A Machine-Checked Formalization of the Generic Model and the Random Oracle Model

Sabrina Tarento

joint work with Gilles Barthe and Jan Cederquist

INRIA Sophia Antipolis

Overview

- Coq
- Perfect Cryptography assumption
- ElGamal
- Generic Model
- Formalization of generic algorithm
- Results on the GM
- Random Oracle Model
- Formalization of interactive generic algorithm
- Conclusion

Coq

- developed at INRIA and at the University of Paris Sud
- System allowing the development and the checking of mathematical proofs in a higher order logic
- based on Calculus of Inductive Constructions
- Types of lists, rings, ...
- The objects of Coq are (dependently) typed functional programs/ proofs are objects
- Construction of interactive proofs, using tactics, backwards construction

Formalization of Mathematics in Coq

no quotients ⇒ use of the setoids
setoid: a set provided with a relation of equivalence.

$$mod := \forall q \in \mathbb{N} \ \forall a, b \in \mathbb{Z} \ \exists k \in \mathbb{Z} \ | \ a - b = k \times q$$

- finite sets and probabilities
- modular development of polynomials Poly: Ring \rightarrow Var \rightarrow Ring

Lemma 1 (Schwartz) Let $p(x_1,...,x_k)$ be a polynomial in k variables, not identical to 0, with degree at most d, and the values chosen uniformly and independently in [0,q-1]. Then $Pr[p(x_1,...,x_k)=0] \leq d/q$.

Perfect cryptography assumption

there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key.

Assumption taken e.g in:

- belief logics (M.Burrows, M.Abadi, and R.Needham)
- model checkers (G.Lowe)
- proof assistants (L.C. Paulson)

Generic Model

- introduced by Shoup in 1997 and extended by Schnorr and Jakobsson
- Focus on attacks that work for all groups
- attackers make group operations and tests of collisions in order to find information about secrets
- ideal model with some difficulties (the same as ROM), but useful to prove security and well adapted to Coq
- used for proving the security of ECDSA ...

Running Example: ElGamal

G cyclic group of prime order q with generator g

A chooses randomly $x \in \{0, ..., q-1\}$

G, g et g^x are public data

$$A \longrightarrow B: g^x$$

B wants to send the message m to A, so B chooses randomly $r \in \{0, \ldots, q-1\}$

$$B \longrightarrow A: (g^r, m \cdot (g^x)^r)$$

decryption: $(g^r)^{-x} \cdot m \cdot (g^x)^r = m$

What is a random value?

- secrets are random in \mathbb{Z}_q
- Rather than formalizing random elements, we introduce a type Sec of secrets, use an interpretation function $f: Sec \to \mathbb{Z}_q$ and treat input and output are polynomials in $\mathbb{Z}_q[Sec]$
- the probability space is: $Sec \to \mathbb{Z}_q$

Generic algorithm

a $generic \ algorithm$ performs t generic steps

- $f_1, \ldots, f_{t'} \in G \text{ (inputs) } 1 \le t' < t,$
- $f_i = \prod_{j=1}^{i-1} f_j^{a_j}$ for i = t' + 1, ..., t where $(a_1, ..., a_{i-1}) \in \mathbb{Z}_q^{i-1}$

modeled as a list:

$$empty_run \in Run$$

$$\frac{R \in Run \quad e \in (list \ \mathbb{Z}_q)}{step(R, e) \in Run}$$

Collisions

$$CO_t := \{(j, k) | f_j = f_k, 1 \le j < k \le t\}$$

• only non trivial collision reveals information about the secrets **example of ElGamal:** g, g^x , g^r , $m_b \cdot (g^x)^r$

$$\log_{g} f_{i} = a_{i,1} + a_{i,2}x + a_{i,3}r + a_{i,4}(\log_{g} m_{b} + rx)$$

• finding informations about the secrets amounts solving

$$\log_{g} f_{i} - \log_{g} f_{j} = c_{1} + c_{2}x + c_{3}r + c_{4}(\log_{g} m_{b} + rx) = 0$$

Generic algorithm

 $GA = \{Sec : Set; run : Run; inp : (listT \mathbb{Z}_q[Sec]); condition\}$

- Output: the list of polynomials in $\mathbb{Z}_q[Sec]$ resulting from multivariate exponentiations
- Concrete output: a list of elements in \mathbb{Z}_q using the interpretation function $f: Sec \to \mathbb{Z}_q$ to the output
- Collisions: tests of non trivial equalities between the concrete outputs
- Condition: eliminate trivial equalities

Results

Lemma 2 $Pr(CO_t \neq \emptyset) \leq \theta(\frac{d}{q} \cdot t^2).$

Proof: use of Schwartz lemma.

Lemma 3 $Pr(SecFound x) \leq Pr(CO_t \neq \emptyset) + Pr(guess x)$

Application to ElGamal

Generic DL-complexity lower bound:
inputs: g, g^x

$$Pr(\text{SecFound } x) \le \theta(\frac{t^2}{q}) + \theta(\frac{1}{q})$$

• Indistinguishability: inputs: g, g^x , g^r , $m_b \cdot (g^x)^r$, m_0 , m_1

$$Pr(\text{SecFound } b) \le \theta(\frac{t^2}{q}) + \frac{1}{2}$$

Random Oracle Model

- group operations
- queries to the hash oracle H
- interactions with a decryption oracle

we find informations about the secrets by finding collisions or valid signed ciphertexts using interactions

• There exist signature and encryption schemes which are secure in the Random Oracle Model, but for which any implementation of the random oracle results in insecure schemes.(Canetti)

How do we formalize ideal hash function?

• for communication with oracles: type Val

- interpretation function $rom : Val \to \mathbb{Z}_q$
- to formalize an hash function $H: \mathbb{Z}_q[Val]^3 Val$, we define a type $HashQuery := \mathbb{Z}_q[Val]^3 \times Val$

 $h: HashQuery := (a, b, d, c) \Rightarrow c = H(a, b, d)$

Interactive generic algorithm

eRun: Run

 $\frac{R : Run \ e : list \ Val}{step(R, e) : Run}$

 $\frac{R: Run \ c: HashQuery}{hashstep(R, c): Run}$

 $\frac{R: Run \ cip: \mathbb{Z}_q^4}{decstep(R, cip): Run}$

 $IGA = \{Sec, Val : Set; run : Run; inp : (listT (listT Val))\}$

What to prove?

Let a generic interactive algorithm be given g, g^x , m_0 , m_1 , cip_b and oracles for H and for decryption

Lemma 4 $Pr(SecFound b) \le \theta(\frac{t^2}{q}) + \frac{1}{2}$

Conclusion

More future work

- Reason about attacks
- Can we extend Paulson's model with ideas from GM and ROM?
- Feedbacks welcome