Optimisation While Streaming

Amit Chakrabarti

Dartmouth College

Joint work with S. Kale, A. Wirth

DIMACS Workshop on Big Data
Through the Lens of Sublinear Algorithms, Aug 2015

Combinatorial Optimisation Problems'

» 1950s, 60s: Operations research
» 1970s, 80s: NP-hardness
> 1990s, 2000s: Approximation algorithms, hardness of approximation

> 2010s: Space-constrained settings, e.g., streaming

Maximum Matching'

Maximum Matching'

The cardinality version

Maximum Matching'

Maximum Matching'

The weighted version

Graph Streams: Maximum Matching, Generalisations'

Maximum cardinality matching (MCM)

> Input: stream of edges (u, v) € [n] x [n]

» Describes graph G = (V, E): n vertices, m edges, undirected, simple
» Each edge appears exactly once in stream

» Goal

e Output a matching M C E, with |M| maximal

Graph Streams: Maximum Matching, Generalisations'

Maximum cardinality matching (MCM)
> Input: stream of edges (u, v) € [n] x [n]
» Describes graph G = (V, E): n vertices, m edges, undirected, simple
» Each edge appears exactly once in stream
» Goal
e Output a matching M C E, with |M| maximal
e Use sublinear (in m) working memory
e Ideally O(npolylogn) ... “semi-streaming”

e Need Q(nlog n) to store M

Graph Streams: Maximum Matching, Generalisations'

Maximum cardinality matching (MCM)

> Input: stream of edges (u,v) € [n] x [n]

> Describes graph G = (V, E): n vertices, m edges, undirected, simple
> Goal: output a matching M C E, with |M| maximal

Maximum weight matching (MWM)

> Input: stream of weighted edges (u, v, w,,) € [n] X [n] x R

» Goal: output matching M C E, with w(M) =" __,, w(e) maximal

Graph Streams: Maximum Matching, Generalisations'

Maximum cardinality matching (MCM)

> Input: stream of edges (u,v) € [n] x [n]

> Describes graph G = (V, E): n vertices, m edges, undirected, simple
> Goal: output a matching M C E, with |M| maximal

Maximum weight matching (MWM)

> Input: stream of weighted edges (u, v, w,,) € [n] X [n] x R

» Goal: output matching M C E, with w(M) =" __,, w(e) maximal

Maximum submodular-function matching (MSM) [Chakrabarti-Kale'14]

» Input: unweighted edges (u, v), plus submodular f : 2F — R+

» Goal: output matching M C E, with f(M) maximal

)
(o . o) . .
. . . o) .

Ay e
.

)
(o . o)) .
) . . o) .

A .
.

Set Cover with Sets Streamed'

> Input: stream of m sets, each C [n]

> Goal: cover universe [n] using as few sets as possible

Set Cover with Sets Streamed'

> Input: stream of m sets, each C [n]

> Goal: cover universe [n] using as few sets as possible
e Use sublinear (in m) space
e Ideally O(npolylogn) ... “semi-streaming”

o Need Q(nlog n) space to certify: for each item, who covered it?

Think m>n

> Results on Maximum Submodular Matching (MSM)

» Generalising MSM: constrained submodular maximisation

> Set Cover: upper bounds

» Set Cover: lower bounds, with proof outline

Maximum Submodular Matching'

> Stream of edges 0 = (e1, €2,...,€m)
» Valuation function f : 2f — R+

Input

e Submodular:

XCYCEecE = f(X+e)—Ff(X)>Ff(Y+e)—F(Y)
e Monotone:

XCY = f(X)<f(Y)

e Normalised:
f(@)=0

» Oracle access to f: query at X C E, get f(X)
e May only query at X C (stream so far)
Goal
> Output matching M C E, with f(M) maximal “large”
> Store O(n) edges and f-values

Some Results on MSM'

Can't solve MSM exactly
» MCM, approx < e/(e —1) = space w(npolylogn) [Kapralov'13]
» Offline MSM, approx < e/(e —1) = n“(}) oracle calls

¢ Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Some Results on MSM'

Can't solve MSM exactly
» MCM, approx < e/(e —1) = space w(npolylogn) [Kapralov'13]
» Offline MSM, approx < e/(e —1) = n“(}) oracle calls

¢ Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, (3 + ¢)-approx in O(e™3) passes

Some Results on MSM'

Can't solve MSM exactly
» MCM, approx < e/(e —1) = space w(npolylogn) [Kapralov'13]
» Offline MSM, approx < e/(e —1) = n“(}) oracle calls

¢ Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, (3 + ¢)-approx in O(e™3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg — MSM approx alg

Some Results on MSM'

Can't solve MSM exactly

» MCM, approx < e/(e —1) = space w(npolylogn) [Kapralov'13]
» Offline MSM, approx < e/(e —1) = n“(}) oracle calls

¢ Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, (3 + ¢)-approx in O(e™3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg — MSM approx alg
Meta-Thm 2 Similarly, max weight independent set (MWIS) — MSIS

Compliant Algorithms for MWMI

/-

unpicked edge

picked edge

Compliant Algorithms for MWMI

unpicked edge

picked edge

Compliant Algorithms for MWMI

unpicked edge

picked edge

Maintain “current solution” M,
update if new edge improves it sufficiently

Compliant Algorithms for MWM: Details'

Update of “current solution” M
> Given new edge e, pick “augmenting pair” (A, J)
o A+ {e}
e J<— MmA ... edges in M that conflict with A
e Ensure w(A) > (1 + vy)w(J)
> Update M+ (M\ J)UA

Choice of gain parameter
» v =1, approx factor 6 [Feigenbaum-K-M-S-Z'05]
» v = 1/+/2, approx factor 5.828 [McGregor'05]

Compliant Algorithms for MWM: Details'

Update of “current solution” M
> Given new edge e, pick “augmenting pair” (A, J)
o A«—{fe} A<+ "best” subset of 3-neighbourhood of e
e J<— MmA ... edges in M that conflict with A
e Ensure w(A) > (1 + vy)w(J)
> Update M+ (M\ J)UA

Choice of gain parameter
» v =1, approx factor 6 [Feigenbaum-K-M-S-Z'05]
» v = 1/+/2, approx factor 5.828 [McGregor'05]
» v = 1.717, approx factor 5.585 [Zelke'08]

Compliant Algorithms for MWM: Details'

Update of “current solution” M + pool of “shadow edges” S
> Given new edge e, pick “augmenting pair” (A, J)
o A«fe} A< "best” subset of 3-neighbourhood of e
e J<— MmA ... edges in M that conflict with A
e Ensure w(A) > (1 + vy)w(J)
» Update M+ (M\ J)UA
» Update S < appropriate subset of (S\ A)U J

Choice of gain parameter
» v =1, approx factor 6 [Feigenbaum-K-M-S-Z'05]
» v = 1/+/2, approx factor 5.828 [McGregor'05]
» v = 1.717, approx factor 5.585 [Zelke'08]

Generic Compliant Algorithm and f-Extension for MSMI

1: procedure PROCESS-EDGE(e, M, S, ~)
2:
3: (A, J) < a well-chosen augmenting pair for M
with AC MUS + e, w(A) > (1+v)w(J)
4: M+ (M\J)UA
5: S < a well-chosen subset of (S\ A)UJ

MWM alg A + submodular f — MSM alg A" (the f-extension of A)

Generic Compliant Algorithm and f-Extension for MSMI

1: procedure PROCESS-EDGE(e, M, S, ~)
2: w(e) «— f(MUS +e)—f(MUS)
3: (A, J) < a well-chosen augmenting pair for M
with AC MUS + e, w(A) > (1+v)w(J)
4: M+ (M\J)UA
5: S < a well-chosen subset of (S\ A)UJ

MWM alg A + submodular f — MSM alg A" (the f-extension of A)

Generic Compliant Algorithm and f-Extension for MSMI

1: procedure PROCESS-EDGE(e, M, S, ~)
2: w(e) «— f(MUS +e)—f(MUS)
3: (A, J) < a well-chosen augmenting pair for M
with AC MUS + e, w(A) > (1+v)w(J)
4: M+ (M\J)UA
5: S < a well-chosen subset of (S\ A)UJ

MWM alg A + submodular f — MSM alg A" (the f-extension of A)
MWIS (arbitrary ground set E, independent sets Z C 2F) + f — MSIS

Generalise: Submodular Maximization (MWIS, MSIS)I

1: procedure PROCESS-ELEMENT(e, [, S,)
2: w(e) « f(lUS+e)—f(IUS)
3: (A, J) + a well-chosen augmenting pair for /
with AC TUS + e, w(A) > (1+~)w(J)
4: I+ (I\J)UA
5: S < a well-chosen subset of (S\ A)U J

MWM alg A + submodular f — MSM alg A" (the f-extension of A)
MWIS (arbitrary ground set E, independent sets Z C 2F) + f — MSIS

Further Applications: Hypermatchings'

Stream of hyperedges e, €,..., e, C [n], each |g| < p
Hypermatching = subset of pairwise disjoint edges

Further Applications: Hypermatchings'

Stream of hyperedges e, €,..., e, C [n], each |g| < p
Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

> Augment using only current edge e

> Use v =1 for first pass, v = ¢/(p + 1) subsequently
> Make passes until solution doesn’t improve much
Results

> 4p-approx in one pass

» (p+ 1+ ¢)-approx in O(¢~3%) passes

Further Applications: Maximization Over Matroids'

Stream of elements ey, e, ..., ey, from ground set £
Matroids (E,Z3), ..., (E,Zp), given by circuit oracles:

© fAeT
Given A C E, returns T mAc !
a circuit in A, otherwise

Independent sets, 7 = (), Z;; size parameter n = max;cz |/|

Further Applications: Maximization Over Matroids'

Stream of elements ey, e, ..., ey, from ground set £
Matroids (E,Z3), ..., (E,Zp), given by circuit oracles:

© fAeT
Given A C E, returns T mAc !
a circuit in A, otherwise

Independent sets, 7 = (), Z;; size parameter n = max;cz |/|
Recent MWIS algorithm (compliant) [Varadaraja'11]
> Augment using only current element e

> Remove J = {x1,..., Xy},
where x; := lightest element in circuit formed in /th matroid

Further Applications: Maximization Over Matroids'

Stream of elements ey, e, . .., e, from ground set E
Independent sets, 7 = (), Z;; size parameter n = max;cz |/|
Recent MWIS algorithm (compliant) [Varadaraja'11]

> Augment using only current element e

> Remove J = {x1,..., Xy},
where x; := lightest element in circuit formed in /th matroid

Further Applications: Maximization Over Matroids'

Stream of elements ey, e, . .., e, from ground set E
Independent sets, 7 = (), Z;; size parameter n = max;cz |/|
Recent MWIS algorithm (compliant) [Varadaraja'11]
> Augment using only current element e
> Remove J = {x1,..., Xy},
where x; := lightest element in circuit formed in ith matroid

Follow paradigm: use f-extension of above algorithm
Results, using O(n) storage

> 4p-approx in one pass

» (p+ 1+ ¢)-approx in O(c~3) passes *

* Multi-pass analysis only works for partition matroids

> Results on Maximum Submodular Matching (MSM) v/

» Generalising MSM: constrained submodular maximisation v/

> Set Cover: upper bounds

» Set Cover: lower bounds, with proof outline

Set Cover: Background'

Offline results:

> Best possible poly-time approx (1 4+ o(1))Inn [Johnson'74] [Slavik'96]
[Lund-Yannakakis'94] [Dinur-Steurer'14]

> Simple greedy strategy gets In n-approx:
e Repeatedly add set with highest contribution
e Contribution := number of new elements covered
Streaming results:
> One pass semi-streaming O(+/n)-approx
» This is best possible in a single pass [Emek-Rosén’14]

> (More results in Indyk's talk)

Set Cover: Our Results'

Upper bound
» With p passes, semi-streaming space, get O(nl/(”+1))—appr0x
» Algorithm giving this approx based on very simple heuristic

» Deterministic

Lower bound

» Randomized

> In p passes, semi-streaming space, need Q(n/(P*1)/p?) space.

» Upper bound tight for all constant p

> Semi-streaming O(log n) approx requires Q(log n/ loglog n) passes

[Chakrabarti-Wirth'15]

S

© o N

10:

Progressive Greedy AIgorithmI

: procedure GREEDYPASS(stream o, threshold 7, set Sol, array Coverer)
for all (i,S) in o do
C < {x: Coverer[x] # 0} > the already covered elements
if |S\ C| > 7 then
Sol + Sol U {i}
for all x € S\ C do Coverer[x] < i

: procedure PROGGREEDYNAIVE(stream o, integer n, integer p > 1)
Coverer[l...n] < 0"; Sol + @

for j = 1 to p do GREEDYPASS(o, n' /P, Sol, Coverer)

output Sol, Coverer

Progressive Greedy: Analysis Idea'

Consider p = 2 passes

» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol

Progressive Greedy: Analysis Idea'

Consider p = 2 passes
» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
» Second pass: Opt cover remaining items with sets of contrib < \/n

> Thus, Sol will cover the same using < /n|Opt| sets

Progressive Greedy: Analysis Idea'

Consider p = 2 passes
» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
» Second pass: Opt cover remaining items with sets of contrib < \/n

> Thus, Sol will cover the same using < /n|Opt| sets

But wait, this uses two passes for O(+/n) approx!

Progressive Greedy: Analysis Idea'

Consider p = 2 passes

» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
» Second pass: Opt cover remaining items with sets of contrib < \/n

> Thus, Sol will cover the same using < /n|Opt| sets
But wait, this uses two passes for O(+/n) approx!

» Logic of last pass especially simple: add set if positive contrib

» Can fold this into previous one

Final result: p passes, O(n*/(P*1))-approx

Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]

o o o [o] 0 0 e o o o o o o

(o o o [of @ <exX o) e o o o o o o

e o o (o o o\o e o o o o o o

ox. o e o o Fq e o o o o o o >
n=4q

\\o o o o o e o o o o o o

o o< 0 (o o o o e o o o o o o

(A L e o o o o o o

Ali sets Bob’s set

Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]

o o o [o] 0 0 e o o o o o o
(o o o [of @ <exX o) e o o o o o o

e o o (o o o\o e o o o o o o

.X o 0 0 o o Fq e o o o o o o >
\ n=gq

e oo e o o o e o o o o o o

o o< 0 (o o o o e o o o o o o

(A L e o o o o o o

Ali sets Bob’s set

If Alice has Bob's missing line, then |Opt| = 2, else |Opt| > q

Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]

o o o [o] 0 0 e o o o o o o
(o o o [of @ <exX o) e o o o o o o

e o o (o o o\o e o o o o o o

.X o 0 0 o o Fq e o o o o o o >
\ n=gq

e oo e o o o e o o o o o o

o o X0 o o o e o o o o o o

(A L e o o o o o o

Ali sets Bob’s set

If Alice has Bob's missing line, then |Opt| = 2, else |Opt| > q
So ©(4/n) approx requires Q(#lines) = Q(n) space

Tree Pointer Jumping'

Multiplayer game TPJp,41 ; defined on complete (p + 1)-level t-ary tree

» Pointer to child at each internal level-i node (known to Player /)
> Bit at each leaf node (known to Player 1)

> Goal: output (whp) bit reached by following pointers from root

Level 3
Model: p rounds of communication

Level 2
Each round: (PIr1, PIr2, ..., Plr (p+1))

Level 1

100111001

Theorem: Longest message is Q(t/p?) bits [C.-Cormode-McGregor'08]

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)P+1

................. Pointer encoded
as Xy \ Xy

[Xleafl = q [Xz n Xv| = 2p

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)P+1

> Universe FPt!
» Variety X, at node u
> u above v

— XUQXV

................. Pointer encoded
as Xy \ Xy

[Xleafl = q [Xz n Xv| = 2p

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)P+1

> Universe FPt!
» Variety X, at node u

» u above v

= X, 2 X,
................. Pointer encoded ” Leaf z with bit =1
as Xy \ Xy encoded as set X,

[Xleafl = q [Xz n Xv| = 2p

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)P+1

v

Universe]Fg+1

Variety X, at node u

v

» u above v

= Xy 2 X,
____________ Pointer encoded ” Leaf z with bit =1
as Xy \ Xy encoded as set X,
> If player 1 has the

missing variety, then
|Opt| = p+1, else
|Opt| > q/(2p)

[Xleafl = q [Xz n Xv| = 2p

Construction of an Edifice'

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Construction of an Edifice'

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

» Coordinates (X, y1,y2,...,¥p)

» Equation at each edge of tree; at level /:

yi=ay1+ - ai—1yi-1 + aifpr1-i(x)
fi(x) = monic poly in F4[x] of degree p +

» Variety X, defined by equations on root-to-u path

Construction of an Edifice'

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

» Coordinates (x, y1,¥2,...,¥p)

» Equation at each edge of tree; at level /:

yi =ay1 + - ai—1yi-1 + aifpr1-i(x)
fi(x) = monic poly in Fg4[x] of degree p+ j
Cardinality bound via much simpler mathematics.

» Schwartz-Zippel lemma

» Linear independence arguments via row reduction

Final Remarks '

Combinatorial optimisation: old topic, but relatively new territory for
data stream algorithms
» Potential for many new research questions

> Stronger or more general results on submodular maximization? Some
new work in [Chekuri-Gupta-Quanrud'15]

» Lower bounds for submodular maximization?

» Fuller understanding of possible tradeoff for set cover?

