
What’s the worst that could happen?

Eric Rescorla
RTFM, Inc.
DIMACS Workshop on Cryptography: Theory Meets Practice

10/18/04 2

Overview

Cryptography alone doesn’t do much
 Real systems combine primitives into protocols

Protocols treat primitives as black boxes
 With certain idealized properties

 Indistinguishability, collision-freeness, preimage resistance...
 The primitives only approximate those properties

 Sometimes more than others...

What happens when the primitives fail?
 Let’s look at some plausible scenarios

10/18/04 3

Major cryptographic algorithms

Key establishment
 RSA, DH

Signature
 RSA, DSS

Encryption
 DES, 3DES, AES, RC4, Blowfish

Message digests
 MD5, SHA-1, MD2

10/18/04 4

Current status of key est. algorithms

RSA
 Basically sound but some active attacks

 Million message attack
 Timing analysis

 There are crypto countermeasures
 OAEP, KEM, etc.

 In reality Countermeasures are implementation only
 Both these attacks caused SSL implementation upgrades

DH
 Basically sound but some active attacks

 Small subgroup
 Timing analysis

 Again, implementation countermeasures
 Most implementations use a fresh key for each transaction

10/18/04 5

Current status of signature algorithms

RSA
 Basically sound
 Provable variants exist but aren’t used

DSS
 Believed to be basically sound
 Limited by key length but NSA is extending

10/18/04 6

Current status of encryption algorithms (I)

DES
 Best analytic attacks require 243 known plaintexts

 In practice this has had no effect
 56-bit key is known to be too weak

 DES keys can be cracked in < 1 day for order $100k fixed
cost

3DES
 No good analytic attacks
 Effective key strength ~112 bits

 (3-key version)

10/18/04 7

Current status of encryption algorithms (II)

AES
 So far basically sound

RC4
 Some serious flaws

 First 256-768 or so bytes are somewhat predictable [Mironov
02]

 Related key vulnerabilities [Fluhrer and Shamir 01]
 Structured keys are a real problem

 Still widely used

10/18/04 8

Current status of digest algorithms

MD5
 Collisions are easy to find [Wang et al. 04]

 … however, they don’t appear to be controllable
 Relationship between M and M’ is fixed

 Preimages are still difficult
 Still believed safe in HMAC

SHA-1
 So far appears sound
 Some disturbing results [Biham 04]

 But only real progress is on reduced round versions
SHA-XXX
 Unknown, but some scary results [Hawkes et al. 04]

10/18/04 9

Attack 1: Controllable MD5 collisions

Current MD5 collisions are tightly constrained
 Only positions 4,11,41 are not fixed

 And it’s not clear they can be set to chosen values
 But it seems reasonable to believe this attack can be

extended
Attack description:
 Given any prefix P and desired values V and V’
 Create two suffixes S and S’ where

 H(P||V||S) = H(P||V’||S’)
For example
 S||V = “Pay $10 <plus garbage>”
 S’||V’ = “Pay $50 <plus other garbage>”

10/18/04 10

Practical implications of MD5 collisions

No real effect on most protocols
 SSL, IPsec, SSH, etc. use MD5 in three ways

 Key expansion
 MACs
 Signatures

 Not affected by collisions
Two important cases
 Signed S/MIME messages
 Certificates

10/18/04 11

MD5 Collisions and S/MIME messages

Classic collision attack
 Attacker generates two variants

 M1 = “I will pay Eric $1.00/hr” (a bargain)
 M2 = “I will pay Eric $1000/hr” (a rip-off)

 Attacker gets victim to sign M1
 Then claims victim signed M2

 And he has evidence to prove it
 This makes the most sense with contracts

Small problems
 Remember that random garbage?

 Real contracts don’t have that
 Victim has both variants

Big problem
 This isn’t how contracts actually work

10/18/04 12

Victim has both variants

Victim originally had “good” variant
The attacker wants to enforce “bad” variant
Question
 Which one generated the good/bad pair?
 Each party points the finger

But in a lot of situations it’s obvious
 “Unsolicited” messages must have been generated by sender

 Because finding pre-images is still hard
 Otherwise, sender must claim that receiver sent him a message

he signed verbatim
Why were you using MD5 anyway?

10/18/04 13

Contracts in the real world

You and I negotiate a contract
 Your lawyer sends me the final copy
 I sign the last page
 I fax it over to you
 You fax it back

No attempt is made to bind contents to signature
 At most, I might initial each page
 But sometimes, just last page is exchanged!

Signature is unverified
 How does relying party know, anyway?
 An “X” can be binding!

It’s the intention that counts

10/18/04 14

Collisions and certificates

Attacker generates two names
 Good: www.attacker.com
 Bad: www.a-victim.com

Sends a CSR with good name to CA
 CA signs cert
 Attacker now has cert with victim’s name

Two problems
 Can you predict the prefix?
 What about the random padding?

10/18/04 15

The structure of certificates

The signature is over H(TBSCertificate)

TBSCertificate ::= SEQUENCE {
version Integer value=2
serialNumber Integer (chosen by CA)
signature algorithm identifier
issuer CA’s name
validity date range
subject subject’s name
subjectPublicKeyInfo public key
extensions arbitrary stuff

}

10/18/04 16

Prefix prediction

Knowing which values to use depends on the prefix
 But the prefix isn’t totally fixed
 This is a total design accident!

All but serial number and validity are fixed
 Sequential serial numbers are easy to predict

 At least to within a few
 Verisign uses H(time_us) which is hard to predict

 How quantum is the validity?
 Verisign seems to use a fixed “not before” but a “not after” based

on the current time
 So predictable to within a few hundred seconds?

Attacker is likely to need to try the attack a number of
times
Randomizing serial number is a simple countermeasure

10/18/04 17

A vulnerable certificate structure

TBSCertificate ::= SEQUENCE {
version Integer value=3
signature algorithm identifier
issuer CA’s name
subject subject’s name
subjectPublicKeyInfo public key
serialNumber Integer (chosen by CA)
validity date range
extensions arbitrary stuff

}

10/18/04 18

Dealing with the random pads

Remember, we want a specific target name
 E.g. www.amazon.com
 Though we have flexibility in the name we send the

CA
Random padding can be concealed in pubkey
 Remember, modulus doesn’t have to be p*q

 As long as we can factor it
 ... which is likely for a random modulus [Back 04]

10/18/04 19

Attack 2: 1st preimages

Preimages hard to find for “standard” hashes
Attack description:
 Given some hash value X
 Find a message M st H(M) = X
 Assumption:

 M is effectively random
 … not controllable by attacker

For example
 S/Key responses are iterated hashes H(H(H(H(H(seed)))))

 Used in reverse order
 If I see one response I can predict the next one

Most scenarios involve 2nd preimages

10/18/04 20

Attack 2 variant: partial 1st preimage

Attacker sees:
 Digest value
 Some of digest inputs
 Common situations

 Challenge/response
 MACs for protocol data

Attacker wants to forge future values
 Using secret data

10/18/04 21

Trivial challenge/response protocol

Attacker wants to find Key
 Can use it to forge future responses
 If Key and Challenge are in same block, then chances

that preimage will be useful are small
 Assume Key is padded to a block multiple

 As in HMAC

Client Server
Challenge

H(Key || Challenge)

10/18/04 22

Attacking partial 1st preimages

Problem definition:
 Given M and hash compression function
 Find state st Compress(State,M) = X

 For all future values of M,X

Not the same as a preimage
 Since we need a specific state
 … in order to forge future messages
 This isn’t possible in general

 Is it possible for ordinary hashes?

10/18/04 23

Preimage != State

Contrived hash function
 CBC-MAC variant with a fixed key
 Zero about half the CBC residue bits

 H0 = 0
 Hn+1 = E((Hn & MD5(Mn+1)) ^ Mn+1)

Preimages are found by decrypting
Consider the two block case
 Decrypting H2 gives (H1 & MD5(M2)) ^ M2
 Attacker can recover H1 & MD5(M2)
 But any other challenge (M2) will zero different bits

 So can’t forge new responses
 Though each response leaks different bits...

10/18/04 24

What if you could forge MACs?

Does this break protocols?
 It depends...

Authenticate then encrypt (SSL/TLS)
 Block ciphers

 Can’t re-insert the MAC
 And wouldn’t match the data in any case

 Stream ciphers
 Can reinsert MAC
 ... but only if you know the plaintext

Encrypt than authenticate (IPsec)
 Easy to do an existential forgery
 Hard to do a controlled one unless plaintext is known

SSH is weird
 Authenticate then encrypt (but not the MAC)
 Can reinsert MAC

 But it doesn’t match the data

10/18/04 25

Attack 3: 2nd preimages

Attack description:
 Given some message M
 Find some message M’ st H(M) = H(M’)

Classic example: message forgery
 Start with signed “Good” message
 Transform it into signed “Bad” message

10/18/04 26

2nd preimages and certificates

This is really serious
 Attacker should be able to forge a cert of his choice
 Validity of all certs with this digest is now

questionable
 No useful countermeasures

How likely do we think this is with MD5?
 If so, really bad
 Lots of valid certificates use MD5!

SHA-1 comfort level is higher

10/18/04 27

2nd preimages and other protocols

Three major uses of hashes
 MACs
 Key expansion
 Signatures

Only signatures are threatened
But they’re commonly used
 SSH, SSL, IPsec key agreement

 Signatures are over nonces
 Only works if very fast

 Need to beat timeouts

 S/MIME authentication
So, this is bad…

10/18/04 28

Attack 4: Weakness in initial RC4 bytes

RC4 initial bytes known to be imperfect
 Recommendation: discard first 256 bytes
 But most protocols don’t do this

 SSL/TLS in particular

Attack description:
 Extension of Mironov and Fluhrer/Shamir work
 Recover key information from initial keystream
 Don’t need to recover key

 Just predict other initial bytes…

10/18/04 29

Consequences of Attack 4

Attacker can recover connection plaintext
Credit cards over HTTPS are particularly weak
 First 4 plaintext bytes known
 Next 28-32 (TLS) or 52-56 (SSLv3) plaintext bytes are

random
 Next plaintext bytes are HTTP fetch and header

 100-500 bytes
 Very predictable

 Followed by a credit card #
 Predictable structure helps here

10/18/04 30

Countermeasures for Attack 4

In principle easy
 At least for SSL

 802.11 already moving to AES
 Almost all clients and servers support DES, 3DES, etc.

 It’s a negotiable item
 Server admin can just turn off RC4

In practice not so easy
 Admins are concerned about performance
 Uptake of fixes is very slow [Rescorla 03]

May not be the easiest attack
 You only recover 1 credit card number
 Poorly maintained servers may have other flaws

10/18/04 31

Attack 5: DES-quality attacks on AES/3DES

Current AES/3DES attacks are nearly useless
 What if we had attacks on AES as good as those on

DES?
Attack description:
 Recover key with 243 known plaintexts and 243 ops
 This would be a major success

 269 improvement for 3DES
 285 improvement for AES

But what does it mean for a real system?

10/18/04 32

Implications for common protocols

SSL
 Each connection uses a separate key
 Most connections are short (HTTP)

 5 minutes is considered long
SSH
 Longer but not a lot of data is moved

S/MIME
 Each message uses a separate key
 When would you have part of a message in the clear?
 243 blocks = 1014 bytes

 This is longer than any commercial disk
 So not realistic as a message

IPsec
 243 blocks is 10 days of full-speed 1Gig traffic

 Not a common situation
 This attack doesn’t apply to 3DES

 3DES uses CBC mode
 You need to change keys every 232 blocks anyway

10/18/04 33

Attack 5 Variant: Total cipher break

Complete key recovery
 Using a few known plaintexts
 And relatively fast

Compromises confidentiality
No effect on authentication
 Encryption keys decoupled from MAC keys

 At least in well designed protocols
 Often encryption keys too short to recover master

secret
 Even if PRFs were broken

10/18/04 34

Attack 6: Remote key recovery

E.g.,timing attacks [Kocher], [Boneh and
Brumley 03]
 Not known if can be executed over Internet
 Easily fixed (blinding)

Attack description:
 Repeated remote probes allow recovery of private key

10/18/04 35

Implications of Attack 6

SSH, IPsec typically use DH
 With a fresh key for each exchange
 Attacks on signature?

 No control of plaintext
 Can’t attack connection A from connection B
 ... SSHv1 was weaker...

SSL/TLS
 Generally uses static RSA

 Though DH variants exist
 These attacks work well here

S/MIME
 What about automated mail responders?

 Timing?
 Faults?

10/18/04 36

Attack 7: RSA signature malleability

Signature forgery is obviously a disaster
 What about something weaker?

Attack description:
 Given a signature over message M

 actually hash value M
 modify the last few bits

Not very plausible with RSA
 PKCS-1 padding
 What about DSA?

But not message integrity
 Can’t go from encryption keys to MAC keys

 Both are generated from a master key
 Even broken hashes don’t help

 Master keys are too long

10/18/04 37

Implications of signature malleability

Remember: all signatures are over hashes
 Forged signature is over a random value

 Effectively an existential forgery
 Note: many algorithms already have this property

 Need to find usable preimage
Use a meet-in-the-middle attack
 2n/2 operations
 2n/2 storage
 Can’t be done in real time….

Only practical for very high value transactions
 Unless of course the hash was also broken

10/18/04 38

Take home points

Protocols are surprisingly resistant failure to primitive
Randomness really helps
Timing counts
Hash early, hash often
Sometimes it’s better to be lucky than good

10/18/04 39

Major comsec protocols

SSL/TLS: Application layer generic channel security
 Web traffic
 E-mail (SMTP/TLS)
 SSL VPNs...
 Mostly short-lived connections between client and server

SSH: Application layer channel security
 Remote login

IPsec: Network-level channel security
 VPNs
 Long-term associations between networks

S/MIME, PGP: Application layer message security
 E-mail

