then return ;
3 out + d;(g,v);
M M 4 if out € ¥ then
I O - r I e n y IVI e r e-t re e 5 (sk’,vk') + Spl.Setup(1*; F(i + 1,0));
[return out, Sign(sk’, (L, L, ac’, ReadWrite(0 ++ 0))
7 else
8 Parse out as (g',0p');
9 itr' ¢ ltr.Iterate(ltr.PP, (g, itr, ac, op));
10 (sk’,vk') « Spl.Setup(1*; F(i,t + 1));
11 return (g',itr’, ac’, op’), Sign(sk’, (¢', itr', ac’, op’))

Algorithm 1: Transition function for M;, with memory verified by a signed accumulator.

What is written in eprint 2015/1074

65

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator
(iO-friendly) Accumulator
(i0-friendly) Splittable signature

Setup(1*,5) samples Acc.PP « Acc.Setup(1*,) and samples a PPRF F.

umulator ac, corresponding to s, generates (sk, vk) < Spl.Setup({1*; (0, 0))
k, (L, L, ac., ReadWrite(D — 0))). § is then defined as a memory config-
ac,, o) and storeg.

orms M; so that its initial state is | . Note this can be done without
the “real” initial state in the transition function. GbPrg then computes
ribed in Algorithm 1. Finally, we define A; not by its transition function,
but by pseudocode, as the RAM machine which:

1. Reads (acy, o) from memory (recall these were inserted under the names (ac,,,)). Define opy =
ReadWrite(0 — 0), go = L, and itrg = L.
2. Fori=0,1,2,...
(a) Compute store;y, ac;.,v;, 7; <~ Acc.Update(Acc.PP, store;, op;).
(b) Compute out; 4= Cy(i, g;,itr;, ac;, 0py, 0, vy, ¢4, 75)-
(e) If out; parses as (y, o), then write (ac;,y, o) to memory, output ¥, and terminate.

(d) Otherwise, out; must parse as (gi41,itriy1,3Cit1, 00, 1) Fit1-

We note that M, can be compiled from C; and Acc.PP. This means that later, when we prove security,
it will suffice to analyze a game in which the adversary receives C; instead of M;. This also justifies
our relatively informal deseription of M;.

Accumulator
iO-friendly Merkle-tree

What is written in eprint 2015/1074

66

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator
(iO-friendly) Accumulator
(i0-friendly) Splittable signature

Setup(1*,5) samples Acc.PP « Acc.Setup(1*,) and samples a PPRF F.

umulator ac, corresponding to s, generates (sk, vk) < Spl.Setup({1*; (0, 0))
k, (L, L, ac., ReadWrite(D — 0))). § is then defined as a memory config-
ac,, o) and storeg.

orms M; so that its initial state is | . Note this can be done without
the “real” initial state in the transition function. GbPrg then computes
ribed in Algorithm 1. Finally, we define A; not by its transition function,
but by pseudocode, as the RAM machine which:

1. Reads (acy, o) from memory (recall these were inserted under the names (ac,,,)). Define opy =
ReadWrite(0 — 0), go = L, and itrg = L.
2. Fori=0,1,2,...
(a) Compute store;y, ac;.,v;, 7; <~ Acc.Update(Acc.PP, store;, op;).
(b) Compute out; 4= Cy(i, g;,itr;, ac;, 0py, 0, vy, ¢4, 75)-
(e) If out; parses as (y, o), then write (ac;,y, o) to memory, output ¥, and terminate.

(d) Otherwise, out; must parse as (gi41,itriy1,3Cit1, 00, 1) Fit1-

We note that M, can be compiled from C; and Acc.PP. This means that later, when we prove security,
it will suffice to analyze a game in which the adversary receives C; instead of M;. This also justifies
our relatively informal deseription of M;.

Accumulator
iO-friendly Merkle-tree

on for M;, with memory verified by a signed accumulator.

wiidL IS written in eprint 2015/1074

67

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

68

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator

- Normal property like a Merkle-tree.

#HMerkletree

69

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.

HMerkletree

70

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.

HMerkletree

71

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.

HMerkletree

72

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.
- Enforcement (iO-friendly property):

there’s only one preimage x* of the
current root value y*.

#HMerkletree

73

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.
- Enforcement (iO-friendly property):

there’s only one preimage x* of the
current root value y*.

Nalelelllells information theoretically.

HMerkletree

74

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator

- Normal property like a Merkle-tree.

- Enforcement (iO-friendly property):
there’s only one preimage x* of the
current root value y*.

Nalelelllells information theoretically.

KLW’s computational enforcement:
Normal.Gen()->H
Enforce.Gen(x*, y*)->H*, H=H*

HMerkletree

75

Canetti-Holmgren (ITCS16) G
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.
- Enforcement (iO-friendly property):

there’s only one preimage x* of the
current root value y*.

Tl 1e]l= information theoretically. G

KLW’s computational enforcement: #Merkletree
Normal.Gen()->H
Enforce.Gen(x*, y*)->H*, H=H*

Alternatively: SSB hashing => [Ananth-Chen-Chung-Lin-Lin]

76

Selective Enforcing

Adaptive Enforcing

44

Selective Enforcing

x* <= Adversary

Adaptive Enforcing

78

Selective Enforcing
x* <= Adversary
Gen()=>H

Enforcing(x*, y*) => H*

Adaptive Enforcing

79

Selective Enforcing
x* <= Adversary
Gen()=>H

Enforcing(x*, y*) => H*

Adaptive Enforcing

Gen()=>H

80

Selective Enforcing Adaptive Enforcing
x* <= Adversary Gen()=>H

Gen()=>H x* <= Adversary(H)

Enforcing(x*, y*) => H*

81

Selective Enforcing Adaptive Enforcing
x* <= Adversary Gen()=>H

Gen() =>H x* <= Adversary(H)

Enforcing(x*, y*) => H* Enforcing(x*, y*) => H*

82

Selective Enforcing Adaptive Enforcing

x* <= Adversary Gen()=>H
Gen()=>H x* <= Adversary(H)
Enforcing(x*, y*) => H* Enforcing(x*, y*) => H*

(... wait, what?)

83

#Mindblowing

84

Fact 1
Can separate the key

key . +

Accumulator
iO-friendly Merkle-tree

vk

Setup(1*,5) samples Acc.PP « Acc.Setup(1*,) and samples a PPRF F.

umulator ac, corresponding to s, generates (sk, vk) < Spl.Setup({1*; (0, 0))
k, (L, L, ac., ReadWrite(D — 0))). § is then defined as a memory config-
ac,, o) and storeg.

orms M; so that its initial state is | . Note this can be done without
the “real” initial state in the transition function. GbPrg then computes
ribed in Algorithm 1. Finally, we define A; not by its transition function,
but by pseudocode, as the RAM machine which:

1. Reads (acy, o) from memory (recall these were inserted under the names (ac,,,)). Define opy =
ReadWrite(0 — 0), go = L, and itrg = L.
2. Fori=0,1,2,...:
(a) Compute store;y, ac;.,v;, 7; <~ Acc.Update(Acc.PP, store;, op;).
(b) Compute out; 4= Cy(i, g;,itr;, ac;, 0py, 0, vy, ¢4, 75)-
(e) If out; parses as (y, o), then write (ac;,y, o) to memory, output ¥, and terminate.
(d) Otherwise, out; must parse as (gi41,itriy1,3Cit1, 00, 1) Fit1-

We note that M, can be compiled from C; and Acc.PP. This means that later, when we prove security,
it will suffice to analyze a game in which the adversary receives C; instead of M;. This also justifies
our relatively informal deseription of M;.

on for M;, with memory verified by a signed accumulator.

wiidL IS written in eprint 2015/1074

86

key . +

Accumulator
iO-friendly Merkle-tree

vk

Setup(1*,5) samples Acc.PP « Acc.Setup(1*,) and samples a PPRF F.

umulator ac, corresponding to s, generates (sk, vk) < Spl.Setup({1*; (0, 0))
k, (L, L, ac., ReadWrite(D — 0))). § is then defined as a memory config-
ac,, o) and storeg.

orms M; so that its initial state is | . Note this can be done without
the “real” initial state in the transition function. GbPrg then computes

ribed in Algorithm 1. Finally, we define A; not by its transition function,
but by pseudocode, as the RAM machine which:

1. Reads (acg, op) from memory (recall these were inserted under the names (ac,,o,)). Define opy =
ReadWrite(0 — 0), go = L, and itrg = L.

2. Fori=0,1,2,...
(a) Compute store;y, ac;.,v;, 7; <~ Acc.Update(Acc.PP, store;, op;).
(b) Compute out; 4= Cy(i, g;,itr;, ac;, 0py, 0, vy, ¢4, 75)-
(e) If out; parses as (y, o), then write (ac;,y, o) to memory, output ¥, and terminate.
(d) Otherwise, out; must parse as (gi1, itriy1,aCit1, 0P,)s Cit1.

We note that M, can be compiled from C; and Acc.PP. This means that later, when we prove security,

it will suffice to analyze a game in which the adversary receives C; instead of M;. This also justifies
our relatively informal deseription of M;.

key

on for M;, with memory veril v a signed accumulator.

s written in eprint 2015/1074

87

Adaptive Enforcing

88

Adaptive Enforcing

x* <= Adversary(hk)

89

Adaptive Enforcing

x* <= Adversary(hk)

H

90

Fact 11
If you believe diO ...

Adaptive Enforcing

92

always hk_Gen(

Adaptive Enforcing

) -> hk := CRHF key h

93

key = + Adaptive Enforcing

x* <= Adversary(H)

always hk_Gen() -> hk := CRHF key h

94

key = + Adaptive Enforcing

x* <= Adversary(H)

always hk_Gen() -> hk := CRHF key h

normal_vk_Gen() ->
(x,y) = diO(if h(x)=y, output 1; else: output O)

95

key = + Adaptive Enforcing

x* <= Adversary(H)

always hk_Gen() -> hk := CRHF key h

normal_vk_Gen() -> vk
vk(x,y) = diO(if h(x)=y, output 1; else: output 0)

enforce_vk_Gen(x*, y*) -> vk*
vik*®(x,y) = diO(if y!=y* and h(x)=y, output 1;
Elseif y=v* and x=x*, output 1:
Else: output 0)

96

Fact I1I:
If you don’t believe diO,
can still do this with 10.

From iO + preimage-bounded CRHF:

c-to-1 CRHF can be constructed from discrete-log or factoring

98

From iO + preimage-bounded CRHF:
c-to-1 CRHF can be constructed from discrete-log or factoring

enforce_vk(x*, y*) -> vk*
vk*(x,y) = €iO(if y!=y* and h(x)=y, output 1;
Elseif y=y* and x=x*, output 1;
Else: output 0)

99

From iO + preimage-bounded CRHF:
c-to-1 CRHF can be constructed from discrete-log or factoring

enforce_vk(x*, y*) -> vk*
vk*(x,y) = €iO(if y!=y* and h(x)=y, output 1;
Elseif y=y* and x=x*, output 1;
Else: output 0)

By diO-iO equivalence lemma [Boyle-Chung-Pass ‘14 |:
“If f1 and f2 differ only on polynomially many input-output
values, and they are hard to find, then

iO(f1) =i0(f2) "

100

From iO + preimage-bounded CRHF:

c-to-1 CRHF can be constructed from discrete-log or factoring

enforce_vk(x*, y*) -> vk*
vk*(x,y) = €iO(if y!=y* and h(x)=y, output 1;
Elseif y=y* and x=x*, output 1;
Else: output 0)

From shrinking 1 bit to length-halving: Merkle-Damgaard.

g

e

he —

101

Fact IV:
Adaptive Enforceable
Accumulator done

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

! f f f

Indistinguishable as long as g can be different Memory content Hide access
transc = (g, op) are the same. | [encrypt the state] can be different pattern.
[KLW-technique. Assume iO] [encrypt the data] [oram]

103

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

! f f f

Indistinguishable as long as g can be different Memory content Hide access
transc = (g, op) are the same. | [encrypt the state] can be different pattern.
[KLW-technique. Assume iO] [encrypt the data] [oram]

+ adaptively enforceable accumulator
[from iO+dlog or factoring]

104

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

!

Indistinguishable as long as
transc = (g, op) are the same.
[KLW-technique. Assume iO]

f

g can be different
[encrypt the state]

+ adaptively enforceable accumulator

[from iO+dlog or factoring]

f

Memory content
can be different
[encrypt the data]

/

Need a special property of the ORAM
“Strong local randomness”, satisfied by Chung-Pass ORAM.

With this property, can “guess” polynomially many addresses.

!

Hide access
pattern.
[oram]

105

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

! f f !

Indistinguishable as long as g can be different Memory content Hide access
transc = (g, op) are the same. | [encrypt the state] can be different pattern.
[KLW-technique. Assume iO] [encrypt the data] [oram]

+ adaptively enforceable accumulator

[from iO+dlog or factoring]

Need a special property of the ORAM
“Strong local randomness”, satisfied by Chung-Pass ORAM.

&&@ With this property, can “guess” polynomially many addresses.

Ry, s
/0@ 0@4 [Ananth-Chen-Chung-Lin-Lin, eprint 2015/1082] can be viewed as
h’/ %bé accomplishing this for all the steps.
Ay
/ 106

Summary

A N

Adaptively secure garbled RAM with persistent memory.
Everything is succinct.

Upgrading to delegation with verifiability is almost for free.
“Reusability” is natural.

New iO-friendly tool: adaptively-enforceable accumulator (from
iO+Preimage-bounded-CRHF)

107

The
lli[ﬂﬁlm

Scenes

The
Directors Cut

“CLASSIC WENDERS...
CONSISTENTLY SURPRISING...
A HAUNTING FAIRYTALE"

“TAKES US CONTINUALLY BY SURPRISE...
GRACEFUL... SEDUCTIVE”

“STUNNINGLY SHOT... A TREAT" | ‘ ‘ A W|M WENDERS F"_M

ALICE)T CITIES

> sudo apt-get install GRAM_Canetti_Holmgren

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)

Y

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)

y

> upgrade GRAM_CCHR

Done

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)

y

> upgrade GRAM_CCHR

Done

> NSAcloud: GRAM_CCHR_Factoring RSA2048

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)

y

> upgrade GRAM_CCHR

Done

> NSAcloud: GRAM_CCHR_Factoring RSA2048
Running time 1.0s

25195908475...20720357

= 83990...4079279 x 3091701...723883

Next question

