A Machine-Checked Formalization
of the Generic Model and the
Random Oracle Model

Sabrina Tarento

joint work with Gilles Barthe and Jan Cederquist

INRIA Sophia Antipolis




Overview
Coq
Perfect Cryptography assumption
ElGamal
Generic Model

Formalization of generic algorithm

Results on the GM
Random Oracle Model
Formalization of interactive generic algorithm

Conclusion




Coq

e developed at INRIA and at the University of Paris Sud

e System allowing the development and the checking of

mathematical proofs in a higher order logic
e based on Calculus of Inductive Constructions
e Types of lists, rings, ...

e The objects of Coq are (dependently) typed functional programs/

proofs are objects

e Construction of interactive proofs, using tactics, backwards

construction




Formalization of Mathematics in Coq

e no quotients = use of the setoids

setoid: a set provided with a relation of equivalence.

mod :=VgeNVa,beZ IFkeZ |a-b=kXqg

finite sets and probabilities

modular development of polynomials
Poly: Ring — Var — Ring
Lemma 1 (Schwartz) Let p(x1,...,xr) be a polynomial in k

variables, not identical to 0, with degree at most d, and the

values chosen uniformly and independently in [0,g —1]. Then

Prlp(x1,...,xx) =0] <d/q.




Perfect cryptography assumption

there is no way to obtain knowledge about the plaintext pertaining
to a ciphertext without knowing the key.

Assumption taken e.g in:
e belief logics (M.Burrows, M.Abadi, and R.Needham)
e model checkers (G.Lowe)

e proof assistants (L.C. Paulson)




Generic Model

introduced by Shoup in 1997 and extended by Schnorr and
Jakobsson

Focus on attacks that work for all groups

attackers make group operations and tests of collisions in order
to find information about secrets

ideal model with some difficulties (the same as ROM), but
useful to prove security and well adapted to Coq

used for proving the security of ECDSA ...




Running Example: ElGamal

G cyclic group of prime order g with generator g
A chooses randomly x € {0,...,9 — 1}
G, ¢ et ¢* are public data

A— B: ¢

B wants to send the message m to A, so B chooses randomly
rei0,...,g—1}
B— A: (§,m-(¢"))

decryption: (¢")™ -m-(g") =m




What 1s a random value?
e secrets are random 1n Zq

e Rather than formalizing random elements, we introduce a type

Sec of secrets, use an interpretation function f : Sec — Z, and

treat input and output are polynomials in Z,[Sec]

e the probability space is: Sec — Z,




Generic algorithm

a generic algorithm performs t generic steps

e fi,...,fr €G (inputs) 1 <t <t,

o fi= Hj.;llf;’f fori=t +1,...,t where (a,.

modeled as a list:

empty_run € Run

R € Run e € (list Z,)
step(R, e) € Run




Collisions

CO::={(jkIfj = fr,1<j<k<t)

e only non trivial collision reveals information about the secrets

example of ElGamal: ¢, ¢, ¢, myp - ()
logefi = ai1 +ajpx +a;3r + a;4(logemy + 7x)
e finding informations about the secrets amounts solving

logefi —logqefi = c1 + cox + c3r + ca(logemy + 1x) =0




Generic algorithm

GA = {Sec : Set; run : Run; inp : (listT Z,[Sec]); condition|

Output: the list of polynomials in Z,[Sec] resulting from

multivariate exponentiations

Concrete output: a list of elements in Z, using the

interpretation function f : Sec — Z, to the output

Collisions: tests of non trivial equalities between the concrete
outputs

Condition: eliminate trivial equalities




Results
Lemma 2 Pr(CO; # @) < 9(% - 12).

Proof: use of Schwartz lemma.

Lemma 3 Pr(SecFound x) < Pr(CO; # @) + Pr(guess x)




Application to ElGamal

e Generic DL-complexity lower bound:

inputs: g, ¢

t2

Pr(SecFound x) < G(E

1
O(—-
)+ (q)

e Indistinguishability:

inputs: g, ¢*, ¢, my-(g%), my, m

2
Pr(SecFound b) < 6(%) + %




Random Oracle Model

group operations
queries to the hash oracle H

interactions with a decryption oracle

we find informations about the secrets by finding collisions or
valid signed ciphertexts using interactions

There exist signature and encryption schemes which are secure
in the Random Oracle Model, but for which any

implementation of the random oracle results in insecure

schemes.(Canetti)




How do we formalize ideal hash function ?

e for communication with oracles: type Val

Val 1L Sec

e interpretation function rom : Val — Z,

e to formalize an hash function H : Zq[Val]3— > Val, we define a
type HashQuery := Z,[Val]’> x Val

h : HashQuery := (a,b,d,c) = ¢ = H(a, b,d)




Interactive generic algorithm

eRun : Run

R : Run e:list Val
step(R, e) : Run

R : Run c: HashQuery
hashstep(R, c) : Run

R:Run cip: Z;‘
decstep(R, cip) : Run

IGA = {Sec, Val : Set; run : Run; inp : (listT (listT Val))}




What to prove ?

Let a generic interactive algorithm be given g, ¢*, mo, my, cipy and
oracles for H and for decryption

Lemma 4 Pr(SecFound b) < 9(%) + %




Conclusion

More future work
e Reason about attacks

e Can we extend Paulson’s model with ideas from GM and
ROM?

e Feedbacks welcome




