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Dealing with “BigData” in Graphs 

• We want to process graphs quickly 

– Detect basic properties 

– Analyze their structure 

 

• For large graphs, by “quickly” we often 
would mean: in time constant or sublinear in 
the size of the graph 

 



Dealing with “BigData” in Graphs 

One approach: 

• How to test basic properties of graphs 

  in the framework of property testing 

 



Framework of property testing 

• We cannot quickly give 100% precise answer 

• We need to approximate 

 

• Distinguish graphs that have specific property 
 from those that are far from having the property 

 



Fast Testing of Graph Properties 

• Does this graph have 
a clique of size 11? 

• Does it have a given 
𝐻 as its subgraph? 

• Is this graph planar? 

• Is it bipartite? 

• Is it 𝑘-colorable? 

• Does it have good 
expansion? 

• Does it have good 
clustering? from Fan Chung’s web page 



Fast Testing of Graph Properties 

• Does this graph have 
a clique of size 11? 

• Does it have a given 
𝐻 as its subgraph? 

• Is this graph planar? 

• Is it bipartite? 

• Is it 𝑘-colorable? 

• Does it have good 
expansion? 

• Does it have good 
clustering? from Fan Chung’s web page 

In general – requires linear time (often NP-hard) 

Relaxation: if is close to having a property then  
possibly accept 

Sublinear-time (or even constant-time) possible 



Testing properties of graphs 

Input: 

• graph property 𝑃; 

• proximity parameter 𝜀; 

• input graph 𝐺 = (𝑉, 𝐸) of maximum degree 𝑑. 

Output: 

• if 𝐺 satisfies property 𝑃 then ACCEPT 

• if 𝐺 is 𝜀–far from having property 𝑃 then REJECT 



Testing properties of graphs 

Input: 

• graph property 𝑃; 

• proximity parameter 𝜀; 

• input graph 𝐺 = (𝑉, 𝐸) of maximum degree 𝑑. 

Output: 

• if 𝐺 satisfies property 𝑃 then ACCEPT 

• if 𝐺 is 𝜀–far from having property 𝑃 then REJECT 

𝐺 is 𝜀–far from satisfying 𝑃 if one has to modify ≤ 𝑑|𝑉| 
edges of 𝐺 to obtain a graph satisfying 𝑃 



Testing properties of graphs 

Input: 

• graph property 𝑃; 

• proximity parameter 𝜀; 

• input graph 𝐺 = (𝑉, 𝐸) of maximum degree 𝑑. 

Output: 

• if 𝐺 satisfies property 𝑃 then ACCEPT 

• if 𝐺 is 𝜀–far from having property 𝑃 then REJECT 

• if we can err only for REJECTION then one-sided error 
• if we can also err for ACCEPTs then two-sided error 

 



Fast Testing of Graph Properties 

• Started with Rubinfeld-Sudan (1996) and Goldreich-
Goldwasser-Ron (1998) 

• Now we know a lot 

– If 𝐺 is dense, given as an oracle to adjacency matrix, then 
every hereditary property can be tested in constant time 

– If 𝐺 is sparse, given as an oracle to adjacency list, then 
many properties can be tested in constant time, many can 
be tested in sublinear time 

– If 𝐺 is directed then … essentially nothing is known 

• unless there is a trivial reduction to undirected graphs 



Fast Testing of Digraph Properties 

Models introduced by Bender-Ron (2002): 

• Digraphs with bounded maximum in- and out-degrees 

• Oracle with access to adjacency list 

• Two main models: 

– Bidirectional: outgoing and incoming edges 

• shares properties of undirected graphs;  

• not suitable in many scenarios/applications 

– One-directional: access to outgoing edges only 

• major difference wrt undirected graphs 

• more natural in many scenarios/applications 

Sometimes very fast 

More challenging 



Big networks 

• Is it weakly 
connected? 

         (or close to it) 

• Is it planar? 
         (or close to it) 

from Fan Chung’s web page 

If we have access to both directional edges then this reduces to 
a problem in undirected graphs (which we understand well) 



Big networks 

• Is it strongly 
connected? 

         (or close to it) 

• Is it acyclic? 
         (or close to it) 

• Is it 𝐶33-free? 
         (or close to it) 

 

from Fan Chung’s web page 

Highly non-trivial if we have no access to incoming edges 
For example: we cannot  easily check if a node has in-degree 0 



OBJECTIVE: Study the dependency between the models 

There is a tester for property P with constant query time 
in bidirectional model 

 

 

We can test P in one-directional model with sublinear 
𝑛1−Ω𝜀,𝑑(1) query time (in two-sided error model) 



OBJECTIVE: Study the dependency between the models 

There is a tester for property P with constant query time 
in bidirectional model 

 

 

We can test P in one-directional model with sublinear 
𝑛1−Ω𝜀,𝑑(1) query time (in two-sided error model) 

 Application: 
Every hyperfinite property can be tested with 
sublinear complexity in one-directional model 



What is known for digraphs 

Not much 



What is known for digraphs 

Strong connectivity  
• Constant complexity in bidirectional model (Bender-Ron’02) 

• One-directional queries: 

– requires Ω( 𝑛) complexity (Bender-Ron’02) 

– can be done with 𝑛1−Ω𝜀,𝑑(1) complexity (Goldreich’11, 
Hellweg-Sohler’12) 

– requires Ω(𝑛) complexity in one-sided-error model 
(Goldreich’11, Hellweg-Sohler’12) 



What is known for digraphs 

Bidirectional model: 

• testing Eulerianity (Orenstein-Ron’11) 

• testing k-edge-connectivity (Orenstein-Ron’11 ,Yoshida-Ito’10) 

• testing k-vertex connectivity (Orenstein-Ron’11) 

• acyclicity requires Ω(𝑛1/3) queries (Bender-Ron’02) 

 

• Testing H-freeness 

– constant complexity in bidirectional model (folklore) 

– 𝑂(𝑛1−1/𝑘) complexity, where 𝑘 is # of connected components of 𝐻 

with no incoming edge from another part of 𝐻 (Hellweg-Sohler’12) 

• 3-star-freeness: 

– requires Ω(𝑛2/3) complexity (Hellweg-Sohler’12) 



OBJECTIVE: Study the dependency between the models 

There is a tester for property P with constant query time 
in bidirectional model 

 

 

We can test P in one-directional model with sublinear 
𝑛1−Ω𝜀,𝑑(1) query time (in two-sided error model) 

This cannot be improved much: 
• two-sided error is required (cf. strong connectivity) 

• Ω(𝑛2/3) “simulation” slowdown is required (cf. 3-star-freeness) 

Conjecture: bound is tight 



Key ideas 

 



What a constant-complexity tester in bidirectional 
model can do? 



What a constant-complexity tester in bidirectional 
model can do? 

Tester of complexity 𝑞 = 𝑞(𝜀, 𝑑, 𝑛) 

Cannot do more than  

• Randomly sample 𝑞 vertices 

• Explore 𝑞 neighborhood of the sampled vertices 

o neighborhood = using edges of either direction 

• Accept or reject on the basis of the explored digraph 



Key ideas 

• We can characterize properties testable with constant 
number of queries  canonical testers 

• Canonical tester will do the following: 

– Samples a constant number of random vertices 

– Explores bounded-radius discs rooted at sampled vertices 

– Decides whether to accept or reject on the basis of a check 
if the explored digraph is isomorphic to any digraph from 
a forbidden collection of rooted discs 



Key ideas 

• We can characterize properties testable with constant 
number of queries  canonical testers 

• Canonical tester will do the following: 

– Samples a constant number of random vertices 

– Explores bounded-radius discs rooted at sampled vertices 

– Decides whether to accept or reject on the basis of a check 
if the explored digraph is isomorphic to any digraph from 
a forbidden collection of rooted discs 

Further property:  
* If 𝐺 satisfies P then bounded-radius discs at randomly sampled vertices will 
be isomorphic to any element from the forbidden collection with prob ≤ 1/3 
* If 𝐺 is 𝜀–far, then the discs will be isomorphic with prob ≥ 2/3 



Key ideas 

• We can characterize properties testable with constant 
number of queries  canonical testers 

• Goal of one-directional tester 

– Simulate canonical bidirectional testers 

– We want to “estimate” the structure of random 𝑞 discs of 
(bidirectional) radius 𝑞 



What a constant-complexity tester in bidirectional 
model can do? 

All discs are disjoint 



What a constant-complexity tester in bidirectional 
model can do? 

All discs are disjoint 

one-directional 



Key ideas 

• We can characterize properties testable with constant 
number of queries  canonical testers 

• Goal of one-directional tester 

– Simulate canonical bidirectional testers 

– We want to “estimate” the structure of random 𝑞 discs of 
(bidirectional) radius 𝑞 

– Let 𝐻𝑞,𝑑 be the set of 𝑞 rooted digraphs of (bidirectional) 

radius 𝑞 of maximum in-/out-degree 𝑑 

• Note: 𝐻𝑞,𝑑 = 𝑓(𝑞, 𝑑, 𝜀), and 𝑞 =  𝑞(𝜀, 𝑑)  𝐻𝑞,𝑑 = 𝑂𝜀,𝑑(1) 

– We can approximate the number of copies of any 𝐻 ∈ 𝐻𝑞,𝑑 

in the input digraph 𝐺 



Key ideas 

• We can characterize properties testable with constant 
number of queries  canonical testers 

• Goal of one-directional tester 

– Simulate canonical bidirectional testers 

– We want to “estimate” the structure of random 𝑞 discs of 
(bidirectional) radius 𝑞 

– By randomly sampling 𝑛1−Ω𝜀,𝑑(1) edges, we can 
approximate well the number of occurrences of any 
𝐻 ∈ 𝐻𝑞,𝑑  in the input digraph 𝐺 



Key ideas 

• We can characterize properties testable with constant 
number of queries  canonical testers 

• Goal of one-directional tester 

– Simulate canonical bidirectional testers 

– We want to “estimate” the structure of random 𝑞 discs of 
(bidirectional) radius 𝑞 

– By randomly sampling 𝑛1−Ω𝜀,𝑑(1) edges, we can 
approximate well the number of occurrences of any 
𝐻 ∈ 𝐻𝑞,𝑑  in the input digraph 𝐺 

 We can simulate canonical bidirectional tester 



OBJECTIVE: Study the dependency between the models 

There is a tester for property P with constant query time 
in bidirectional model 

 

 

We can test P in one-directional model with sublinear 
𝑛1−Ω𝜀,𝑑(1) query time (in two-sided error model) 

 Application: 
Every hyperfinite property can be tested with 
sublinear complexity in one-directional model 



Hyperfinite graphs and properties 

• Graph is hyperfinite if we can remove small fraction of 
edges to split it into small connected components 

– E.g. bounded degree planar graphs, bounded degree 
graphs defined by a finite collection of forbidden minors 

 

• Property is hyperfinite if it contains only hyperfinite 
graphs 

– E.g. planarity 



Hyperfinite graphs and properties 

Newman-Sohler (2013) proved that every (undirected) 
graph property of a hyperfinite graph is testable with 
constant complexity.  Also: every hyperfinite property is 
testable with constant query complexity. 

 

We can extend this to digraphs (in bidirectional model) 

 

This extends the claims to one-directional model, giving 
two-sided error testers with query complexity 𝑛1−Ω𝜀,𝑑(1) 



Conclusions 

While testing of undirected graphs is rather well 
understood, we know little about directed graphs 

 

In this talk: progress towards our understanding of 
testing digraph properties in one-directional  model 


