Analysis and Design of Blockchains

Rafael Pass

Based on [P-Seeman-Shelat] and [P-Shi]
Traditional distributed systems: The "Permissioned" Model

- Consistency
- Liveness
Traditional distributed systems: The “Permissioned” Model

- Nodes a-priori known and authenticated
- 30 years of distributed systems
- Multi-party computation [GMW, BGW, ...]
 - Nearly all works assume authenticated channels
The “Permissionless” Model: Bitcoin/Blockchain

The Times 03/Jan/2009
Chancellor on brink of second bailout for banks.
The “Permissionless” Model

- Nodes do not know each other a-priori
- Nodes come and go
- ANYONE can join
- No network synchronization

Relatively little is known about this model
The “Permissionless” Model

- Strong impossibility results known in the “permissionless” (“unauthenticated”) model [BCLPR05]
 - Consistency is impossible
 - Sybil attacks unavoidable.
 - [BCLPR05] defined “weakened” security model (w/o consistency)
Nakamoto’s Blockchain [Nak’08] prevents Sybil attacks with Proofs-of-Work Puzzles [DN’92].

Claims blockchain achieves “public ledger” assuming “honest majority”:

- **Consistency:** everyone sees the same history
- **Liveness:** everyone can add new transactions
Nakamoto’s Blockchain [Nak’08]

Prevents Sybil attacks with Proofs-of-Work Puzzles [DN’92]

2 amazing aspects:
- Overcomes permissionless barrier [BCLPR’05]
- Overcomes \(\frac{1}{3} \) barrier even in permissioned setting [LSP’83]
Everyone wants a “blockchain”
Nakamot’s Blockchain: OPEN PROBLEMS

- **WHAT IS** a blockchain?
 - no definition of an “abstract blockchain”

- Does Nakamoto’s protocol achieve **CONSISTENCY**?
 - “Specific attacks” don’t work [N’08, GKL’15, SZ’15]
 - 49.1% attack (with 10s network delays) claimed [DW’14]

- Is Nakamoto’s consensus **OPTIMAL**?
 - Several issues known (load, latency, incentives)
This talk

1. Desiderata of blockchain
2. Nakamoto Achieves Desiderata
3. Overcoming Bottlenecks
This talk

1. Desiderata of blockchain
2. Nakamoto Achieves Desiderata
3. Overcoming Bottlenecks
What is a blockchain?
Idea: Use Proof-of-Work Puzzles to defend against sybil attacks

Users have to do work to cast votes.
How to build a “blockchain”
How to build a “blockchain”

elaine ➔ mariana: ฿50
How to build a “blockchain”

\[D > H (\text{"Hash function"}) \]
Search for a puzzle solution

Difficulty: $D > H$ (coins, puzzle)
Search for a puzzle solution

Difficulty

\[D \succ H \ (\square, \{\ldots\}, \text{puzzle solution}) \]
We found a new block
Best way to find a solution is brute-force search: model H as RO.

$D > H \left(\text{ } , \text{ } , \text{ } , \text{ } \right)$
What if you join network and you see this.
Honest nodes only “believe” longest chain
Elaine wants to erase this transaction
For Elaine to erase his transaction, he has to find a longer chain!
“If transaction is sufficiently deep, he cannot do this unless he has majority hashpower”
"If transaction is sufficiently deep, he cannot do this unless he has majority hashpower"

- [Nak’08]: “simply trying to mine alternative chain fails”
- [GLK’15]: in synchronous network
- [SZ’15]: “non-withholding attacks” fail also with Δ-delays
Blockchain abstraction

1 Consistency: Honest nodes agree on all but last k blocks

$\leq k$ unstable

w/ prob $\exp(-k)$
Blockchain abstraction

Future-self consistency

1 Consistency: Honest nodes agree on all but last k blocks

$\text{exp}(-k)$
Blockchain abstraction

1. **Consistency**: Honest nodes agree on all but last k blocks with prob $\exp(-k)$
Blockchain abstraction

1. **Consistency**: Honest nodes agree on all but last k blocks with prob $\exp(-k)$

2. **Chain quality**: Any consecutive k blocks contain “sufficiently many” honest blocks
Blockchain abstraction

1. **Consistency**: Honest nodes agree on all but last \(k \) blocks with prob \(\exp(-k) \).
2. **Chain quality**: Any consecutive \(k \) blocks contain “sufficiently many” honest blocks.
3. **Chain growth**: Chain grows at a steady rate.
Blockchain implies “state machine replication” in the permissionless model

1. Consistency
2. Chain quality
3. Chain growth

Traditional
“state machine replication”

1. Consistency
2. Liveness
This talk

1. Desiderata of blockchain
2. Nakamoto Achieves Desiderata
3. Overcoming Bottlenecks
Theorem [P-Seeman-Shelat]:

For every $\rho < 1/2$, if “mining difficulty” is appropriately set (as a function of the network delay Δ, and total mining power), Nakamoto’s blockchain guarantees:

- Consistency
- Chain quality: $1 - \rho/(1-\rho)$
- Chain growth: $O(1/\Delta)$

where ρ adv’s fraction of hashpower, and adv controls the network.
Theorem [P-Seeman-Shelat]:

For every $\rho < 1/3$, if “mining difficulty” is appropriately set (as a function of the network delay Δ, and total mining power), Nakamoto’s blockchain guarantees:

- Consistency
- Chain quality: $1 - \frac{1/3}{2/3} = 1/2$
- Chain growth: $O(1/\Delta)$

where ρ adv’s fraction of hashpower, and adv controls the network.
Theorem [P-Seeman-Shelat]:

For every $\rho < \frac{1}{2}$, if “mining difficulty” is appropriately set (as a function of the network delay Δ, and total mining power), Nakamoto’s blockchain guarantees:

- Consistency
- Chain quality: $1 - \frac{\rho}{1-\rho}$
- Chain growth: $O\left(\frac{1}{\Delta}\right)$

where ρ adv’s fraction of hashpower, and adv controls the network.
Theorem [P-Seeman-Shelat]:

For every \(\rho < \frac{1}{2} \), if “mining difficulty” is appropriately set (as a function of the network delay \(\Delta \), and total mining power), Nakamoto’s blockchain guarantees:

- Consistency
- Chain quality: \(1 - \frac{\rho}{1-\rho} \)
- Chain growth: \(O\left(\frac{1}{\Delta}\right) \)
 ("Blocks are found SLOWER than \(\Delta \")

where \(\rho \) adv’s fraction of hashpower, and adv controls the network
Theorem [P-Seeman-Shelat]:

For every $\rho < 1/2$, if “mining difficulty” is appropriately set (as a function of the network delay Δ, and total mining power), Nakamoto’s blockchain guarantees:

- Consistency
- Chain quality: $1 - \rho/(1-\rho)$
- Chain growth: $\mathcal{O}(1/\Delta)$

“Blocktime” $>> \Delta$

where ρ adv’s fraction of hashpower, and adv controls the network
When \(c = 60 \) (10 min blocktime, 10s network delays)

Secure: \(\rho < 49.57 \) (contradicts [DW'14]'attack!)

Attack: \(\rho > 49.79 \)
"Appropriately set"

\[\alpha \left(1 - 2(\Delta + 1)\alpha\right) > \beta. \]

Mining rate of honest players

Network Delay

Mining rate of Adv
Theorem [Security of Nakamoto]
For every $\rho < 1/2$, if mining difficulty is appropriately set (as a function of the network delay, and total mining power), Nakamoto’s blockchain guarantees a) consistency, b) chain quality $1 - \rho/(1-\rho)$, and c) Chain growth: $O(1/\Delta)$

Theorem [Blatant attack]:
For every $\rho > 0$, for every mining difficulty, there exists a network delay such that Nakamoto’s blockchain is inconsistent and has 0 chain quality
This talk

Desiderata of blockchain

Nakamoto Achieves Desiderata

Overcoming Bottlenecks
Nakamoto: ISSUES

Terrible performance

Not incentive compatible
Bitcoin has **terrible performance**

- Cost per confirmed transaction in Bitcoin: **$6.20**
- **7 tx/sec, 10 min** TX confirmation time

c.f. Visa credit card: average **2,000 tx/sec**, peak **59,000 tx/sec**

Traditional BFT protocols are performant

PBFT at ~100 nodes:
Throughput: ~10,000 tx/sec
Confirmation time: ~ seconds

Hybrid consensus [P-Shi]

Snailchain TXs

BFT committee
Hybrid Consensus: The idea

k unstable

k
Hybrid Consensus: The idea

PBFT
Hybrid Consensus: The idea

PBFT
Hybrid Consensus: The idea

Chain quality: $\frac{2}{3}$ committee honest (if $\frac{3}{4}$ honest overall)

Chain growth: this won’t take too long

Consistency: everyone agrees on committee
Hybrid Consensus: The idea

Achieves static security

Not adaptively secure
- Can deal with it using rotating committees
Summary

- Nakamoto’s protocol achieves strong robustness properties, assuming “honest majority of computational power”
 - Assuming puzzle difficulty is appropriately set as a function of network delay Δ
 - Blocktime need to be roughly $10 \times \Delta$ for to handle $\rho > 0.45$
 - Leads to high latency (slow confirmation times)

- Can BOOTSTRAP Nakamoto into new blockchain protocols
 - Low latency (fast confirmation times)
 - Incentive compatible: fruit chains