

How Many Containers to Inspect to Deter Terrorist Attacks

Naraphorn Haphuriwat, Vicki M. Bier

Department of Industrial and Systems Engineering University of Wisconsin-Madison

Workshop on Port Security/Safety November 18, 2008 Piscataway, N.J.

Introduction

- Department of Homeland Security recently announced 100% container screening at several large overseas ports
- Retailers claim that the policy will hinder product transportation:
 - Resulting in higher product prices
- If the US is concerned about deterring terrorist attacks:
 - How many containers should be inspected?
- We develop a method to answer this question using game theory

Assumptions

- We adapted a model by Dighe et al.:
 - Attacks can be deterred with less than 100% inspection
 - Provided that the defender discloses the overall level of defense
 - (But not the detailed defensive allocation)
- We consider multiple attackers:
 - Each trying to smuggle in a particular weapon type
 - E.g., dirty bombs versus nuclear weapons
- An "attack" is defined to be a smuggling attempt:
 - Regardless of whether the attempt succeeds

Assumptions (cont'd)

- Containers are assumed to be homogeneous
- The cost of inspecting a container is assumed to be the same regardless of whether it contains a weapon
- The cost of a smuggling attempt is assumed to be the same regardless of whether it succeeds:
 - The cost of unsuccessful smuggling attempts is what makes deterrence with less than 100% inspection possible!
 - (This does not include the cost of any possible retaliation)
- The same inspection technology can detect multiple types of attacks

Model Illustration

Defender

Specifies fraction between 0 and 1 of containers to inspect

Any given attacker

Attack

Defender/ attacker payoffs Not attack

Defender/ attacker payoffs

Notation

```
n = Number of containers inspected
N = \text{Total number of containers}
m = Number of attacker types
V_i = Expected damage if attacker i successfully smuggles a weapon into US
p_i = Probability of successfully detecting a weapon smuggled by attacker i
I_i = Indicator function:
         Equals 1 if attacker i decides to attack, 0 if otherwise
C_d = Inspection cost per container
```

 C_i = Cost of a smuggling attempt by attacker i

Mathematical Model

 The defender is assumed to minimize expected losses, as given by:

$$\min_{n=1,...,N} \left\{ \sum_{i=1}^{m} \left[V_i \left(1 - \frac{n}{N} p_i \right) I_i \right] + nC_d \right\}$$

Expected damage Inspection cost caused by attacker *i*

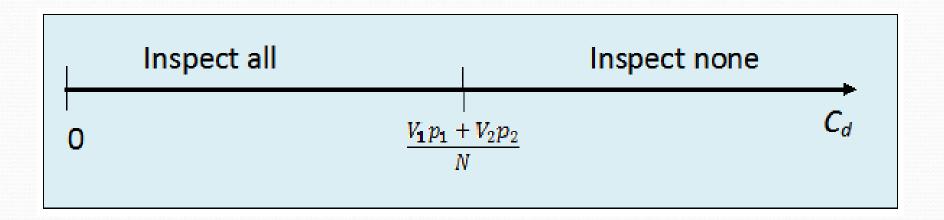
 Attacker i is assumed to maximize expected reward, as given by:

$$\max_{\boldsymbol{I}_i=0,1} \left\{ \begin{bmatrix} \boldsymbol{V}_i (1-\frac{\boldsymbol{n}}{\boldsymbol{N}} \boldsymbol{p}_i) - \boldsymbol{C}_i \\ \boldsymbol{N} \end{bmatrix} \boldsymbol{I}_i \right\}$$
Expected reward Cost of an attack to attacker *i*

Attacker's Optimal Decision

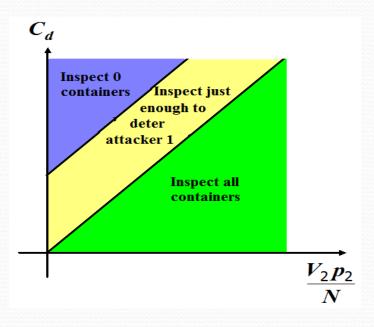
- Consider attacker *i*'s optimal decision first
- Attacker *i* will attack if $n \le \frac{N}{p_i} \left(1 \frac{C_i}{V_i} \right)$, and not otherwise
- Attacker *i* will always attack with:
 - Sufficiently low detection probability, p_i
 - Sufficiently low attack cost, C_i
 - Sufficiently high expected damage given a successful attempt, V_i

Two-Attacker Example


- Consider two attackers:
 - Each attempting to smuggle in a particular type of weapon
- We consider three possible scenarios (based on attack costs):
 - Neither attacker can be deterred with less than 100% inspection when both attack costs are small
 - Attacker 1 can be deterred, but not attacker 2 when the attack cost to attacker 1 is small, but the attack cost to attacker 2 is large
 - Both attackers can be deterred with less than 100% inspection when both attack costs are large

Neither Attacker Can Be Deterred

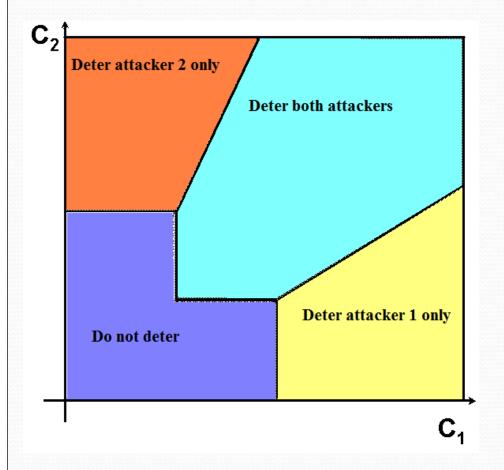
The defender should inspect no containers if


$$\frac{V_1 p_1 + V_2 p_2}{N} \leq C_d$$

and 100% of all containers otherwise

Only Attacker 1 Can Be Deterred

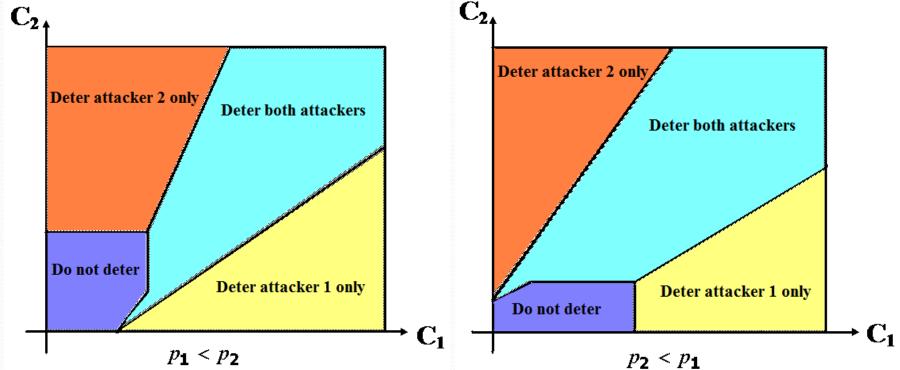
- The defender's optimal strategy depends on:
 - The inspection cost per container, C_d
 - The expected damage from a successful smuggling attempt, V_2
 - The detection probability for the undeterred attacker, p_2
 - Total number of containers, N



Both Attackers Can Be Deterred

- 100% inspection is not desirable:
 - Since both attackers can be deterred with less inspection effort
- However, the required inspection level might be virtually 100%:
 - Especially if the detection probability is low
- We identify the defender's optimal strategies as a function of:
 - The attack costs, C_1 and C_2
 - The detection probabilities, p_1 and p_2

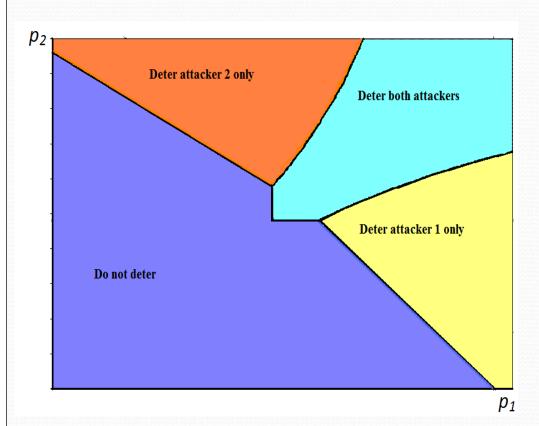
Optimal Defender Strategies


Case 1: Inspection cost extremely large

- Do not inspect when the attack costs are too low to achieve deterrence
- Deter only attacker i when that attacker's cost is relatively high
- Inspect enough to deter both attackers when attack costs are high

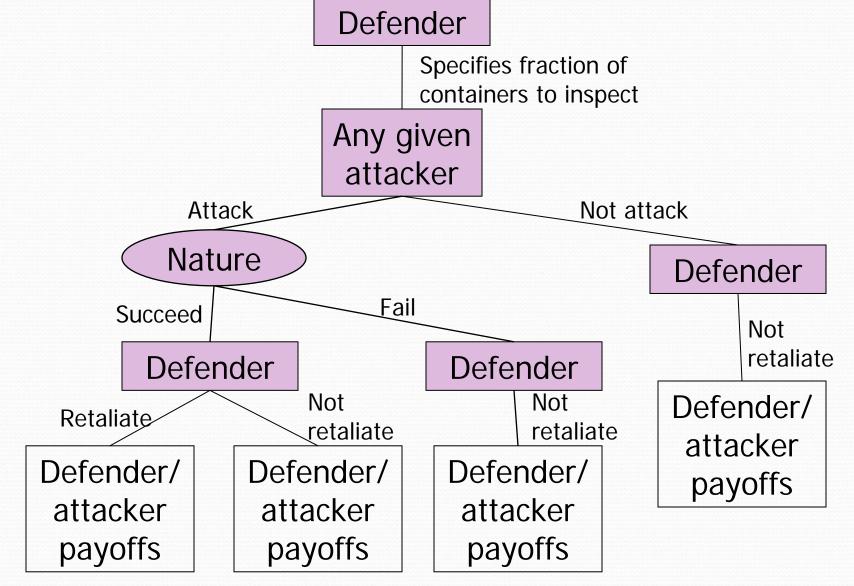
Optimal Defender Strategies

Case 2: Inspection cost moderately large



- Attacker i can be deterred even with arbitrary small attack cost if:
 - The inspection cost required to deter the other attacker is almost sufficient to also deter attacker *i*
 - The probability of detection is sufficiently large

Smaller Inspection Costs


- The "do not deter" region becomes undesirable
- At least one attacker will always be deterred at optimality
- Defender will deter both when the attack costs are comparable:
 - Otherwise, deter the attacker with the higher attack cost
 - (Relative to the detection probability and expected damage for that type of attacker)

Optimal Defender Strategies as a Function of Detection Probabilities

- Do not inspect when the detection probabilities are too low to achieve deterrence:
 - But 100% inspection may still be optimal, to detect undeterred attacks
- Deter only attacker i when that attacker's cost is relatively high
- Inspect enough to deter both attackers when both attack costs are high

Model with Retaliation

Model with Retaliation

Defender minimizes expected losses, as given by:

$$\min_{n=1,\dots,N} \left\{ \sum_{i=1}^{m} \left[(\boldsymbol{V}_i + \boldsymbol{R}_{d_i} \boldsymbol{D}_i) (1 - \frac{n}{N} \boldsymbol{p}_i) \boldsymbol{I}_i \right] + n \boldsymbol{C}_d \right\}$$

• Attacker i maximizes expected reward, as given by:

$$\max_{\boldsymbol{I}_i=0,1} \left\{ \left[(\boldsymbol{V}_i - \boldsymbol{R}_{a_i} \boldsymbol{D}_i) (1 - \frac{n}{N} \boldsymbol{p}_i) - \boldsymbol{C}_i \right] \boldsymbol{I}_i \right\}$$

 R_{di} = Cost of retaliation against attacker i to the defender

 R_{ai} = Cost of retaliation to attacker i

 D_i = Indicator function:

1 if defender retaliates against attacker i

0 otherwise

Retaliation

- The model depends critically on the idea of "credible threat":
 - Attackers must believe that the defender will retaliate
 - Even if that is no longer advantageous after an attack
- Otherwise, attackers will treat the threat as "cheap talk"
- To ensure a credible threat, one can assume a repeated game:
 - With sufficiently high damage V_i

Analysis of Results

- Results indicate that the threat of retaliation (if credible) reduces how many containers must be inspected to deter attacks
- Retaliation also makes it possible to deter some attackers who cannot be deterred in the previous model:
 - Especially when retaliation is sufficiently costly to those attackers
- The model recommends retaliation against all deterred attackers:
 - In order to reduce inspection costs
- However, this may not be credible for attackers with low V_i :
 - Since future attacks will not be sufficiently damaging to justify retaliation

Defender's Strategies

• The defender's strategy is of the form (d_a, r_b)

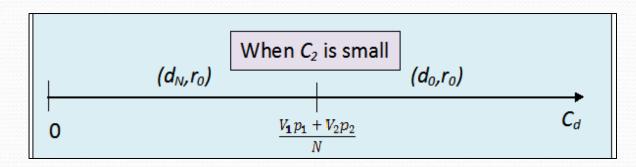
where $d_a \in D = \{d_0, d_1, d_2, d_N\}$ gives the level of inspection $r_b \in R = \{r_0, r_1, r_2, r_{12}\}$ gives the retaliation policy

 d_0 = Inspect no containers

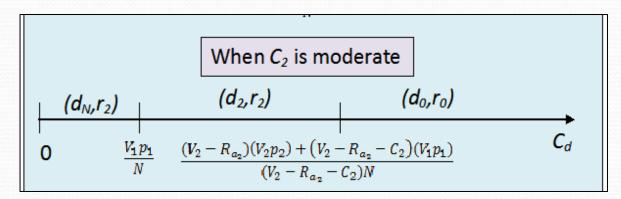
 d_1 = Inspect exactly enough to deter attacker 1

 d_2 = Inspect exactly enough to deter attacker 2

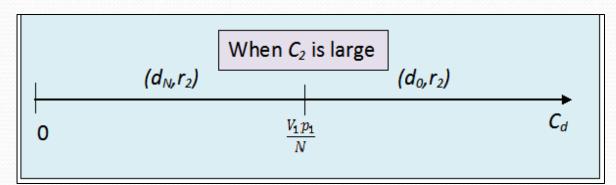
 d_N = Inspect all containers


 r_0 = Not retaliate

 r_1 = Retaliate against attacker 1


 r_2 = Retaliate against attacker 2

 r_{12} = Retaliate against both attackers


Optimal Defender Strategies for C₁ Small

Inspect all or none; Don't deter

Deter attacker 2 or no attackers; Inspect all if not too costly

Deter attacker 2 by retaliation alone; Inspect all if not too costly

Analysis of Results

- If the attack cost to attacker i is small:
 - The defender should not try to deter attacker *i*
- If the attack cost to attacker i is moderate:
 - The defender should inspect enough to deter attacker *i*
 - And also threaten to retaliate against that attacker
 - (Assuming a credible threat)
- If the attack cost to attacker *i* is large:
 - The defender can deter attacker *i* by threat of retaliation alone
 - (100% inspection may still be optimal, to detect other attackers)

Conclusions

- 100% inspection might not be necessary if the most severe attacks can be deterred with less inspection effort:
 - Especially if technology yields high detection probabilities
- Deterrence will be easier for attackers with high attack costs:
 - Deterring someone attempting to smuggle in a nuclear bomb may require much lower levels of inspection than deterring someone attempting to smuggle in a dirty bomb or assault rifle

Conclusions (cont'd)

- Retaliation, if credible, decreases the needed inspection effort:
 - Threat of retaliation alone may be enough to deter some attackers!
- Deterrence could result in attacks being deflected elsewhere:
 - Overland smuggling attempts from Canada or Mexico
 - Attacks against US interests outside of the US

Extensions

- Model has been extended to the case of multiple attackers:
 - Results are generally consistent with the case of two attackers
- Other possible extensions:
 - Allow for heterogeneous containers
 - Take into account the effects of inspection effort on product prices
 - Consider trade-offs between border security and target hardening

Acknowledgment

This project was funded through the Center for Risk and Economic Analysis of Terrorism Events (CREATE) under grant number 2007-ST-061-000001 from the Department of Homeland Security Science and Technology Directorate Office of University Programs

Further questions/comments? Email: bier@engr.wisc.edu