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Random Perturbation

Agrawal and Srikant’s SIGMOD paper.

Y = X + R

+

Original Data X Random Noise R Disguised Data Y
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Random Perturbation

Most of the security analysis methods 
based on randomization treat each 
attribute separately.

Is that enough?
Does the relationship among data affect 
privacy?
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As we all know …

We can’t perturb the same number for 
several times.

If we do that, we can estimate the original 
data: 

Let t be the original data,

Disguised data: t + R1, t + R2, …, t + Rm

Let  Z = [(t+R1)+ … + (t+Rm)] / m

Mean: E(Z) = t

Variance: Var(Z) = Var(R) / m
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This looks familiar … 

This is the data set (x, x, x, x, x, x, x, x)

Random Perturbation:
(x+r1, x+r2,……, x+rm)

We know this is NOT safe.

  Observation: the data set is highly 
correlated.
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Let’s Generalize!

Data set: (x1, x2, x3, ……, xm)

If the correlation among data attributes 
are high, can we use that to improve 
our estimation (from the disguised 
data)?
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Introduction

A heuristic approach toward privacy 
analysis

Principal Component Analysis (PCA)

PCA-based data reconstruction

Experiment results

Conclusion and future work
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Privacy Quantification: 
A Heuristic Approach

Our goal: 
to find a best-effort algorithm that 
reconstructs the original data, based on 
the available information.
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How to use the correlation?

High Correlation  Data Redundancy

Data Redundancy  Compression

Our goal: Lossy compression:
We do want to lose information, but

We don’t want to lose too much data,

We do want to lose the added noise.
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PCA Introduction

The main use of PCA: reduce the 
dimensionality while retaining as much 
information as possible.

1st PC: containing the greatest amount 
of variation. 

2nd PC: containing the next largest 
amount of variation.
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Original Data
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After Dimension Reduction
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For the Original Data

They are correlated.

If we remove 50% of the dimensions, 
the actual information loss might be 
less than 10%.
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For the Random Noises

They are not correlated.

Their variance is evenly distributed to 
any direction.

If we remove 50% of the dimensions, 
the actual noise loss should be 50%.
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Data Reconstruction

Applying PCA
Find Principle Components: C = Q ΛQT

Set     to be the first p columns of Q.

Reconstruct the data:
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Random Noise R

How does          affect accuracy?

Theorem:
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How to Conduct PCA on 
Disguised Data?

Estimating Covariance Matrix
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Experiment 1: Increasing the 
Number of Attributes

Normal Distribution Uniform Distribution
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Experiment 2: Increasing the 
number of Principal Components

Normal Distribution Uniform Distribution
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Experiment 3: Increasing 
Standard Deviation of Noises

Normal Distribution Uniform Distribution
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Conclusions

Privacy analysis based on individual 
attributes is not sufficient. Correlation can 
disclose information.

PCA can filter out some randomness from a 
highly correlated data set.

When does randomization fail:
Answer: when the data correlation is high.

Can it be cured?
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Future Work

How to improve the randomization to 
reduce the information disclosure?

Making random noises correlated?

How to combine the PCA with the 
univariate data reconstruction?


