Cryptographic Approaches for Securing Routing Protocols

Adrian Perrig perrig@cmu.edu

ornegie Mellon Cyt.ob 4616 HENRY STREET PITTSBURISH, PA 18213 PH: H-12] 268-7166 PX: H-12] 268-7166

Why Secure Routing?

- Current routing protocols assume trusted environment!
- Even misconfigurations severely disrupt Internet routing
- Secure routing goals
 - Reduce misconfiguration impact
 - Robust against external malicious nodes (no compromised nodes)
 - Robust against compromised nodes (Byzantine failures)

Routing Protocol Attacks

- Current routing protocols are vulnerable
 - Prevent route establishment
 - Attracting traffic (e.g., blackhole attack)
 - Repelling traffic
 - Gratuitous detours
 - Cause route instabilities / route flapping
 - Denial-of-Service (DoS): router overload
 - Almost all attacks appear as DoS attacks, since routing is a service, however, we only consider router resource consumption as routing DoS attacks

Approaches to Secure Routing

- Detection/recovery
 - Use intrusion-detection techniques to detect malicious behavior
- Prevention
 - Use cryptographic techniques to prevent malicious behavior
- Robustness
 - Use robustness techniques to reduce impact of malicious behavior
 - E.g., use multipath routing to improve probability of packet delivery

Outline

- Secure ad hoc network routing protocols
 - SEAD: Secure Efficient Ad-hoc network Distance vector routing protocol
 - -Joint work with Yih-Chun Hu and David Johnson
 - -Defend against shortening hop count
- Secure Internet routing protocols
 - SPV: Secure Path Vector
 - -Joint work with Yih-Chun Hu and Marvin Sirbu
 - -Secure BGP routing protocol

Ad Hoc Networks

- No infrastructure, or out-of-range base station
- Devices self-organize to form a network

Ad hoc network routing protocol extends communication range

Ad Hoc Network Applications

- Ad hoc networks provide connectivity in various environments
 - Rooftop networks
 - Corporate ad hoc networks
 - Emergency response, disaster relief
 - Devices protecting critical infrastructures
 - Networks of cars relaying safety information
 - Satellite networks in space
 - Military applications

Security Threats to Ad Hoc Networks

- Wireless communication allows attacker to
 - Eavesdrop on all communication
 - Inject malicious messages into the network
- Current ad hoc network routing protocols designed for trusted environments
 - Highly susceptible to attacks!
 - Skilled attacker can prevent communication
- Sample ad hoc network attacks
 - Wormhole attack
 - Rushing attack

Why is that an Attack?

- Routing protocol sees wormhole as a link
- But attacker could selectively forward only routing packets, but not data
- Routing protocol generally chooses route through wormhole because it is the shortest route
- Attacker does not need to compromise any nodes or keys!
- Result: an attacker can cripple the network when using a routing protocol that does not protect against wormholes

Rushing Attack

- In a rushing attack, an attacker exploits duplicate suppression in broadcasts to suppress legitimate packets by quickly forwarding its own packets
- Methods for rushing
 - Forwarding Request without checking signature
 - Using a longer transmission range
 - Ignoring delays specified by the MAC layer
 - "Tunneling" a Request over another medium

Example Rushing Attack

A sends a Route Request

Example Rushing Attack

- A sends a Route Request
- B forwards the Request without checking the signature, or otherwise rushes the Request

Example Rushing Attack

- A sends a Route Request
- B forwards the Request without checking the signature, or otherwise rushes the Request
- C correctly processes the Request, and forwards it later as a result

Example Rushing Attack

- A sends a Route Request
- B forwards the Request without checking the signature, or otherwise rushes the Request
- C correctly processes the Request, and forwards it later as a result
- Since D has already heard a Request from this discovery, D discards the Request

Example Rushing Attack

- B rushes the Request
- C forwards it later
- Since D has already heard a Request from this discovery, D discards the Request
- A discovers a path through B because B rushed the Request

Basic Distance Vector Routing

Each node maintains a routing table

Example table at A:

Destination	Metric	Next Hop
Α	0	-
В	1	В
С	2	В

- Computed using Distributed Bellman-Ford
 - Each node periodically broadcasts its routing table
 - For each routing table entry received, compare best known route with new information

DSDV: Using Sequence Numbers to Prevent Routing Loops

Adding sequence numbers guarantees loop-freedom:

- Each node maintains a sequence number
- Node increments its own sequence number each time it sends a routing update about itself
- Each update includes sequence number and metric
- An advertised route is "better" if either:
 - It has a greater (more recent) sequence number, or
 - Sequence numbers are equal, and the metric is lower
- Only the most recent sequence number matters

Attacks to defend against: Claim lower metric or higher sequence number

SEAD Protocol Properties

SEAD (Secure Efficient Ad hoc Distance vector):

- Uses one-way hash chains to authenticate metric and sequence number
- Assumes a limit k-1 on metric (as in other distance vector protocols such as RIP, where k=16)
 - Metric value infinity can be represented as k

SEAD Metric Authenticators

- Each node generates a hash chain and distributes the last element (C₁₂) for verification
- Each sequence number has 3 hash chain values
- Within a sequence number
 - C_{0,3,6,9} represent metric 0
 - C_{1,4,7,10} represent metric 1
 - C_{2,5,8,11} represent metric 2

SEAD Metric Authenticator Properties

- SEAD metric authenticator prevents blackhole attack
 - Assume all nodes know authentic C₁₂
 - Consider source announces C₉ for metric 0
 - Neighbor announces C₁₀ for metric 1
 - Attacker cannot announce lower metric!
 - Due to flooding, useless to announce lower metric with lower sequence number

Remaining Problems

- "Same Metric" Fraud attack
 - Attack: Replay metric and authenticator attacker hears
 - Solution: Tie forwarding node address to authenticator
- Denial-of-Service attack:
 - Attack: Claim a very high sequence number
 - Solution: Each sequence number gets own chain
- Larger metric spaces:
 - Verifying even one sequence number may be expensive (e.g., if metric is based on latency or policy)
 - Solution: Cheaper hash-chain following

Hash Tree Chains

Each step in a hash tree chain is a one-time signature

Using Hash Tree Chains

 As before, one step in the one-way chain corresponds to a (sequence number, metric) pair

Using Hash Tree Chains

- As before, one step in the one-way chain corresponds to a (sequence number, metric) pair
- Each b_i corresponds to a forwarding node
- Attacker must gather correct b_i to replay metric

SPV: Secure Path Vector Routing

- Joint work with Yih-Chun Hu and Marvin Sirbu
- Presented at ACM Sigcomm 2004
- SPV adds security to BGP routing protocol
 - Use of highly efficient one-way function to provide security
 - Key insight: authentication of autonomous systems on path not necessary

BGP Essentials

- BGP is Internet's interdomain routing protocol
 - Destinations are prefixes (CIDR blocks)
 - Route includes list of autonomous systems (AS)
- A path vector protocol
 - Each AS maintains routes to each prefix
 - It advertises a (potentially different) subset of those routes to each of its peers
 - Each advertised route includes an ASPATH attribute (a list of ASes the route traverses)

Three Important Attacks

- Unauthorized AS advertises a prefix
 - E.g., small ISP advertises Google's prefix
 - ASes closer to the small ISP than to Google will send Google's packets to the ISP
- ASPATH truncation
 - Reduces ASPATH length, causing downstream AS to prefer attacker's route
- ASPATH alteration
 - Remove undesirable ASNs from the path to cause downstream ASes to prefer attacker's route

S-BGP (Kent et al.)

S-BGP checks two things:

- Originating AS is authorized to advertise prefix
- Each AS receives delegation from previous AS

Requires identification of delegating AS Disadvantages:

- S-BGP requires the use of computationally expensive digital signatures
 - Signing is 10,000 times slower than one-way function
 - Verification is 1,000 times slower
- Poor incremental deployment properties

Our Key Observation

- BRJh pertestsftsech SiPATah lbg: achieved
 wittacutaisen tifyingathee Asethatsin serter en IASN:
 - insetted its out the ASPATH
 - Using cryptography to make unauthorized ASPATH
- SPV protects the ASPATH by:
- Preparties checks that the previous AS correctly
 - Wishaut his aking the printo as patelicannot change
 - Osling Cyptography to make unauthorized ASPATH
 - Pesirable incomental deployment properties
 - However, collaborating attackers can insert bogus ASNs between themselves

Our ASPATH Protector

 The goal of the ASPATH protector is to prevent an attacker from modifying the encoded ASPATH

Using the ASPATH Protector

- Originating AS encodes its ASN
 - Disclose next signing key

Using the ASPATH Protector

- Originating AS encodes its ASN
 - Disclose upper values needed to verify

Using the ASPATH Protector

- Originating AS encodes its ASN
- Each AS in turn encodes its ASN

ASPATH Protector Security

An AS receives 128.32.0.0/16 along 174 2152 25

To change the last AS from 174 to 123:

ASPATH Protector Security

An AS receives 128.32.0.0/16 along 174 2152 25

To truncate by removing ASes 174 and 2152:

ASPATH Protector Security

An AS receives 128.32.0.0/16 along 174 2152 25

To originate a route to 128.32.0.0/16:

How Much Security is Needed?

- Security can be measured in the amount of effort required to break the scheme
 - E.g., on average, given an 80-bit value x, you need to perform 2^{79} hash operations to find y such that H(y) = x, if H returns 80-bit values
- SPV uses large structures; to provide such high assurances requires too much overhead
 - Resulting UPDATEs are over the 4k limit
- However, there are only 2¹⁶ possible ASNs, which limits the useful work an attacker can do
- So, SPV attacks are cheap but rarely possible

Incremental Deployment

- What if an intermediate AS doesn't deploy a secure version of BGP?
- If D is non-deploying but E is legitimate:
 - In S-BGP, G can remove E and add arbitrary ASNs after D
 - In SPV, E will have included D in the ASPATH protector, so it's as if D had deployed SPV

Conclusion

- Almost all networking protocols were designed for trustworthy environments, now time has come to secure them
- Secure routing is an exciting area where we can apply our crypto protocols