Towards computationally sound
symbolic security analysis

Daniele Micciancio, UCSD

DIMACS Tutorial — June 2004

Security protocols

* Protocols: distributed programs

e Goal: maintain prescribed behavior in
adversarial execution environment

* Tool: Cryptography ‘

For all Adv. ‘

Analyzing security protocols

e Typically much more complicated than
traditional protocols because of universal
quantification over the adversaries

* Implications:

- Security cannot be tested, but only proved

- Need for a formal model to precisely formulate
and prove security properties

Models of security

 Computational model

- Encryption [Goldwasser, Micali 1983]
e Symbolic model

- [Dolev, Yao 1983]
* Other models

- Random oracle model
- Generic model

Computational Model
* Detailed model of computation / communication

* Cryptographic operations are not modeled, but
defined within the model.

100100101
M
ﬁ

0001110101

Example: CPA-secure Encryption

* Encryption scheme = (Kgen, E, D)
e Security against “chosen plaintext attack”:

Pr{g=b}~1/2

1f Im0I=Im1I

then m,

Features of CPA-security

Even partial information about message is hidden

— captured by size 2 message space
No assumption on message distribution

- captured by adversarially chosen messages
Strong security (succ. prob. ~ 1/2)

Encryption function can be used multiple times

- Letting Adv. make many queries (m,,m.) does
not make the definition substantially stronger

Non-features of CPA-security

* Message length is not necessarily hidden:

- Messages must satisfy |[m_| = |m. |

* The key is not necessarily hidden, e.g.:
- Kgen': Run Kgen->k, and output k' = (k,r)
- B ,(m) = (E,(m),r)

* Other definitions are possible:

- e.g., schemes can completely hide the key

Symbolic model

e Abstract computation and communication
model

* Cryptography is integral part of the model:
cryptography = abstract data type

| Esk,mz I

E(k', m)

Computational model

* Advantages:

- High security assurance
- Provides guidance to design of crypto primitives
- Allows definition of new crypto primitives

* Disadvantages
- Proofs are long and hard to verity

- Security intuition is often lost in technical details

- Few cryptographers still write full proofs, and
nobody read them anyway

Symbolic model

* Potential advantages

- Simpler, higher level proofs: e.g., no probabilities
— Automatic proof verification

* Disadvantages

— Security proved only against abstract
adversaries

- Unclear assumptions on cryptographic primitives

- Tailored to specific security properties, and
classes of protocols

Computational vs. symbolic Adv.

 Computational Adversary:

— arbitrary probabilistic polynomial time Adv.

- may break symbolic model assumptions by
guessing a key (with non zero probability)

* Symbolic Adversary:

- restricted but computationally unbounded and/or
non-deterministic adversary

- may break the computational model by non-
deterministically guessing a key

Abstraction Level

e Security Protocols

* Cryptography
* Digital circuits
* Physics/ EE

What level of abstraction should
be used to ...

* ... describe security protocols?

- Higest level that allows to describe the protocol's
actions

- Typically, symbolic model is enough

* ... define security properties?

- Highest possible that allows to describe all
realistic threats (e.g., adversarial's actions)

- Computational model is typically accepted as a
reasonable choice

Beyond the computational model

 Power analysis attacks
- [Kocher]

* Timing attacks
- [Kocher]

e Sometimes useful:

- constant round concurrent Zero Knowledge
protocols [Dwork, Naor, Sahai] [Goldreich]

Soundness of symbolic analysis

e (Goal: framework where

- protocols are written and analyzed symbolically

— still, security holds against computational
adversaries

* Advantages and limitations
- Simple protocols and security proofs
- High security assurance

- Applies only to a subclass of protocols
— Targets restricted class of security properties

What is a sound symbolic

Symb. model

Comp. model

analysis?
Securlty
property

&

Using the soundness theorem

* High level protocol

e Soundness theorem:

- For any comp. Adv, if Adv|| satisfies
S, then CompExec((),Adv) satisfies S

e Symbolic security proof

- For any , satisfies S
e Strong security guarantee

- For any comp Adv, CompExec|(),Adv] satisfies S

Remarks

e Standard process in cryptography:

- E.g. Transformation from semihonest to
malicious adversarial models using Zero
Knowledge

e Compiling protocols:

- Usually a non-trivial transformation
- May introduce inefficiencies (e.g., use of ZK)

 Compiling adversaries:

- Usually efficiency is not as critical here

What's different with soundness of
symbolic analysis?
 Formal high level protocol description language
- E.g., no probabilities. Important for automation.

e Simple interpretation of high level procols
- Essential for analysing existing protocols
- Important for implementation of new protocols
 Compiling adversaries: highly non-trivial
- Very restricted target language
- Important for automatic verification

Approaches to sound symbolic
analysis
e Secure multiparty computation

— Library to interpret/compile symbolic programs in
computational setting

- Powerful: Embed symbolic terms in computational
model, retaining all capabilities of comp. model

* Ad-hoc approaches

- Specialized languages for subclasses of protocols
— Directly justify symbolic analysis

Example: encrypted expressions

* Very simple protocols: “A(input) -> B: output”
o Syntax: X = input | const | {X}, | (X,...,X),
o Example: X = (k1, {(k3, {(0, input)})}, {k2},.)

e Computational interpretation [X]:{0,1}*->{0,1}"
- Generate keys Kgen->k1,k2,k3

- Evaluate expression bottom up, where

o [{X}]=E,(X])
* [(X1,....Xn)] = ([X1],...,[Xn])

Symbolic execution

 On input m, A transmits X' = X[m/input] to B

* The symbolic (Dolev-Yao) adversary, given
expression X', computes as much
information as possible, according to the
following rules:

- X"Is known
- If (X1,...,Xn) is known, then X1, ..., Xn are known
- If {X}, and k are known, then X is known

Security properties

e Secrecy of the input:
- the input value is protected by the protocol
 Computational secrecy:

- For any input s, the distributions [X](s) and [X](0)
are computationally indistinguishable

e Symbolic secrecy:

- No symbolic (Dolev-Yao) adversary can recover
m from X[m/input]

Pattern Semantics

* Associate each program with a pattern:

- P =input | const | (P,...,P) | {P}

e Examples:

“?!!
key |]

- Pattern(k1, {(k3, {(0, input)},)}, {k2},,)

=

k1, {(k3, {(0, input)},)}, {k2},.)

- Pattern(k1, {(k3, {(0, input)})}, {k4},)

=

1, {(k3, e)}» {K4},.)

Soundness Theorem

* [Abadi-Rogaway] if Pattern(X1)==Pattern(X2)
then [X1]~[X2] are computationally
indistinguishable, provided that

- (Kgen, E, D) is “type 0” secure encryption scheme

- expressions X1, X2 are acyclic, e.g., expression
({k1},.,,1k2},,) is not allowed.

e Corollary:

- If Pattern(X) does not contain “input”, then X is
secure

Soundness result as a
metatheorem

e Soundness theorem has the form of a
standard cryptography result

* As easy to use as normal cryptographic
definitions

if Pat(XO):Pat(Xl)
then Xb

Case study: Secure multicast

© = Group member
e Authenticated broadcast channel, © =Non-member

 Dynamically changing group of users
010001001010110110110100101
[CenterJ

send(m)
rem(u,)

add(u,) m m m m
send(m,) m m m m

Multicast key distribution problem

e Standard approach to achieve secrecy:

- Establish a common secret key
- Use the key to encrypt the messages

e Problem:

- Update the key when group membership changes

- Individually sending new key to all members is
too expensive

- Cannot encrypt new key under old one because
the old one is compromised

Secure key distribution

© = Group member
e Authenticated broadcast channel, © = Non-member

 Dynamically changing group of users
010001001010110110110100101
[CenterJ

rem(u,) k k k
add(u,) k k k k

Secure key distribution

* For any sequence of updates, and coalition
C, {ug, xxx, K(S)} ~ {u,, xxx, K'(S)}, where S =

{t :C does not intersect the group }

updates
Center

add(u,)
add(u,)
add(u,)
del(u,)
add(u,)

/k

§688 ¢

| uy) cuy (us) cu,
P || us U, -y |
9 ug ’ l/t5 u6
U, U; | Uy | Us Us
U, U; | Uy | Us | Ug

- —

6

Logical Key Hierarchy
[WGL98,WHA98,CGIMNP

 Each node contains a key

 Group members are
associated to the leaves

e Each member knows

keys on the path to the
root ’/ \

ks
* Root key is used to ‘ ‘

encrypt messages ,; ul uw (@) w u

>

Updating the group

* E.g., remove u2

* Center sends rekey
messages:

- Change keys known to u2

- Send each new key to
subtrees associated with
Its children

u
k11

(k12}_, {k11} , {k13}_, {k12] (k13)

Abstract key distribution protocols

 Each user has an associated key

* Group center trasmits messages of the form
- X =k | {X},] (X,....X)

e At any given point in time t there exists a key
K such that

- Each group member at time t can recover k

- Non-members cannot recover k, even if they
collude

- K is not used to encrypt any rekey message

Computational security of
multicast key distribution

* Fix a coalition C and a sequence of updates
Seq

- K, : group keys when none of C is in group

- No k in K can be computed from (X,,...,X), U

- keys in K, are not used to encrypt in (X,,...,X)

X1,X2,...,Xn
&S T T 1 1

Computational security of
multicast key distribution

* Fix a coalition C and a sequence of updates
Seq

- K, : group keys when none of C is in group

- No k in K, can be computed from (X,,...,X), U

C

- keys in K, are not used to encrypt in (X,,...,X)

- K, Is the only occurrence of K. keys in
Pattern((X.,,...,X),U.,K,)

J C!

~ Pattern((X,,....X),U_,K)==Pattern((X. ..., X),U_K'))

J C!

- [(X,-0,X), U K] ~ [(X,-., X), UK]

Adversarial updates and
corruptions

* We proved that for every sequence of updates
Seq and coalition C, the keys K(S) are secure

* What if Seq and C are chosen by the
adversary?

- If Seq and C are chosen at the outset, then
security follows from universal quantification

 Can Seqg and C be chosen adaptively as the
protocol is executed?

- Definition gets much more complicated

Adaptive adversaries

* Define the following initially empty sets:
- C = corrupted users
- K(S) = secure keys

» Adversary can issue the following commands
- issue a group update operation (add/remove user)

— if user u was not a member attimestin S:add uto C
— if none of the member attimetisin C:addtto S

* Polynomial bound on sequence of commands

Is key distribution adaptively
secure?
e Symbolic model:

- A scheme is secure if no adaptive adversary can
compute a key in K(S) from messages received
during the attack

* Non-adaptive security implies adaptive security:
- Let Adv be an adaptive adversary
- Define Seq and C by emulating Adv with protocol

- Invoke security for every Seq, C, and non-
deterministic non-adaptive Adversaries

Is the protocol really secure?

 What about adaptive attacks in the computational
setting? Our proof breaks down.

 Problem:

- Sequence of expressions X1,...,Xn is adaptively
chosen, where Xi may depend on [X1], ..., [Xi-1]

— This allows to define distributions that cannot be
expressed as [X]:

- E.g., Set X1={0} , X2=b, where b is the last bit of [X1].

Adaptive security of encrypted
expressions

* Proving the security of the protocol is related
to establishing an adaptive version of the
soundness theorem for encrypted
expressions:

Pr{g=b}~1/2

if Pat(...X)=Pat(...X)
then X,

Selective
decommitment/decryption

e Consider the following adaptive adversary:
- X1 =({m1}_,{m2} , ..., {mn})

- X2 = (ki: for a random subset of the I's)

* Question: are the mj (for kj not in X2) still secret?
- Standard hybrid arguments break down

» Classic open problem in cryptography

- Byzantine agreement (early 80's)
- [Dwork,Naor,Reingold,Stockmeyer 03]

Some extensions to the AR logic

e Completeness:
- [X1] = [X2] => pattern(X1) = pattern(X2) ?

- [Micciancio,Warinschi02/04] No under [AR]
assumptions. Yes if authenticated encryption is used.

- [Gligor,Horvitz03] same under weaker assumptions

e Realistic encryption functions:

- What if encryption reveals the length of the message?
- [MWO02/04] Refine logic with patterns “?”n

* Abadi-Jurens: security against passive attacks

Dealing with message lengths and
encryption keys: a new semantics

e Structure of expressions:

e Struct(k) = key; Struct(c) = const
e Struct(X1,...,Xn) = (Struct(X1),...,Struct(Xn))
o Struct({X},) = {Struct(X)}

e Pattern(X) = Pat(X, Keys(X))

k,K) = k; Pat(c,K) =

X1,...,Xn), K) = (Pat(X1 K),...,Pat(Xn,K))
+K) = {Pat(X,K)} ifkisin K

+K) = {Struct(X)} , if kis not in K

e Pat
e Pat
o Pat

o Pat

AN N N N

Claims about new Pattern
Semantics

e Claim 1: New notion suffices in most
application

- It seems a good security practice anyway

e Claim 2: For any CPA secure encryption,
- if Pattern(X1) = Pattern(X2) then [X1]~[X2]

e Claim 3: If Pattern(X1)=/=Pattern(X2) then
- there is a CPA encryption such that [X1]~/~[X2]

Other applications

 Symbolic model can be used not only to analyse
security, but also to prove lower bounds

* [Micciancio,PanjwaniO4]: O(log n) communication
lower bound

- Protocols may use pseudo random generators
arbitrarily nested with encryption operations

- Symbolic attacks can be easily translated into
computational ones

- If replace operation is allowed, constant in O(log n)
matches best protocol in the model [CGIMNP99]

Micciancio-Panjwani: proof idea

+ View a multicast key distribution protocol as a played
between center and adversary.

non-member

+ Adversary changes labels on the keys which are labeled ' or non-
member.

+ Center introduces rekey messages, modeled as over the keys.

Other extensions

 What if the adversary can alter/inject packets?
 Recent work on active attacks:

- [Micciancio,Warinschi 04] : CCA / trace properties
- [Laud 04] : CPA+ / secrecy properties

- [Bakes,Pfitzman 04] : Compiler / multiparty
computation

e Selective decommitment issue

Open problems: formal methods

e Extend with other cryptographic primitives:
- PRGs, PRFs, Hash, Signatures, etc.
* Extend to universal composability setting, etc.

* Foundamental questions in basic setting:

- Find most general conditions under which adaptive
soundness of encrypted expressions can be proved

- Develop formal methodsds / tools for the automatic
analysis of multicast key distribution protocols

Open problems: cryptography

* Find encryption scheme (e.g., Cramer-
Shoup) such that soundness of encrypted
expressions holds without the acyclicity
restriction

* Find encryption scheme such that adaptive
soundness of encrypted expressions holds
without any syntactic restriction

Conclusion

* There is not a single “right” security model

* Multiple computational security definitions:

- CPA, CCA, authenticated encryption, etc.
- => Several corresponding symbolic models

e Symbolic model should allow to specify simple
and clear computational security properties

* Plenty of work for everybody

- Automation, security modeling, protocol design, etc.

