Testing properties of distributions

Ronitt Rubinfeld MIT and Tel Aviv University

Distributions are everywhere

What properties do your distributions have?

Play the lottery?

Testing closeness of two distributions:

Transactions of 20-30 yr olds

Transactions of 30-40 yr olds

Outbreak of diseases

- Similar patterns?
- Correlated with income level?
- More prevalent near large airports?

Information in neural spike trails

[Strong, Koberle, de Ruyter van Steveninck, Bialek '98]

- Each application of stimuli gives sample of signal (spike trail)
- Entropy of (discretized) signal indicates which neurons respond to stimuli

Compressibility of data

Worm detection

find ``heavy hitters'' – nodes that send to many distinct addresses

Testing properties of distributions:

- Decisions based on samples of distribution
- Focus on large domains
 - Can sample complexity be *sublinear* in size of the domain?

Rules out standard statistical techniques, learning distribution

Model:

- *p* is arbitrary black-box distribution over [*n*], generates iid samples.
- samples $\mathbf{P}_i = \operatorname{Prob}[p \text{ outputs } i]$

Sample complexity in terms of n?

Some properties

- Similarities of distributions:
 - Testing uniformity
 - Testing identity
 - Testing closeness
- Entropy estimation
- Support size
- Independence properties
- Monotonicity

Similarities of distributions

- Are p and q close or far?
 - q is known to the tester
 - q is uniform
 - q is given via samples

Is p uniform?

Theorem: ([Goldreich Ron][Batu Fortnow R. Smith White] [Paninski]) Sample complexity of distinguishing p=Ufrom $|p-U|_1 > \varepsilon$ is $\theta(n^{1/2})$ Nearly test if p $|p-q|_1 = \Sigma |p_i-q_i|$ distribution Batu Fischer Fortnow Kumar R. White]: "Testing identity"

Testing uniformity [GR][BFRSW]

- Upper bound: Estimate collision probability + bound L_∞ norm
 - Issues:
 - Collision probability of uniform is 1/n
 - Pairs not independent
 - Relation between L₁ and L₂ norms
 - Comment: [P] uses different estimator
- Easy lower bound: $\Omega(n^{\frac{1}{2}})$

• Can get Ω (n^{1/2}/ ϵ^2) [P]

Is p uniform?

- Theorem: ([Goldreich Ron][Batu Fortnow R. Smith White] [Paninski]) Sample complexity of distinguishing
 p=U from |p-U|₁>ε is θ(n^{1/2})
- Nearly same complexity to test if p is any known distribution [Batu Fischer Fortnow Kumar R. White]: "Testing identity"

Testing identity via testing uniformity on subdomains:

q (known)

- (Relabel domain so that q monotone)
- Partition domain into O(log n) groups, so that each group almost "flat" -
 - differ by <(1+ɛ) multiplicative factor</p>
 - q close to uniform over each group
- Test:
 - Test that p close to uniform over each group
 - Test that p assigns approximately correct total weights to each group

Testing closeness

Theorem: ([BFRSW] [P. Valiant]) Sample complexity of distinguishing

p=qfrom $|p-q|_1 > \varepsilon$ is $\tilde{\theta}(n^{2/3})$

A historical note:

- Interest in [GR] and [BFRSW] sparked by search for property testers for expanders
 - Eventual success! [Czumaj Sohler, Kale Seshadri, Nachmias Shapira]
 - Used to give O(n^{2/3}) time property testers for rapidly mixing Markov chains [BFRSW]
 - Is this optimal?

Approximating the distance between two distributions?

Distinguishing whether $|p-q|_1 < \varepsilon$ or $|p-q|_1$ is $\Theta(1)$ requires nearly linear samples [P. Valiant 08]

Can we approximate the entropy? [Batu Dasgupta R. Kumar]

- In general, not to within a multiplicative factor...
 - ~0 entropy distributions are hard to distinguish (even in superlinear time)
- What if entropy is big (i.e. Ω(log n))?
 - Can γ -multiplicatively approximate the entropy with $\tilde{O}(n^{1/\gamma^2})$ samples (when entropy >2 γ/ϵ)
 - requires Ω(n^{1/γ²}) [Valiant]
 - better bounds in terms of support size [Brautbar Samorodnitsky]

Estimating Compressibility of Data

[Raskhodnikova Ron Rubinfeld Smith]

- General question undecidable
- Run-length encoding
- Huffman coding
 - Entropy
- Lempel-Ziv
 - Color number'' = Number of elements with probability at least 1/n
 - Can weakly approximate in sublinear time
 - Requires nearly linear samples to approximate well [Raskhodnikova Ron Shpilka Smith]

P. Valiant's characterization:

- Collisions tell all!
 - Canonical tester identifies if there is a distribution with the property that expects observed collision statistics
 - Difficulty in analysis:
 - Collision statistics aren't independent
 - Low frequency collision statistics can be ignored?
 - Applies to symmetric properties with "continuity" condition
 - Unifies previous results
- What about non-symmetric properties?

Testing Independence:

Shopping patterns:

Independent of zip code?

Independence of pairs

- *p* is joint distribution on pairs <*a*,*b*> from [*n*] x [*m*] (wlog n≥m)
- Marginal distributions p₁, p₂
- *p* independent if $p = p_1 x p_2$, that is $p_{(a,b)} = (p_1)_a (p_2)_b$ for all *a*, *b*

Independence vs. product of marginals

Lemma: [Sahai Vadhan] If \exists A,B, such that $||p - AxB||_1 < \epsilon/3$ then $||p - p_1 x p_2||_1 < \epsilon$

Testing Independence

[Batu Fischer Fortnow Kumar R. White]

1st try: Use closeness test

Simulate p_1 and p_2 , and check $||p - p_1 \times p_2||_1 < \varepsilon$.

Behavior:

- If ||p- p₁ x p₂ ||₁<ε/n^{1/3} then PASS
- If $||p-p_1 \times p_2 ||_1 > \varepsilon$ then FAIL
- Sample complexity:
 Õ((nm)^{2/3})

2nd try: Use identity test

- Algorithm:
 - Approximate marginal distributions $f_1 \approx p_1$ and $f_2 \approx p_2$
 - Use Identity testing algorithm to test that $p \approx f_1 x f_2$

Comments:

- use care when showing that good distributions pass
- Sample complexity: $\tilde{O}(n+m + (nm)^{1/2})$
- Can combine with previous using filtering ideas
 - identity test works well on distribution restricted to ``heavy prefixes'' from p₁
 - closeness test works well if max probability element is bounded from above

Theorem: [Batu Fischer Fortnow Kumar R. White]

- There exists an algorithm for testing independence with sample complexity $O(n^{2/3}m^{1/3}poly(log n, \epsilon^{-1}))$ s.t.
 - If $p=p_1 \times p_2$, it outputs PASS
 - If ||p-q||₁>ε for any independent q, it outputs FAIL

An open question:

- What is the complexity of testing independence of distributions over ktuples from [n₁]x...x[n_k]?
- Easy $\Omega(\prod n_i^{1/2})$ lower bound

k-wise Independent Distributions (binary case)

- p is distribution over $\{0, 1\}^N$
- p is k-wise independent if restricting to any k coordinates yields the uniform distribution
- support size might only be O(N^k)
 - Ω(2^{N/2}) lower bound for total independence doesn't apply

Bias

- Definition : For any $S \subseteq [N]$, $bias_p(S) = Pr_{xep}[\Sigma_{i \in S} x_i=0] - Pr_{xep}[\Sigma_{i \in S} x_i=1]$ (Fourier coeff of p corresponding to $S = bias_p (S)/2^N$)
- distribution is k-wise independent
 iff all biases over sets S of size 1 ≤ i ≤ k are 0
 (iff all degree 1≤i ≤ k Fourier coefficients are 0)

 XOR Lemma [Vazirani 85] relates max bias to distance from uniform dist.

Relation between p's distance to *k*-wise independence and biases:

Thm: [Alon Goldreich Mansour]

p's distance to closest *k*-wise independent distribution is bounded above by

 $O(\Sigma_{|S| \leq k} | bias_p(S) |)$

- yields $\tilde{O}(N^{2k}/\varepsilon^2)$ testing algorithm
- Proof idea:
 - "fix" each degree ≤ k Fourier coefficient by mixing p with uniform distribution over strings of "other" parity on S

Another relation between p's distance to *k*-wise independence and biases:

Thm: [Alon Andoni Kaufman Matulef R. Xie] *p*'s distance to closest *k*-wise independent distribution bounded above by

- $O((\log N)^{k/2} \operatorname{sqrt}(\Sigma_{|S| \leq k} \operatorname{bias}_p(S)^2))$
- yields $\tilde{O}(N^k/\epsilon^2)$ testing algorithm

Proof idea:

- Let p_1 be p with all degree $1 \le i \le k$ Fourier coefficients zeroed out
 - good news:
 - p₁ is k-wise independent
 - p and p₁ very close
 - sum of p₁ over domain is 1
 - bad news:
 - p₁ might not be a distribution (some values not in [0,1])

Proof idea (cont.):

- fix negative values of p₁ by mixing with other kwise independent distributions:
 - small negative values
 - removed in "one shot" by mixing p₁ with uniform distribution
 - Iarger negative values
 - removed "one by one" by mixing with small support k-wise independent distribution based on BCH codes
 - [Beckner, Bon Ami] + higher moment inequalities imply that not too many large
- values >1 work themselves out

Extensions [R. Xie 08]

- Larger alphabet case
 Main issue: fixing procedure
- Arbitrary marginals

(δ, k) -wise Independent Distributions

[Naor Naor] A distribution D is (δ , k)-wise independent if for all i_1, \ldots, i_k and v_1, \ldots, v_k

$$|Pr[x_{i1}...x_{ik}=v_{1},...,v_{k}]-2^{-k}| \leq \delta$$

- (*δ*,k)-wise independent distributions even smaller!
 require only O(2^klog N) support size
- How do the testing problems compare?

Sample complexity bounds [AAKMRX]

- Testing independence lower bound: $\Omega(2^{N/2})$
- Testing k-wise independence upper bound: Õ(N^k/ε²) lower bound: Ω(N^{(k-1)/2}/ε)
- Testing (δ,k)-wise independence upper bound: O(k log N/ δ² ε²) lower bound: Ω(sqrt(k log N)/ (ε+δ))

Time complexity of Testing (ɛ,k)-wise independence

- Bad news: unlikely in polynomial time in terms of (N,1/ε,1/δ) [AAKMRX]
 - for $k = \theta(\log N)$
 - assuming hardness of finding planted clique of size t in G(N, 1/2,t) for t(N) ≈log³N

Testing the monotonicity of distributions:

Does the occurrence of cancer decrease with distance from the nuclear reactor?

Monotone distributions

- *p* is monotone if i < j implies $p_i \le p_j$
- Many distributions are monotone or are "made of" small number of monotone distributions

Monotone distributions over *totally* ordered domains [1...n]

Form of test?

Idea: test that average weight of distribution in range [i..j] less than average weight of distribution in [i'...j'] for various choices of i<i',j<j'</p>

Problem: uniform distribution on even numbers passes such tests

Lower bound [Batu Kumar R.]

Lemma: Testing monotonicity requires $\Omega(\sqrt{n})$ samples

Proof:

p close to uniform iff

p, *p*^{*R*} = "reversal" of *p*, are both close to monotone

Algorithm idea:

- Approximate distribution by k-flat distribution:
 - Properties:
 - Partition domain into k intervals
 - Conditional distribution uniform in each
 - Questions:
 - Does it exist for k=O(polylog(n))?
 - How do you find interval boundaries?
- Check if k-flat distribution close to monotone
 - Solve linear program on O(polylog(n)) variables

Upper bound [Batu Kumar R.]

- Lemma: There is an algorithm for testing monotonicity over totally ordered domains which uses $\tilde{O}(n^{1/2}\varepsilon^2)$ samples s.t. (with probability 2/3)
 - If p monotone, outputs PASS
 - If ε -far from monotone, outputs FAIL
- Can also test unimodal distributions

Monotonicity over general posets [Bhattacharyya Fischer R. Valiant]

- Can test distributions over poset decomposable into union of w disjoint chains of length at most c with Õ(wc^{1/2}poly(1/ɛ)) samples
 - Algorithm: approximate each chain by k-flat distribution and check if resulting distribution close to monotone
 - Implications:
 - Õ (N^{3/2}) bound for NxN grid (simplifying and slightly more efficient than in [BKR])
 - Õ(2^N/N^{1/2}) bound for N-dimensional hypercube
- There are posets for which monotonicity testing requires nearly linear samples

Other properties?

- K-flat distributions
- Mixtures of k Gaussians
- "Junta"-distributions
- Generated by a small Markovian process
- •

Getting past the lower bounds

- Special distributions
 - e.g, uniform on a subset, monotone
- Other query models
 - Queries to probabilities of elements
- Other distance measures

Flat distributions

Entropy can be estimated somewhat faster when distribution is uniform on a subset of the elements [Batu Dasgupta Kumar R.][Brautbar Samorodnitsky]

Monotone distributions over totally ordered domains

- Other tasks doable with polylogarithmic samples: [Batu Dasgupta Kumar R.][BKR]
 - Examples:
 - Testing closeness
 - Testing independence
 - Estimating entropy
 - Algorithm:
 - Use k-flat partitions to approximate distributions
 - Test property on approximation
- Do these big wins carry over to partial orders?

Monotone high-dimensional distributions

- Domain: Boolean cube {0,1}^N
- Are there testing algorithms with sample complexity polylogarithmic in domain size, i.e. poly(N)?

Testing Uniformity

- **Theorem** [R. Servedio][Adamaszek Czumaj Sohler]: There is an $\tilde{O}(N/\epsilon^2)$ sample complexity tester which given an unknown monotone distribution *p* over $\{0,1\}^N$ ([0,1]^N) satisfies (with probability 2/3):
 - If p=U, algorithm outputs "uniform"
 - If ||p U||₁ > ε, algorithm outputs "far from uniform"

Comment: Nearly best possible

Bad news for Boolean cube [R. Servedio]

- Technique for sample complexity lower bounds: monotone subcube decomposition
 - 2^{Ω(N)} lower bound for testing equivalence to a known distribution (even product distributions!)
 - $2^{\Omega(N)}$ lower bound for approximating entropy

Open question for Boolean cube

Can one test monotone distributions over {0,1}^N for any of the following properties

- equivalence to a known distribution
- approximating entropy
- independence

with fewer samples than for arbitrary distributions?

Other query models:

- Distribution given explicitly [BDKR]
- Distribution given both by samples and oracle for p_i's [BDKR][RS]

Can estimate entropy in polylog(n) time

Other distance measures:

- Earth Mover Distance [Doba Nguyen² R.]
 - Measures min weight matching to some distribution with the property
 - Can estimate distance between distributions, independence over [0, 1]^N, in time *independent* of domain size
 - Still exponential in N
 - Can improve over highly clusterable distributions

Conclusions and Future Directions

- Distribution property testing problems are everywhere
- Several useful techniques known
- Other properties for which sublinear tests exist?
- Special classes of distributions?
- Time vs. query complexity
- Other query models?
- Non-iid samples?

Thank you