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*W Random Perturbation

Agrawal and Srikant’s SIGMOD paper.
Y=X+R

Original Data X Random Noise R Disguised Data Y




*ﬁ% Random Perturbation

Most of the security analysis methods
based on randomization treat each

attribute separately.

Is that enough?

Does the relationship among data affect
privacy?




*ﬁ% As we all know ...

We can'’t perturb the same number for
several times.

If we do that, we can estimate the original
data:
Let t be the original data,
Disguised data:t+ R, t+R,, ..., t+ R
Let Z =[(t+R)+ ... + (t+R_)] /' m
Mean: E(Z) =t
Variance: Var(Z) = Var(R) / m
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*M This looks familiar ...

This Is the data set (X, X, X, X, X, X, X, X)
Random Perturbation:

We know this iIs NOT safe.

Observation: the data set is highly
correlated.



i#ﬂ Let’'s Generalize!

Data set: (X, X,, X5, ... ... , X

If the correlation among data attributes
are high, can we use that to improve
our estimation (from the disguised

data)?
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Privacy Quantification:
A Heuristic Approach
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Our goal:

to find a best-effort algorithm that
reconstructs the original data, based on
the available information.
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&W How to use the correlation?

High Correlation Data Redundancy
Data Redundancy Compression

Our goal: Lossy compression:
We do want to lose information, but
We don’t want to lose too much data,
We do want to lose the added noise.




w PCA Introduction

The main use of PCA: reduce the
dimensionality while retaining as much
iInformation as possible.

1st PC: containing the greatest amount
of variation.

2"d PC: containing the next largest
amount of variation.
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*W After Dimension Reduction
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w For the Original Data

They are correlated.

If we remove 50% of the dimensions,
the actual information loss might be
less than 10%.
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&M For the Random Noises

They are not correlated.

Their variance is evenly distributed to
any direction.

If we remove 50% of the dimensions,
the actual noise loss should be 50%.
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&M Data Reconstruction

Applying PCA
Find Principle Components: C = Q AQT
Set (ug to be the first p columns of Q.
Reconstruct the data:

*EYRR g g op
=(X+RQQ = X +RQ
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w Random Noise R

How does RQQ' affect accuracy?
Theorem:

J 5 p
@ (RQ') =\ (R) P
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How to Conduct PCA on
*W Disguised Data?

Estimating

Covariance Matrix

Qv (Y,Y)) =@ (X; +R,X+R))

1av (X, X,)+0°, fa i=]

%zy(xi,xj), fa i # ]
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Experiment 1: Increasing the
Number of Attributes
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Root Mean Square Error

Experiment 2: Increasing the
number of Principal Components
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Experiment 3: Increasing

Standard Deviation of the Original Data

Normal Distribution
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&W Conclusions

Privacy analysis based on individual
attributes 1s not sufficient. Correlation can
disclose information.

PCA can filter out some randomness from a
highly correlated data set.

When does randomization fail:
Answer: when the data correlation is high.
Can it be cured?
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&W Future Work

How to improve the randomization to
reduce the information disclosure?

Making random noises correlated?

How to combine the PCA with the
univariate data reconstruction?
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