DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens
Thanks to the DIMACS Staff

- Linda Casals
- Walter Morris
- Nicole Clark
Tutorial Outline

- Day 1: Introduction to Phylogenetic Reconstruction
- Day 2: Applications to Rapidly Evolving Pathogens
Tutorial Outline

• Day 1: Introduction to Phylogenetic Reconstruction
 – Overview: Katherine St. John, CUNY
 – Parsimony Reconstruction of Phylogenetic Trees: Trevor Bruen, McGill University
 – Using Maximum Likelihood for Phylogenetic Tree Reconstruction: Rachel Bevan, McGill University
 – Hands-on Session: Constructing Trees Katherine St. John

• Day 2: Applications to Rapidly Evolving Pathogens
Tutorial Outline

• Day 1: Intro to Phylogenetic Reconstruction

• Day 2: Applications to Rapidly Evolving Pathogens
 – Statistical Overview: Alexei Drummond, University of Auckland
 – Tricks for trees: Having reconstructed trees, what can we do with them? Mike Steel, University of Canterbury
 – Hands-on Session: Katherine St. John
Overview Outline

- Overview
Overview Outline

• Overview

• Constructing Trees
Overview Outline

- Overview
- Constructing Trees
- Constructing Networks
Overview Outline

• Overview
• Constructing Trees
• Constructing Networks
• Comparing Reconstruction Methods
Overview Outline

- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods
- Evaluating the Results
Talk Outline

- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods
- Evaluating the Results
Goal: Reconstruct the Evolutionary History

(www.amnh.org/education/teacherguides/dinosaurs)
The evolutionary process not only determines relationships among taxa, but allows prediction of structural, physiological, and biochemical properties.
Process for Reconstruction: Input Data

Start with information about the taxa. For example:

Morphological Characters
Process for Reconstruction: Input Data

Start with information about the taxa. For example:

Morphological Characters

Biomolecular Sequences

A GTTAGAAGGGCGGCCAGCGAC...
B CATTTGTCTAACTTGACGG...
C CAAGAGGCCACTGCAGAATC...
D CCGACTTCCAACCTCATGCG...
E ATGGGGCAGATGATATCG...
F TACAAATACGCGCAAGTTCG...

(Other: molecular markers (ie SNPs), gene order, etc.)
Process for Reconstruction
Process for Reconstruction

Input
Data

A GTTAGAAGGC...
B CATTTCGTCT...
C CAAGAGGCCA...
D CCGACTTCCA...
E ATGGG GCACG...
F TACAAATACG...
Process for Reconstruction

Input Data

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GTTAGAAGGC...</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>CATTTGTCCT...</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>CAAGAGGCCA...</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CCGACTTCCA...</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>ATGGGGCACG...</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>TACAAATACG...</td>
<td></td>
</tr>
</tbody>
</table>

Reconstruction Algorithms

- Maximum Parsimony
- Maximum Likelihood
- Distance Methods: NJ,
 - Quartet-Based,
 - Fast Converging,
Process for Reconstruction

Input Data

A GTTAGAAGGC...
B CATTTGTCCT...
C CAAGAGGCCA...
D CCGACTTCCA...
E ATGGGGCAGCG...
F TACAAATACG...

Reconstruction Algorithms

→

Maximum Parsimony
Maximum Likelihood
Distance Methods: NJ,
Quartet-Based,
Fast Converging,

→

Output Tree

Katherine St. John City University of New York
Applications

In addition to finding the evolutionary history of species, phylogeny is also used for:
Applications

In addition to finding the evolutionary history of species, phylogeny is also used for:

• drug discovery: used to determine structural and biochemical properties of potential drugs
Applications

In addition to finding the evolutionary history of species, phylogeny is also used for:

- drug discovery: used to determine structural and biochemical properties of potential drugs
- multiple sequence alignment
Applications

In addition to finding the evolutionary history of species, phylogeny is also used for:

• drug discovery: used to determine structural and biochemical properties of potential drugs

• multiple sequence alignment

• origin of virus and bacteria strains
Talk Outline

• Overview

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods

• Evaluating the Results
Process for Reconstruction

Input
Data

A GTTAGAAGGC...
B CATTTGTCCT...
C CAAGAGGCCA...
D CCGACTTCCA...
E ATGGGGCACG...
F TACAAATACG...

→

Reconstruction
Algorithms

Maximum Parsimony
Maximum Likelihood
Distance Methods: NJ,
Quartet-Based,
Fast Converging,
...

→

Output
Tree
Algorithms for Reconstruction

- Most optimization criteria are hard:
Algorithms for Reconstruction

• Most optimization criteria are hard:
 – Maximum Parsimony: (NP-hard: Foulds & Graham ‘82)
 find the tree that can explain the observed sequences with a
 minimal number of substitutions.
Algorithms for Reconstruction

• Most optimization criteria are hard:
 – Maximum Parsimony: (NP-hard: Foulds & Graham ‘82) find the tree that can explain the observed sequences with a minimal number of substitutions.
 – Maximum Likelihood Estimation: find the tree with the maximum likelihood: $P(\text{data}|\text{tree})$.
Algorithms for Reconstruction

• Most optimization criteria are hard:
 – Maximum Parsimony: (NP-hard: Foulds & Graham ‘82) find the tree that can explain the observed sequences with a minimal number of substitutions.
 – Maximum Likelihood Estimation: find the tree with the maximum likelihood: P(data|tree).

• More on these later today...
Approximating Trees

• Exact answers are often wanted, but hard to find.
Approximating Trees

• Exact answers are often wanted, but hard to find.

• But approximate is often good enough:
Approximating Trees

- Exact answers are often wanted, but hard to find.
- But approximate is often good enough:
 - drug design: predicting function via similarity
Approximating Trees

- Exact answers are often wanted, but hard to find.
- But approximate is often good enough:
 - drug design: predicting function via similarity
 - sequence alignment: guide trees for alignment
Approximating Trees

• Exact answers are often wanted, but hard to find.

• But approximate is often good enough:
 – drug design: predicting function via similarity
 – sequence alignment: guide trees for alignment
 – use as priors or starting points for expensive searches
Approximation Algorithms

- Since calculating the exact answer is hard, algorithms that estimate the answer have been developed.
Approximation Algorithms

• Since calculating the exact answer is hard, algorithms that estimate the answer have been developed.
 – Heuristics for maximum parsimony and maximum likelihood estimation
 (use clever ways to limit the number of trees checked, while still sampling much of “tree-space”)
Approximation Algorithms

- Since calculating the exact answer is hard, algorithms that estimate the answer have been developed.
 - Heuristics for maximum parsimony and maximum likelihood estimation
 (use clever ways to limit the number of trees checked, while still sampling much of “tree-space”)
 - Polynomial-time methods, often based on the distance between taxa
Distance-Based Methods

• These methods calculate the distance between taxa:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>C</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0.444519</td>
<td>0.375798</td>
<td>0.268166</td>
</tr>
<tr>
<td>D</td>
<td>0.496505</td>
<td>0</td>
<td>0.496505</td>
<td>0.375798</td>
<td>0.275673</td>
<td>0.279728</td>
</tr>
<tr>
<td>A</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0</td>
<td>0.362124</td>
<td>0.323812</td>
<td>0.496505</td>
</tr>
<tr>
<td>C</td>
<td>0.444519</td>
<td>0.375798</td>
<td>0.362124</td>
<td>0</td>
<td>0.496505</td>
<td>0.496505</td>
</tr>
<tr>
<td>F</td>
<td>0.375798</td>
<td>0.275673</td>
<td>0.323812</td>
<td>0.496505</td>
<td>0</td>
<td>0.496505</td>
</tr>
<tr>
<td>E</td>
<td>0.268166</td>
<td>0.279728</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0</td>
</tr>
</tbody>
</table>

and then determine the tree using the distance matrix.
Distance-Based Methods

• These methods calculate the distance between taxa:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>C</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0.444519</td>
<td>0.375798</td>
<td>0.268166</td>
</tr>
<tr>
<td>D</td>
<td>0.496505</td>
<td>0</td>
<td>0.496505</td>
<td>0.375798</td>
<td>0.275673</td>
<td>0.279728</td>
</tr>
<tr>
<td>A</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0</td>
<td>0.362124</td>
<td>0.323812</td>
<td>0.496505</td>
</tr>
<tr>
<td>C</td>
<td>0.444519</td>
<td>0.375798</td>
<td>0.362124</td>
<td>0</td>
<td>0.496505</td>
<td>0.496505</td>
</tr>
<tr>
<td>F</td>
<td>0.375798</td>
<td>0.275673</td>
<td>0.323812</td>
<td>0.496505</td>
<td>0</td>
<td>0.496505</td>
</tr>
<tr>
<td>E</td>
<td>0.268166</td>
<td>0.279728</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0.496505</td>
<td>0</td>
</tr>
</tbody>
</table>

and then determine the tree using the distance matrix.

• One way to calculate distance is to take differences divided by the length (the normalized Hamming distance).
Distance-Based Methods

Popular distance based methods include
Distance-Based Methods

Popular distance based methods include

- Neighbor Joining (Saitou & Nei ‘87) which repeatedly joins the “nearest neighbors” to build a tree, and
Distance-Based Methods

Popular distance based methods include

- Neighbor Joining (Saitou & Nei ‘87) which repeatedly joins the “nearest neighbors” to build a tree, and

- UPGMA (“Unweighted Pair Group Method with Arithmetic Mean”) (Sneath & Snokal ‘73) similarly clusters close taxa, assuming the rate of evolution is the same across lineages.
Distance-Based Methods

Popular distance based methods include

- Neighbor Joining (Saitou & Nei ‘87) which repeatedly joins the “nearest neighbors” to build a tree, and

- UPGMA ("Unweighted Pair Group Method with Arithmetic Mean") (Sneath & Snokal ‘73) similarly clusters close taxa, assuming the rate of evolution is the same across lineages.

- Quartet-based methods that decide the topology for every 4 taxa and then assemble them to form a tree (Berry et al. 1999, 2000, 2001).
Other Distance-Based Methods

- Weighbor (Bruno et al. ‘00) is a weighted version of Neighbor Joining, that combines based on a likelihood function of the distances.
Other Distance-Based Methods

• Weighbor (Bruno et al. ‘00) is a weighted version of Neighbor Joining, that combines based on a likelihood function of the distances.

• Disk Covering Method (Warnow et al. ‘98, ‘99, ‘04)—a divide-and-conquer approach of theoretical interest that has been combined with many other methods.
Other Distance-Based Methods

- Weighbor (Bruno et al. ‘00) is a weighted version of Neighbor Joining, that combines based on a likelihood function of the distances.

- Disk Covering Method (Warnow et al. ‘98, ‘99, ‘04)—a divide-and-conquer approach of theoretical interest that has been combined with many other methods.
Neighbor Joining (NJ)

- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.

Neighbor Joining (NJ)

- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join neighboring leaves, replace them by their parent, calculate distances to this node, and repeat.
Neighbor Joining (NJ)

- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join *neighboring leaves*, replace them by their parent, calculate distances to this node, and repeat.
 - This process eventually returns a binary (fully resolved) tree.
Neighbor Joining (NJ)

- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join neighboring leaves, replace them by their parent, calculate distances to this node, and repeat.
 - This process eventually returns a binary (fully resolved) tree.
 - Joining the leaves with the minimal distance does not suffice, so subtract the averaged distances to compensate for long edges.
Neighbor Joining (NJ)

- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join neighboring leaves, replace them by their parent, calculate distances to this node, and repeat.
 - This process eventually returns a binary (fully resolved) tree.
 - Joining the leaves with the minimal distance does not suffice, so subtract the averaged distances to compensate for long edges.
 - Experimental work shows that NJ trees are reasonably accurate, given a rate of evolution is neither too low nor too high.
Quartet Methods

- A *quartet* is an unrooted binary tree on four taxa:

 - $\{ab|cd\}$
 - $\{ac|bd\}$
 - $\{ad|bc\}$
Quartet Methods

- A *quartet* is an unrooted binary tree on four taxa:

$$
\begin{align*}
&\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d}
\end{array} \\
&\{ab|cd\} \\
&\begin{array}{c}
\text{a} \\
\text{c} \\
\text{b} \\
\text{d}
\end{array} \\
&\{ac|bd\} \\
&\begin{array}{c}
\text{a} \\
\text{d} \\
\text{b} \\
\text{c}
\end{array} \\
&\{ad|bc\}
\end{align*}
$$

- Let $Q(T) =$ all quartets that agree with T.

 [Erdős et al. 1997]: T can be reconstructed from $Q(T)$ in polynomial time.
Quartet Methods

- Quartet-based methods operate in two phases:
Quartet Methods

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.
Quartet Methods

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.
 - Combine these quartets into a tree.
Quartet Methods

• Quartet-based methods operate in two phases:
 – Construct quartets on all four taxa sets.
 – Combine these quartets into a tree.

• Running time:
 – For most optimizations, determining a quartet is fast.
Quartet Methods

• Quartet-based methods operate in two phases:
 – Construct quartets on all four taxa sets.
 – Combine these quartets into a tree.
• Running time:
 – For most optimizations, determining a quartet is fast.
 – There are $\Theta(n^4)$ quartets, giving $\Omega(n^4)$ running time.
Quartet Methods

• Quartet-based methods operate in two phases:
 – Construct quartets on all four taxa sets.
 – Combine these quartets into a tree.

• Running time:
 – For most optimizations, determining a quartet is fast.
 – There are $\Theta(n^4)$ quartets, giving $\Omega(n^4)$ running time.
 – In practice, the input quality is insufficient to ensure that all quartets are accurately inferred.
Quartet Methods

• Quartet-based methods operate in two phases:
 – Construct quartets on all four taxa sets.
 – Combine these quartets into a tree.

• Running time:
 – For most optimizations, determining a quartet is fast.
 – There are $\Theta(n^4)$ quartets, giving $\Omega(n^4)$ running time.
 – In practice, the input quality is insufficient to ensure that all quartets are accurately inferred.
 – Quartet methods have to handle incorrect quartets.
Popular Quartet Methods

- \(Q^* \) or Naive Method [Berry & Gascuel ‘97, Buneman ‘71]:
 Only add edges that agree with all input quartets.
 Doesn’t tolerate errors— outputs conservative, but unresolved tree.
Popular Quartet Methods

- **Q^* or Naive Method** [Berry & Gascuel ‘97, Buneman ‘71]: Only add edges that agree with all input quartets. Doesn’t tolerate errors—outputs conservative, but unresolved tree.

- **Quartet Cleaning (QC)** [Berry *et al.* 1999]: Add edges with a small number of errors proportional to q_e. Many variants: all handle a small number of errors.
Popular Quartet Methods

- **Q^* or Naive Method** [Berry & Gascuel ‘97, Buneman ‘71]: Only add edges that agree with all input quartets. Doesn’t tolerate errors—outputs conservative, but unresolved tree.

- **Quartet Cleaning (QC)** [Berry *et al.* 1999]: Add edges with a small number of errors proportional to q_e. Many variants: all handle a small number of errors.

Constructing Networks

- What if evolution isn’t tree-like?
Constructing Networks

• What if evolution isn’t tree-like?
 For example:
Constructing Networks

• What if evolution isn’t tree-like?
 For example:

```
A  B  C  D
Horizontal transfer
```
Constructing Networks

• What if evolution isn’t tree-like?
 For example:

(from W.P. Maddison, *Systematic Biology ‘97*)
Network Methods

- **Split Decomposition (Bandelt & Dress ‘92)** decomposes the distance matrix into sums of “split” metrics and small residue, yielding a set of splits (bipartitions of taxa).
Network Methods

- **Split Decomposition (Bandelt & Dress ‘92)** decomposes the distance matrix into sums of “split” metrics and small residue, yielding a set of splits (bipartitions of taxa).

- **NeighborNet (Bryant & Moulton ‘02)** is an agglomerative clustering algorithm that uses splits to produce networks.
Network Methods

• **Split Decomposition (Bandelt & Dress ‘92)** decomposes the distance matrix into sums of “split” metrics and small residue, yielding a set of splits (bipartitions of taxa).

• **NeighborNet (Bryant & Moulton ‘02)** is an agglomerative clustering algorithm that uses splits to produce networks.

• **TCS (Posada & Crandall ‘01)** estimates gene phylogenies based on statistical parsimony method.
Input to Reconstruction Algorithms

- Almost all assume that the data is aligned:

 ![Alignment of bacterial genes by Geneious (Drummond ‘06).](image)

 (Alignment of bacterial genes by Geneious (Drummond ‘06).)

- Many assume corrections have been made for the underlying model of evolution.
Models of Evolution

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
Models of Evolution

• The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.

• A DNA sequence (a string over \{A, C, T, G\}) at the root evolves down a rooted binary tree T.

![Binary tree diagram]

Katherine St. John City University of New York 27
Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of biomolecular sequence evolution.

• A DNA sequence (a string over \{A, C, T, G\}) at the root evolves down a rooted binary tree \(T\).
Models of Evolution

- The Jukes-Cantor (JC) model is the simplest Markov model of biomolecular sequence evolution.

- A DNA sequence (a string over \{A, C, T, G\}) at the root evolves down a rooted binary tree T.
Models of Evolution

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.

- A DNA sequence (a string over \{A, C, T, G\}) at the root evolves down a rooted binary tree T.
Models of Evolution

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.

- A DNA sequence (a string over \{A, C, T, G\}) at the root evolves down a rooted binary tree \(T \).
Models of Evolution

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.

- A DNA sequence (a string over \(\{A, C, T, G\}\)) at the root evolves down a rooted binary tree \(T\).

\(
\{\text{ACCCT, GACGT, AACGT, GACGT, GGCGA}\}
\)
Models of Evolution

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.

- A DNA sequence (a string over \{A, C, T, G\}) at the root evolves down a rooted binary tree T.

- The assumptions of the model are:
 1. the sites (i.e., the positions within the sequences) evolve independently and identically
 2. if a site changes state it changes with equal probability to each of the remaining states, and
 3. the number of changes of each site on an edge e is a Poisson random variable with expectation $\lambda(e)$ (this is also called the “length” of the edge e).
How Methods Use Models of Evolution

- As an explicit part of the algorithm: for example, maximum likelihood, neighbor.
How Methods Use Models of Evolution

- As an explicit part of the algorithm: for example, maximum likelihood, neighbor.

- Indirectly, via assumptions on the data or by inputting data that has been corrected under a certain model.
Testing Methods Empirically

- How accurate are the methods at reconstructing trees?
Testing Methods Empirically

• How accurate are the methods at reconstructing trees?

• In biological applications, the true, historical tree is almost never known, which makes assessing the quality of phylogenetic reconstruction methods problematic.
Testing Methods Empirically

- How accurate are the methods at reconstructing trees?
- In biological applications, the true, historical tree is almost never known, which makes assessing the quality of phylogenetic reconstruction methods problematic.
Testing Methods Empirically

• How accurate are the methods at reconstructing trees?

• In biological applications, the true, historical tree is almost never known, which makes assessing the quality of phylogenetic reconstruction methods problematic.

• Simulation is used instead to evaluate methods, given a model of evolution.
Simulation Studies

1. Construct a “model” tree.
Simulation Studies

1. Construct a "model" tree.
2. “Evolve” sequences down the tree.

A GTTAGAAGGCAGGCA...
B CATTGTCCCTAATT...
C CAAGAGGCCACTGCA...
D CCGACTTCCAACCTC...
E ATGGGCACGATGGA...
F TACAAATACGCGCAA...
Simulation Studies

1. Construct a "model" tree.
2. "Evolve" sequences down the tree.
3. Reconstruct the tree using method.

A GTTAGAAGGCGGCCA...
B CATTTCCTCTAACTT...
C CAAGAGGCCACTGCA...
D CCGACTTCCAACCTC...
E ATGGGGCACGATGGA...
F TACAAATACGCGCAA...
Simulation Studies

1. Construct a “model” tree.
2. “Evolve” sequences down the tree.
3. Reconstruct the tree using method.

A GTTAGAAGGCGGCCA...
B CATTTGTCTCTAACCCT...
C CAAGAGGCTACCTGCA...
D CCGACTTCCAACCTC...
E ATGGGGCAGATGGA...
F TACAAATACCGCGAA...

4. Evaluate the accuracy of the constructed tree.
Simulation Studies

1. Construct a “model” tree.

2. “Evolve” sequences down the tree.

A GTTAGAAGGCGGCCA...
B CATTTGTCCTAAGT...
C CAAGAGGCGCTGCA...
D CCGACTTCCAACCTC...
E ATGGGCACATGGA...
F TACAAATACGCGCAA...

3. Reconstruct the tree using method.

4. Evaluate the accuracy of the constructed tree.
Simulating Data: Choosing Trees

- Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)
Simulating Data: Choosing Trees

• Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)

• Can view this as two different random processes:
Simulating Data: Choosing Trees

- Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)

- Can view this as two different random processes:
 - generate the tree shape, and then
Simulating Data: Choosing Trees

- Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)

- Can view this as two different random processes:
 - generate the tree shape, and then
 - assign weights or branch lengths to the shape.
Simulating Data: Evolving Sequences

• The Jukes-Cantor (JC) model is the simplest Markov model of biomolecular sequence evolution.

• A DNA sequence (a string over \{A, C, T, G\}) at the root evolves down a rooted binary tree T.
Simulating Data: Evolving Sequences

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.

- A DNA sequence (a string over \(\{A, C, T, G\} \)) at the root evolves down a rooted binary tree \(T \).

\{ACCCT, GACGT, AACGT, GACGT, GGCGA\}
Simulation Studies

1. Construct a “model” tree.

2. “Evolve” sequences down the tree.

 A GTTAGAAGGCGGCCA...
 B CATTTGTCTAACTT...
 C CAAGAGGCACTGCA...
 D CCGACTTCCAACCTC...
 E ATGGGCACGATGGA...
 F TACAAATACGCGCAA...

3. Reconstruct the tree using method.

4. Evaluate the accuracy of the constructed tree.
Simulation Studies

1. Construct a “model” tree.

2. “Evolve” sequences down the tree.

 A GTTAGAAGGCGGCCA...
 B CATTTGTCTAACTT...
 C CAAGAGGCCACTGCA...
 D CCGACTTCCAACCTC...
 E ATGGGGCAGATGGA...
 F TACAAATACGCGCAA...

3. Reconstruct the tree using method.

4. Evaluate the accuracy of the constructed tree.
Simulation Studies

1. Construct a “model” tree.
2. “Evolve” sequences down the tree.
3. Reconstruct the tree using method.

A GTTAGAAGGCGGCCA...
B CATTTCCTCCTAACTT...
C CAAGAGGCCACTGCA...
D CCGACTTCCAACCTC...
E ATGGGCAACGATGGA...
F TACAATACGCGCAA...

4. Evaluate the accuracy of the constructed tree.
Evaluating Accuracy

• To compare reconstructed tree to model tree, the *Robinson-Foulds Score* is often used:

\[
\frac{\text{False Positives} + \text{False Negatives}}{\text{total edges}}
\]

\[\begin{array}{c}
a \\
\downarrow \\
c \\
\downarrow \\
b \\
\downarrow \\
d \\
\downarrow \\
e \\
\downarrow \\
f \\
\end{array} \quad \begin{array}{c}
c \\
\downarrow \\
d \\
\downarrow \\
a \\
\downarrow \\
b \\
\downarrow \\
f \\
\downarrow \\
e \\
\end{array}\]
Evaluating Accuracy

- To compare reconstructed tree to model tree, the *Robinson-Foulds Score* is often used:

\[
\frac{\text{False Positives} + \text{False Negatives}}{\text{total edges}}
\]

- If there are many possible answers, choose the one with the best *parsimony score*: the sum of the number of site changes acrosss the edges in the tree.
Talk Outline

• Overview

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods

• Evaluating the Results
Talk Outline

• Overview

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods

• Evaluating the Results
Analyzing & Visualizing Sets of Trees

• Visualizing single trees
• Comparing pairs of trees
• Handling Large Sets of Trees
Visualizing Single or Pairs of Trees

- SplitsTree (Huson et al.)
Visualizing Single or Pairs of Trees

- SplitsTree (Huson et al.)
- TreeView (Page et al.)
Visualizing Single or Pairs of Trees

- SplitsTree (Huson et al.)
- TreeView (Page et al.)
- TLreeJuxtaposer (Munzner et al.)
Analyzing & Visualizing Sets of Trees

Amenta & Klingner, InfoVis ‘02

Hillis, Heath, & St. John, Sys. Biol. ‘05
Evaluating the Results

- Often, a search will result in many (often thousands) of trees with the same score.
Evaluating the Results

• Often, a search will result in many (often thousands) of trees with the same score.

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Reconstruction Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>A GTTAGAAGGC...</td>
<td>Maximum Parsimony</td>
</tr>
<tr>
<td>B CATTTCGTCCCT...</td>
<td>Maximum Likelihood</td>
</tr>
<tr>
<td>C CAAGAGGCCA...</td>
<td>Distance Methods: NJ, Quartet-Based, Fast Converging, ...</td>
</tr>
<tr>
<td>D CCGACTTCCA...</td>
<td>→</td>
</tr>
<tr>
<td>E ATGAGGTCACG...</td>
<td>→</td>
</tr>
<tr>
<td>F TACAATACG...</td>
<td>→</td>
</tr>
</tbody>
</table>

Katherine St. John
City University of New York
Evaluating the Results

• Often, a search, will result in many (often thousands) of trees with the same score.

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Reconstruction Algorithms</th>
<th>Output Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>A GTTAGAAGGC...</td>
<td>Maximum Parsimony</td>
<td>→</td>
</tr>
<tr>
<td>B CATTTGT CCT...</td>
<td>Maximum Likelihood</td>
<td>→</td>
</tr>
<tr>
<td>C CAAGAGGCCA...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D CCGACTTCCA...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E ATGGGGCACG...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F TACAAATACG...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summarizing Trees

Input Trees → Consensus Method → Output Trees

- Strict Consensus
- Majority-rule
Strict Consensus Tree

Input trees

\[
\begin{align*}
s_0 & \rightarrow s_1 s_2 s_3 s_4 \\
&s_0 s_1 s_2 s_3 s_4 \\
&s_0 s_1 s_2 s_3 s_4 \\
&s_0 s_1 s_2 s_4 s_3 \\
&s_0 s_1 s_2 s_3 s_4
\end{align*}
\]

Strict Consensus

\[
\begin{align*}
s_0 & \rightarrow s_1 s_2 s_3 s_4 \\
&s_0 s_1 s_2 s_3 s_4 \\
&s_0 s_1 s_2 s_4 s_3 \\
&s_0 s_1 s_2 s_3 s_4
\end{align*}
\]

\[
\begin{align*}
s_1 s_2 & \rightarrow s_0 s_3 s_4 \\
&s_2 s_3 \rightarrow s_0 s_1 s_4 \\
&s_2 s_4 \rightarrow s_0 s_1 s_3 \\
&s_1 s_2 s_3 \rightarrow s_0 s_4 \\
&s_1 s_2 s_3 \rightarrow s_0 s_4 \\
&s_2 s_3 s_4 \rightarrow s_0 s_1
\end{align*}
\]

\[O(nt)\] running time: Day ‘85.
Majority-rule Tree

Includes splits found in a majority of trees
Can be $2/3$ majority, etc.

$O(nt)$ randomized running time: Amenta, Clark, & S. ‘03.
Visualizing Sets of Trees

Efficiency is important for real-time visualization.
Multidimensional Scaling (MDS)

• Each point represents a tree.
• Points for similar trees are displayed near one another.
Distances Between Trees

- Robinson-Foulds distance: \# of edges that occur in only one tree.
- Calculate in $O(n)$ time using Day’s Algorithm (1985).
- Extends naturally to weighted trees.

\[T_1 = \text{Turtles} \quad \text{Lizards} \quad \text{Snakes} \quad \text{Birds} \quad \text{Crocodiles} \]
\[T_2 = \text{Turtles} \quad \text{Lizards} \quad \text{Snakes} \quad \text{Birds} \quad \text{Crocodiles} \]
Other Natural Metrics

- Tree-bisection-reconnect (TBR):

- TBR is NP-hard. (Allen & Steel ‘01)
- Many attempts, but no approximations with provable bounds.
Other Natural Metrics

- Subtree-prune-regraft (SPR):

 ![Diagram of SPR transformations]

- NP-hard for rooted trees (Bordewich & Semple ‘05).
- 5-approximation for rooted trees (Bonet, Amenta, Mahindru, & S.).
Summary

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods:

• Evaluating the Results:
Tutorial Outline

• Day 1: Introduction to Phylogenetic Reconstruction
 – Overview: Katherine St. John, CUNY
 – Parsimony Reconstruction of Phylogenetic Trees: Trevor Bruen, McGill University
 – Using Maximum Likelihood for Phylogenetic Tree Reconstruction: Rachel Bevan, McGill University
 – Hands-on Session: Constructing Trees Katherine St. John

• Day 2: Applications to Rapidly Evolving Pathogens
Tutorial Outline

• Day 1: Intro to Phylogenetic Reconstruction

• Day 2: Applications to Rapidly Evolving Pathogens
 – Statistical Overview: Alexei Drummond, University of Auckland
 – Tricks for trees: Having reconstructed trees, what can we do with them? Mike Steel, University of Canterbury
 – Hands-on Session: Katherine St. John