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Modeling Host-Parasite Coevolution: Overview

Need intuitive, evolvable parameters to describe H-P interaction

Evolvable Parasite Parameters

e Antigen Type

e Replication rate
— Within-Host (Bacteria, fungi, metazoans)
— Within-Cell (Viruses)

e Target resource
— Cell type

— Tissue type



Modeling Host-Parasite Coevolution: Overview

Evolvable Host Parameters

e Behavior
Can affect mechanism and rate of exposure
e Immune Response
— Background level (inate immunity, naive CTL density)

— Sensitivity (ability to detect non-self vs. accidential
triggering)
— Proliferation rate (activation of specific & non-specific IR)

e Sensitivity to resource/target cell loss
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Previous Work: Host-Parasite Coevolution™

Host
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*Gilchrist & Sasaki (2002)
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b = Parasite birth rate

1 = Host immune response



Within-Host Dynamics

Low Activation/Replication High Activation/Replication

Parasite Load
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Link Within-Host Dynamics to Between-Host Parameters
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Host Fitness Landscape and Optimal a vs. b
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Parasite Fitness Landscape and Optimal a vs.
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Host-Parasite Coevolution

Q
P
()]
M
<
)
~
-
M <
Q
P
s
)
©
~
©
A

Host Immune Response Rate
a




Host-Parasite Coevolution

Q
P
()]
M
<
)
~
-
M
Q
P
s
)
©
~
©
A

Host Immune Response Rate
a




Modeling Host-Parasite Coevolution

Overview
Previous Work
Current Work

Future Work



Current Work: Levels of Selection

With Dan Coombs and Collen Ball

Meta-population

Population

Host




Levels of Selection: Conflict?
Meta-population: low virulence

Population: intermediate virulence
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Between-Host Model & Selection

e Epidemiological model of Susceptible and Infectious hosts
dS/dt = b(S,I) — BSI —6S
dl /dt = BST — (a+ )1

Population

b(S, T)
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Host Population: Between-Host Selection

e Natural selection favors the maximization of the
reproductive ratio R:

B

R:a+5

e Strain which maximizes R
_ Minimizes S
— Will competitively exclude other competitors.

Bremermann & Pickering (1982), Anderson & May (1983)



Between-Host Model & Selection

Maximizing R depends on relationship between (3 and .

Bremermann & Pickering (1982), Lenski & May (1994), Frank (1996)
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Levels of Selection

Between-Host Selection: Favors maximization of X

Within-Host Selection: ?

Population

Host




Within-Host Model & Selection

dT/dt =\ —kVT —dT
dT™ /dt = kVT — (u(p) +d)T*
dV/dt = pT* — ¢V,

Infected Host
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Within-Host Model: Two Strains

Expand model to include second strain within a host
dl/dt =X —k(Vy +Vo)T —dT
dT7 /dt = k Vi T — (u(p:) + d)T7
dV;/dt = p; T — c'V;

Vr(0) = Inoculum Size
= V1(0) + V2(0)
x(0) = Initial Strain Mix
_ V1(0)
Vr(0)




Within-Host Model: Two Strains

Model Behavior




Within-Host Model & Selection

Equilibrium Behavior
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Within-Host Model & Selection

e \WVithin-host selection favors the maximization of the
within-host reproductive ratio p:

_k_ D
~cplp)+d
1
T
e Strain which maximizes p(p)
— Minimizes 1'(p)
— Will competitively exclude other competitors within the
host.

Gilchrist et al. (2004)



Within-Host Model & Selection

A

Min(T'(p*)) = Within-Host Optimum
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Within-Host Model & Selection

Maximizing p depends on relationship between 1 & p.

Coombs et al.(2003)
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Levels of Selection

Between-Host Selection: Favors maximization of X

Within-Host Selection: Favors maximization of p

Population

Host




Possible Conflict?

Within Host Fitness: p

Virion Production Rate p




Nesting Models: Linking Within & Between-Host

Nest model of within-host processes inside a model of
between-host processes




Nesting Models: Linking Within & Between-Host

Oé(T) = a1 (TO — T) ﬁ(V) — b1V




Nesting Models: Linking Within & Between-Host

Behavior

Framework allows within-host virion production rate p and intial
parasite mix x to drive system

Within-Host Dynamics Between-Host Parameters




Nesting Models: Transmission

Assume inoculum reflects parasite mix at time of transmission

r(a) = Vi(a)
'Vﬁ(a)-+7V§(a)

x>0.8 x>0.65 x>0.5

:

Initial Inoculum Mix x = 0.6
< x>035

100 150 200
time




Nesting Models: Between-Host Fithess

Dynamics depends on virion production rates p; and ps as
well as inoculum mix xg.

0.2 0.4 0.6 0.8 1 1.2
[V1]




Nesting Models: Between-Host Fithess

Keep track of number of new infections (') with inoculum
mixture ' (0) = z(a)

R (2} |z0) :/()00(5(336—56(&))

x B(Vi(a), Va(a))exp [— /Oa a(T(z))dz + da|dc



Nesting Models: Between-Host Fithess
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Nesting Models: Between-Host Fithess

NB: Dynamics depends on virion production rates p; and p»> as
well as inoculum mix xg.

0.2 0.4 0.6 0.8 1 1.2
[V1]




Nesting Models: Between- & Within-Host Fithess

1. Discretize inoculum mixes X = {x1, T2, ... Ty}

2. Calculate next generation operator R

%(t+1) = RX(1)

where,
L4+
Ri,j — / R(LE’,iU)dQZ‘
Lq

3. Calculate equilibrium distribution of inocula X (dominant
eigenvector)



Resolving Within & Between-Host Selection

Examine three scenarios:
Low: Exculsion > Spike
Medium: Exclusion <=> Spike
High: Exclusion < Spike

sensitivity of virulence « to target cell 1’ depletion

High Sensitivity
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Dynamic Infection: Between Host Fithess

Examine for different host sensitivities to resource loss
(reduction in target cell density 1)

x>0.8 x>0.65 . x>0.5 .

< x>0.35

 x>0.2

| .'hl).(<0.2

New Infections R(x',x)




Resolving Within & Between-Host Selection

Examine three scenarios:
Low: Exculsion > Spike
Medium: Exclusion <=> Spike
High: Exclusion < Spike

sensitivity of virulence « to target cell 1’ depletion

High Sensitivity
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Resolving Within & Between-Host Selection

Scenario: Low sensitivity to target cell " depletion

Result: One limited region of coexistence

p* dominant
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Resolving Within & Between-Host Selection

Scenario: Medium sensitivity to target cell ' depletion

Result: Two distinct regions of coexistence

p* dominant

Medium
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Resolving Within & Between-Host Selection

Scenario: High sensitivity to target cell ' depletion

Result: One large region of coexistence

p* dominant
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Resolving Within & Between-Host Selection

Examine three scenarios:
Low: Exculsion > Spike
Medium: Exclusion <=> Spike
High: Exclusion < Spike

sensitivity of virulence « to target cell 1’ depletion

High Sensitivity
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Resolving Within & Between-Host Selection

Conclusions

Conflict in selection at Within- and Between Host scales
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Resolving Within & Between-Host Selection

Conclusions

Nesting models allows us to examine conflict




Resolving Within & Between-Host Selection

Conclusions

Range & behavior of coexistence depends on host sensitivity

High Sensitivity p* dominant 1
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Future Work

With Dan Coombs
e Add host immune response to model

e |R Trade-offs
— Proliferation vs. Time lag

— Sensitivity vs. Range of IR detection vs. Auto-immunity



Current Work: Levels of Selection

Meta-population

Population

Host
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