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Contents

• We present a new approach to construct extractors.

• Extractors transform a weakly random (realistic) source

of randomness into an almost uniform (useful) one.

− Extractors have a variety of other applications.

• Our construction

− is stronger and simpler than previous ones;

− reveals a new connection between extractors and

pseudorandomness.

(New direction: from pseudorandomness to extractors.)
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Randomness in Computation

• Randomness is useful in designing efficient algorithms and

data structures, and is essential in cryptography and in

some distributed protocols.

• General tools to “manipulate” randomness are typically

of the greatest interest.

• Extractors are a prime such tool.
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Definitions

• A random source is modeled as a random variable X with

range {0, 1}n.
− X has min-entropy k if for every x, Pr[X = x] ≤ 2−k.

Then X contains “k bits of randomness”

• Y and Z are ε-close if for all “tests” T : {0, 1}n → {0, 1}

|Pr[T (Y ) = 1]− Pr[T (Z) = 1]| ≤ ε
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Extractor

A (k, ε)-extractor transforms an input of min-entropy k into

a distribution ε-close to uniform.

It uses a (small) amount of randomness to do the

transformation.
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Applications of Extractors

• Simulation of randomized computations using weak

sources of randomness.

• Randomness-efficient reduction of error in randomized

algorithms.

• Construction of expanders, super-concentrators, sorting

networks, and more.

• Miscellaneous applications in complexity theory.
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Simulation of Randomized Algorithms
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Without Additional Randomness
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Additional randomness and parameters

We want (k, ε) extractors Ext : {0, 1}t×{0, 1}n → {0, 1}m
where (for constant ε):

• t (additional randomness) is small:

but there is a lower bound t ≥ Ω(logn)

− Important for applications to have t = O(logn).

• m (output length) is large:

but there is a lower bound m ≤ k + t− 2 log 1/ε.

Extractors with m = k+ t−O(log 1/ε) and t = O(logn/ε)
exist. Explicit constructions are hard.
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Previous Results and Ours

Dispersers are weaker than extractors.

Min Output Additional
Reference entropy k length m randomness t Type
Zuckerman’96 γn (1− δ)k O(logn) Ext.
Ta-Shma’96 any k k O((log n)9) Ext.

nγ k1−δ O(logn log · · · logn) Ext.
Saks et al. ’96 nγ k1−δ O(logn) Disp.
Ta-Shma’98 any k k − (logn)O(1) O(logn) Disp.

This talk nγ k1−δ O(logn) Ext.
any k k1−δ O((logn)2/ log k) Ext.

δ, γ can be arbitrarily small.

Later improvements by Raz, Reingold and Vadhan.
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Interlude: Pseudorandomness

• Two distributions Y and Z over {0, 1}m are (ε, S)-
indistinguishable if

− for every T : {0, 1}m→ {0, 1} computable by a circuit

of size ≤ S

|Pr[T (Y ) = 1]− Pr[T (Z) = 1]| ≤ ε

• Recall: Y and Z are ε-close if for all T : {0, 1}m→ {0, 1}
|Pr[T (X) = 1]− Pr[T (Y ) = 1]| ≤ ε
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Pseudorandom Generator

G : {0, 1}t → {0, 1}m is a (S, ε) pseudorandom generator

if, for a random input, the output is (S, ε)-indistinguishable

from uniform. (Interesting when m >> t.)
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PRG Based on a Hard Predicate

Constructions by

• Nisan & Wigderson ’88 (simpler but weaker) and

• Impagliazzo & Wigderson ’97 (stronger but more

complicated)

are based on a computationally hard predicate.
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PRG Constructions by NW and IW

The generator has oracle access to the predicate.

Seed length t = O(logm), input length of the predicate

l = O(logm), output length m, output (O(m), 1/10)-
indistinguishable from uniform assuming:

• No circuit of size 2o(l) computes P . [IW]

Worst-case hardness assumption.

• No circuit of size 2o(l) computes P on more than a

fraction 1/2 + 2−o(l) of inputs. [NW]

Average-case hardness assumption.
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Proof (for IW)

Let G(·) be IW generator with predicate P .

Suppose, for some T , Pr[T (G(Ut)) = 1] 6≈ Pr[T (Um) = 1],

Then IW show that there exists a small circuit A s.t.

A with oracle access to T computes P .

Contradition if P is hard and T is easy.

Important note: the IW proof works independently of the

complexity of T .
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An Extractor from the IW Generator

View the input of the extractor as the truth-table of a

predicate. Use IW.
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Our Analysis

Fix test T , of arbitrary complexity.

Every x such that Pr[T (Ext(x,Ut)) = 1] 6≈ Pr[T (Um) = 1]
has a short description given T .

T is fixed, and X has large min-entropy.

There is low probability that x sampled from X has small

description given T .

Then Pr[T (Ext(X,Ut)) = 1] ≈ Pr[T (Um) = 1].
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Consequence

Every construction of pseudorandom generators that

• is based on a worst-case predicate

• has a “black-box” analysis

is an extractor.

From IW we get for every ε, γ > 0 a (k, ε)-extractor Ext :
{0, 1}n × {0, 1}t → {0, 1}m where k = nγ and m = kΩ(1)

Better than previous constructions!
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Structure of the Proof

We want to prove that when we fix a statistical test, we will

almost always “fool” it with the extractor (i.e. the test will

not tell the difference between the output of the extractor

and the uniform distribution).

We prove so by showing that the cases when the test is not

fooled have small descriptions.

Then there are few such cases and the probability that one

of them happen is small.
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An Extractor From the NW Generator

Encode the input with an error correcting code. Do as

before.
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Analysis

Fix test T .

If x is s.t. Pr[T (Ext(x,Ut)) = 1] 6≈ Pr[T (Ext(Um))] = 1
then ECC(x) is “approximated” by a string having short

description given T .

T is fixed, and X has large min-entropy

There is low probability that x sampled from X is such that

ECC(x) is approximated by string with short description

given T .

Then Pr[T (Ext(X,Ut)) = 1] ≈ Pr[T (Ext(Um)) = 1].
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Use of Error-Correcting Codes

• When we pick a string at random with large min-entropy,

then with high probability the string does not have a

short description.

• When we pick a string at random with large min-entropy,

and then encode it with error-correcting code, then

with high probability the encoding is not even close (in

Hamming distance) to a string with short description).

(The error-correcting code must have the property that

there are few codewords in any ball of large radius)

– Extractors and Pseudorandom Generators– 22



Advantages

The Nisan-Wigderson generator is simple to describe and

analyze.

The whole construction can now be described from the

ground up in a few lines without reference to previous work

(except for standard error-correcting codes).

In particular, without reference to previous work on

pseudorandomness.

The proof of correctness is also simple.
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The Extractor — Abstract View

Primitives:

- we have an error correcting code EC : {0, 1}n → {0, 1}n̄
with n̄ = poly(n) and with the few-codewords-in-any-ball

guarantee. (Standard.)

- we have m functions π1, . . . , πm where πi : {0, 1}t → n̄,

with certain properties. (NW.)

Construction:

Ext(x, s) = x̄[π1(s)]x̄[π2(s)] · · · x̄[πm(s)]

where x̄ = EC(x), and x̄[j] is the j-th entry of x̄.
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The Extractor — All the Details

Primitives:

- we have an error correcting code EC : {0, 1}n → {0, 1}n̄
as before.

- we have sets S1, . . . , Sm ⊆ {1, . . . , t = O(logn)} s.t.

|Si| = log n̄ and |Si ∩ Sj| ≤ .01 log n̄. (NW.)

Notation:

For a string z ∈ {0, 1}t and a set S ⊆ {1, . . . , t}, we denote

by z|S the projection of z on the coordinates given by S.
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Construction:

For a seed s, πi(s) is defined as the number whose binary

representation is s|Si.

Extractor:

Ext(x, s) = EC(x)[s|S1
] · · ·EC(x)[s|Sm]

– Extractors and Pseudorandom Generators– 26



Conclusions

• High level view:

− NW/IW: output of generator is indistinguishable from

uniform if predicate is fixed and hard.

− We: output is statistically close to uniform if predicate

is random and has large min-entropy.

• Novelties in our approach

− View the predicate in NW/IW as part of the input.

− Show information-theoretic applications of pseudorandomness.

(First time of a connection in this direction)
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