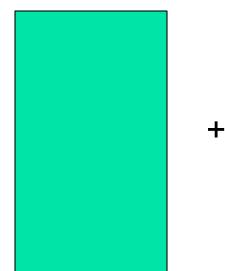
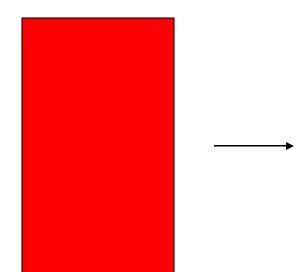
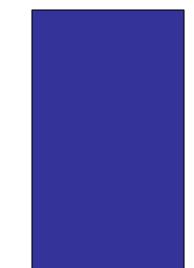
When Does Randomization Fail to Protect Privacy?


Wenliang (Kevin) Du


Department of EECS, Syracuse University


Random Perturbation

Agrawal and Srikant's SIGMOD paper. Y = X + R

Original Data X Random Noise R Disguised Data Y

Random Perturbation

Most of the security analysis methods based on randomization treat each attribute separately.

Is that enough?

Does the relationship among data affect privacy?

As we all know ...

We can't perturb the same number for several times.

If we do that, we can estimate the original data:

Let t be the original data, Disguised data: $t + R_1$, $t + R_2$, ..., $t + R_m$ Let $Z = [(t+R_1)+...+(t+R_m)]/m$ Mean: E(Z) = tVariance: Var(Z) = Var(R) / m

This looks familiar ...

This is the data set (x, x, x, x, x, x, x, x, x) Random Perturbation:

 $(x+r_1, x+r_2, \dots, x+r_m)$

We know this is NOT safe.

Observation: the data set is highly correlated.

Let's Generalize!

Data set: $(x_1, x_2, x_3, \dots, x_m)$ If the correlation among data attributes are high, can we use that to improve our estimation (from the disguised data)?

Introduction

A heuristic approach toward privacy analysis

Principal Component Analysis (PCA)

PCA-based data reconstruction

Experiment results

Conclusion and future work

Privacy Quantification: A Heuristic Approach

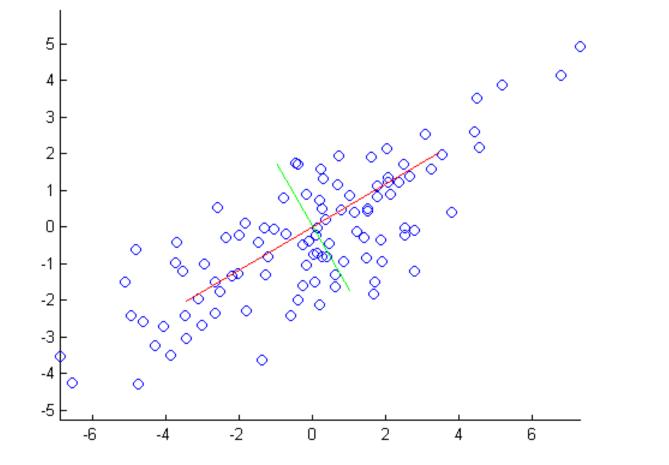
Our goal:

to find a best-effort algorithm that reconstructs the original data, based on the available information.

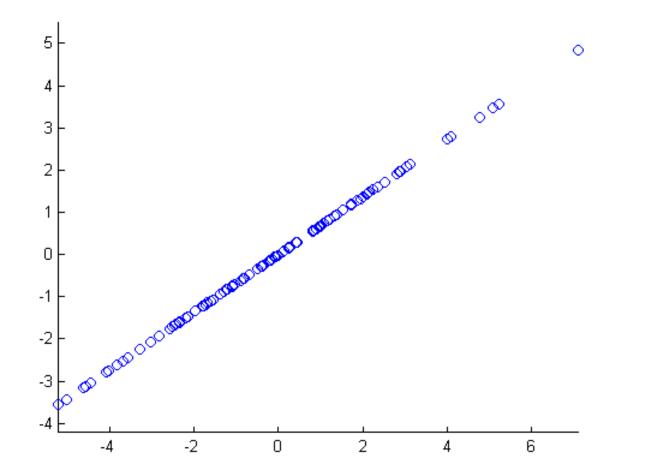
Definition

$$PM_{F} = \frac{1}{n \cdot m} \sum_{i=1}^{n} \sum_{j=1}^{m} L(D_{i,j}^{*}, D_{i,j})$$

How to use the correlation?


High Correlation Data Redundancy
Data Redundancy Compression
Our goal: Lossy compression:
We do want to lose information, but
We don't want to lose too much data,
We do want to lose the added noise.

PCA Introduction


The main use of PCA: reduce the dimensionality while retaining as much information as possible.

- 1st PC: containing the greatest amount of variation.
- 2nd PC: containing the next largest amount of variation.

After Dimension Reduction

For the Original Data

They are correlated. If we remove 50% of the dimensions, the actual information loss might be less than 10%.

For the Random Noises

They are not correlated.

- Their variance is evenly distributed to any direction.
- If we remove 50% of the dimensions, the actual noise loss should be 50%.

Data Reconstruction

Applying PCA

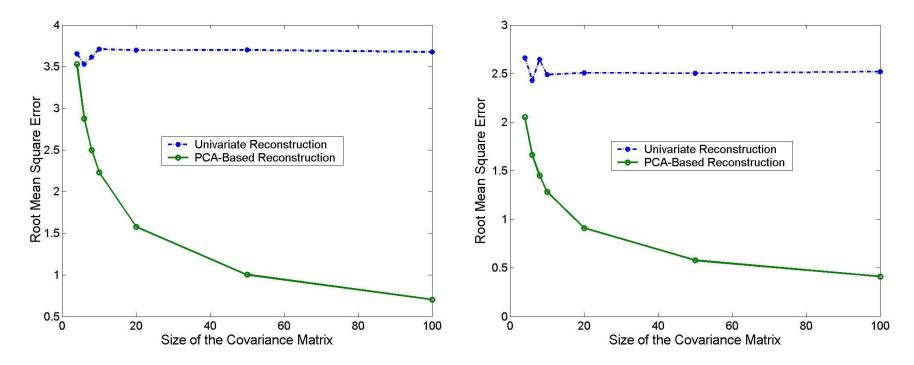
Find Principle Components: $C = Q \Lambda Q^T$ Set $\overset{\square}{Q}$ to be the first p columns of Q.

Reconstruct the data:

$$\overset{\mathbf{U}}{\mathbf{X}} = \mathbf{Y} \overset{\mathbf{U}}{\mathbf{Q}} \overset{\mathbf{U}}{\mathbf{Q}}^{\mathrm{T}}$$

$$= (X + R) \mathbf{Q} \mathbf{Q}^{\mathrm{T}} = X \mathbf{Q} \mathbf{Q}^{\mathrm{T}} + R \mathbf{Q} \mathbf{Q}^{\mathrm{T}}$$

Random Noise R

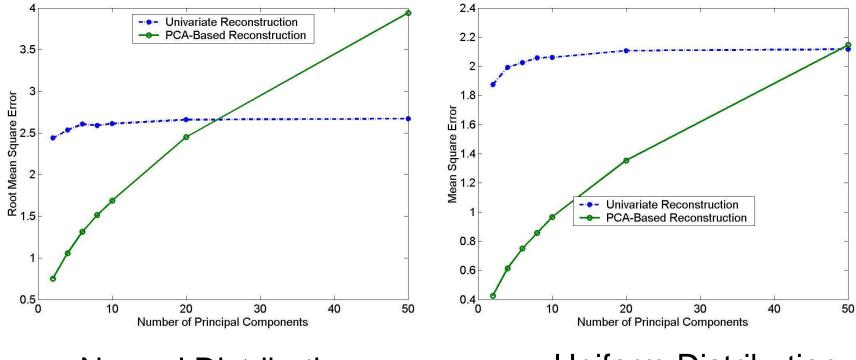

How does RQQ^T affect accuracy? Theorem:

$$Var \ (RQQ^T) = Var \ (R)\frac{p}{m},$$

How to Conduct PCA on Disguised Data?

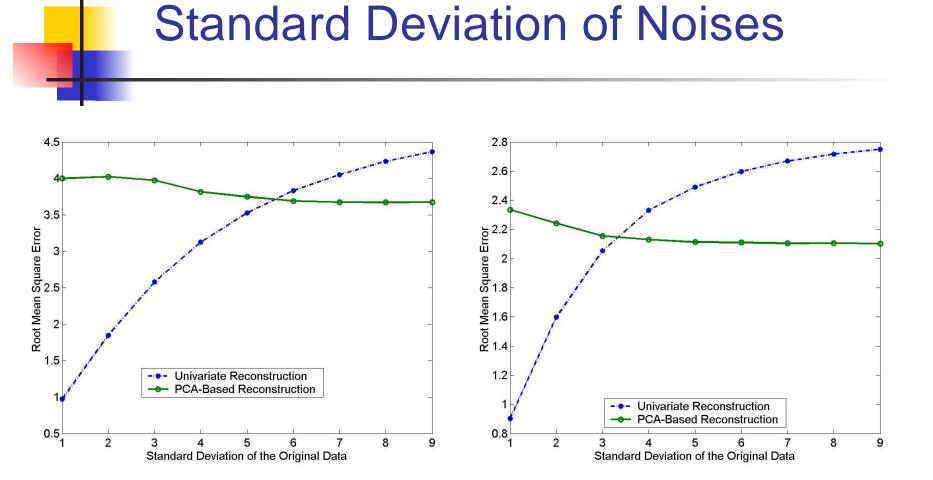
Estimating Covariance Matrix

$$Gv (Y_i, Y_j) = Gv (X_i + R_i, X_j + R_j)$$
$$= \begin{cases} Gv (X_i, X_j) + \sigma^2, & \text{for } i = j \\ Gv (X_i, X_j), & \text{for } i \neq j \end{cases}$$



Experiment 1: Increasing the Number of Attributes

Normal Distribution


Uniform Distribution

Experiment 2: Increasing the number of Principal Components

Normal Distribution

Uniform Distribution

Experiment 3: Increasing

Normal Distribution

Uniform Distribution

Conclusions

Privacy analysis based on individual attributes is not sufficient. Correlation can disclose information.

- PCA can filter out some randomness from a highly correlated data set.
- When does randomization fail:
 - Answer: when the data correlation is high.
 - Can it be cured?

Future Work

How to improve the randomization to reduce the information disclosure? Making random noises correlated? How to combine the PCA with the univariate data reconstruction?