
Optimisation While Streaming

Amit Chakrabarti

Dartmouth College

Joint work with S. Kale, A. Wirth

DIMACS Workshop on Big Data
Through the Lens of Sublinear Algorithms, Aug 2015

Combinatorial Optimisation Problems

I 1950s, 60s: Operations research

I 1970s, 80s: NP-hardness

I 1990s, 2000s: Approximation algorithms, hardness of approximation

I 2010s: Space-constrained settings, e.g., streaming

Maximum Matching

Maximum Matching

The cardinality version

Maximum Matching

2

1

2

5

6

2

8

2

1
1

Maximum Matching

2

1

2

5

6

2

8

2

1
1

The weighted version

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

I Input: stream of edges (u, v) ∈ [n]× [n]

I Describes graph G = (V ,E): n vertices, m edges, undirected, simple

I Each edge appears exactly once in stream

I Goal

• Output a matching M ⊆ E , with |M| maximal

• Use sublinear (in m) working memory

• Ideally O(n polylog n) ... “semi-streaming”

• Need Ω(n log n) to store M

I Goal: output a matching M ⊆ E , with |M| maximal

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

I Input: stream of edges (u, v) ∈ [n]× [n]

I Describes graph G = (V ,E): n vertices, m edges, undirected, simple

I Each edge appears exactly once in stream

I Goal

• Output a matching M ⊆ E , with |M| maximal

• Use sublinear (in m) working memory

• Ideally O(n polylog n) ... “semi-streaming”

• Need Ω(n log n) to store M

I Goal: output a matching M ⊆ E , with |M| maximal

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

I Input: stream of edges (u, v) ∈ [n]× [n]

I Describes graph G = (V ,E): n vertices, m edges, undirected, simple

I Goal: output a matching M ⊆ E , with |M| maximal

Maximum weight matching (MWM)

I Input: stream of weighted edges (u, v ,wuv) ∈ [n]× [n]× R+

I Goal: output matching M ⊆ E , with w(M) =
∑

e∈M w(e) maximal

Maximum submodular-function matching (MSM) [Chakrabarti-Kale’14]

I Input: unweighted edges (u, v), plus submodular f : 2E → R+

I Goal: output matching M ⊆ E , with f (M) maximal

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

I Input: stream of edges (u, v) ∈ [n]× [n]

I Describes graph G = (V ,E): n vertices, m edges, undirected, simple

I Goal: output a matching M ⊆ E , with |M| maximal

Maximum weight matching (MWM)

I Input: stream of weighted edges (u, v ,wuv) ∈ [n]× [n]× R+

I Goal: output matching M ⊆ E , with w(M) =
∑

e∈M w(e) maximal

Maximum submodular-function matching (MSM) [Chakrabarti-Kale’14]

I Input: unweighted edges (u, v), plus submodular f : 2E → R+

I Goal: output matching M ⊆ E , with f (M) maximal

Set Cover

Set Cover

Set Cover with Sets Streamed

I Input: stream of m sets, each ⊆ [n]

I Goal: cover universe [n] using as few sets as possible

• Use sublinear (in m) space

• Ideally O(n polylog n) ... “semi-streaming”

• Need Ω(n log n) space to certify: for each item, who covered it?

Think m ≥ n

Set Cover with Sets Streamed

I Input: stream of m sets, each ⊆ [n]

I Goal: cover universe [n] using as few sets as possible

• Use sublinear (in m) space

• Ideally O(n polylog n) ... “semi-streaming”

• Need Ω(n log n) space to certify: for each item, who covered it?

Think m ≥ n

Road Map

I Results on Maximum Submodular Matching (MSM)

I Generalising MSM: constrained submodular maximisation

I Set Cover: upper bounds

I Set Cover: lower bounds, with proof outline

Maximum Submodular Matching

Input

I Stream of edges σ = 〈e1, e2, . . . , em〉
I Valuation function f : 2E → R+

• Submodular:
X ⊆ Y ⊆ E , e ∈ E =⇒ f (X + e)− f (X) ≥ f (Y + e)− f (Y)

• Monotone:
X ⊆ Y =⇒ f (X) ≤ f (Y)

• Normalised:
f (∅) = 0

I Oracle access to f : query at X ⊆ E , get f (X)

• May only query at X ⊆ (stream so far)

Goal

I Output matching M ⊆ E , with f (M) maximal “large”

I Store O(n) edges and f -values

Some Results on MSM

Can’t solve MSM exactly

I MCM, approx < e/(e − 1) =⇒ space ω(n polylog n) [Kapralov’13]

I Offline MSM, approx < e/(e − 1) =⇒ nω(1) oracle calls

• Via cardinality-constrained submodular max [Nemhauser-Wolsey’78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, (3 + ε)-approx in O(e−3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg → MSM approx alg

Meta-Thm 2 Similarly, max weight independent set (MWIS) → MSIS

Some Results on MSM

Can’t solve MSM exactly

I MCM, approx < e/(e − 1) =⇒ space ω(n polylog n) [Kapralov’13]

I Offline MSM, approx < e/(e − 1) =⇒ nω(1) oracle calls

• Via cardinality-constrained submodular max [Nemhauser-Wolsey’78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, (3 + ε)-approx in O(e−3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg → MSM approx alg

Meta-Thm 2 Similarly, max weight independent set (MWIS) → MSIS

Some Results on MSM

Can’t solve MSM exactly

I MCM, approx < e/(e − 1) =⇒ space ω(n polylog n) [Kapralov’13]

I Offline MSM, approx < e/(e − 1) =⇒ nω(1) oracle calls

• Via cardinality-constrained submodular max [Nemhauser-Wolsey’78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, (3 + ε)-approx in O(e−3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg → MSM approx alg

Meta-Thm 2 Similarly, max weight independent set (MWIS) → MSIS

Some Results on MSM

Can’t solve MSM exactly

I MCM, approx < e/(e − 1) =⇒ space ω(n polylog n) [Kapralov’13]

I Offline MSM, approx < e/(e − 1) =⇒ nω(1) oracle calls

• Via cardinality-constrained submodular max [Nemhauser-Wolsey’78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, (3 + ε)-approx in O(e−3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg → MSM approx alg

Meta-Thm 2 Similarly, max weight independent set (MWIS) → MSIS

Compliant Algorithms for MWM

2

1

2

3

2

picked edge

unpicked edge

Maintain “current solution” M,
update if new edge improves it sufficiently

Compliant Algorithms for MWM

2

1

2

3

2

picked edge

unpicked edge

8

Maintain “current solution” M,
update if new edge improves it sufficiently

Compliant Algorithms for MWM

2

1

2

3

2

picked edge

unpicked edge

8

Maintain “current solution” M,
update if new edge improves it sufficiently

Compliant Algorithms for MWM: Details

Update of “current solution” M

+ pool of “shadow edges” S

I Given new edge e, pick “augmenting pair” (A, J)

• A← {e}

A← “best” subset of 3-neighbourhood of e

• J ← M e A ... edges in M that conflict with A

• Ensure w(A) ≥ (1 + γ)w(J)

I Update M ← (M \ J) ∪ A

I Update S ← appropriate subset of (S \ A) ∪ J

Choice of gain parameter

I γ = 1, approx factor 6 [Feigenbaum-K-M-S-Z’05]

I γ = 1/
√

2, approx factor 5.828 [McGregor’05]

I γ = 1.717, approx factor 5.585 [Zelke’08]

Compliant Algorithms for MWM: Details

Update of “current solution” M

+ pool of “shadow edges” S

I Given new edge e, pick “augmenting pair” (A, J)

• A← {e} A← “best” subset of 3-neighbourhood of e

• J ← M e A ... edges in M that conflict with A

• Ensure w(A) ≥ (1 + γ)w(J)

I Update M ← (M \ J) ∪ A

I Update S ← appropriate subset of (S \ A) ∪ J

Choice of gain parameter

I γ = 1, approx factor 6 [Feigenbaum-K-M-S-Z’05]

I γ = 1/
√

2, approx factor 5.828 [McGregor’05]

I γ = 1.717, approx factor 5.585 [Zelke’08]

Compliant Algorithms for MWM: Details

Update of “current solution” M + pool of “shadow edges” S

I Given new edge e, pick “augmenting pair” (A, J)

• A← {e} A← “best” subset of 3-neighbourhood of e

• J ← M e A ... edges in M that conflict with A

• Ensure w(A) ≥ (1 + γ)w(J)

I Update M ← (M \ J) ∪ A

I Update S ← appropriate subset of (S \ A) ∪ J

Choice of gain parameter

I γ = 1, approx factor 6 [Feigenbaum-K-M-S-Z’05]

I γ = 1/
√

2, approx factor 5.828 [McGregor’05]

I γ = 1.717, approx factor 5.585 [Zelke’08]

Generic Compliant Algorithm and f -Extension for MSM

1: procedure Process-Edge(e,M, S , γ)
2:

w(e)← f (M ∪ S + e)− f (M ∪ S)

3: (A, J)← a well-chosen augmenting pair for M
with A ⊆ M ∪ S + e, w(A) ≥ (1 + γ)w(J)

4: M ← (M \ J) ∪ A
5: S ← a well-chosen subset of (S \ A) ∪ J

MWM alg A + submodular f → MSM alg Af (the f -extension of A)

MWIS (arbitrary ground set E , independent sets I ⊆ 2E) + f → MSIS

Generic Compliant Algorithm and f -Extension for MSM

1: procedure Process-Edge(e,M, S , γ)
2: w(e)← f (M ∪ S + e)− f (M ∪ S)
3: (A, J)← a well-chosen augmenting pair for M

with A ⊆ M ∪ S + e, w(A) ≥ (1 + γ)w(J)
4: M ← (M \ J) ∪ A
5: S ← a well-chosen subset of (S \ A) ∪ J

MWM alg A + submodular f → MSM alg Af (the f -extension of A)

MWIS (arbitrary ground set E , independent sets I ⊆ 2E) + f → MSIS

Generic Compliant Algorithm and f -Extension for MSM

1: procedure Process-Edge(e,M, S , γ)
2: w(e)← f (M ∪ S + e)− f (M ∪ S)
3: (A, J)← a well-chosen augmenting pair for M

with A ⊆ M ∪ S + e, w(A) ≥ (1 + γ)w(J)
4: M ← (M \ J) ∪ A
5: S ← a well-chosen subset of (S \ A) ∪ J

MWM alg A + submodular f → MSM alg Af (the f -extension of A)

MWIS (arbitrary ground set E , independent sets I ⊆ 2E) + f → MSIS

Generalise: Submodular Maximization (MWIS, MSIS)

1: procedure Process-Element(e, I , S , γ)
2: w(e)← f (I ∪ S + e)− f (I ∪ S)
3: (A, J)← a well-chosen augmenting pair for I

with A ⊆ I ∪ S + e, w(A) ≥ (1 + γ)w(J)
4: I ← (I \ J) ∪ A
5: S ← a well-chosen subset of (S \ A) ∪ J

MWM alg A + submodular f → MSM alg Af (the f -extension of A)

MWIS (arbitrary ground set E , independent sets I ⊆ 2E) + f → MSIS

Further Applications: Hypermatchings

Stream of hyperedges e1, e2, . . . , em ⊆ [n], each |ei | ≤ p

Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

I Augment using only current edge e

I Use γ = 1 for first pass, γ = ε/(p + 1) subsequently

I Make passes until solution doesn’t improve much

Results

I 4p-approx in one pass

I (p + 1 + ε)-approx in O(ε−3) passes

Further Applications: Hypermatchings

Stream of hyperedges e1, e2, . . . , em ⊆ [n], each |ei | ≤ p

Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

I Augment using only current edge e

I Use γ = 1 for first pass, γ = ε/(p + 1) subsequently

I Make passes until solution doesn’t improve much

Results

I 4p-approx in one pass

I (p + 1 + ε)-approx in O(ε−3) passes

Further Applications: Maximization Over Matroids

Stream of elements e1, e2, . . . , em from ground set E

Matroids (E , I1), . . . , (E , Ip), given by circuit oracles:

Given A ⊆ E , returns

{
, , if A ∈ Ii
a circuit in A , otherwise

Independent sets, I =
⋂

i Ii ; size parameter n = maxI∈I |I |

Recent MWIS algorithm (compliant) [Varadaraja’11]

I Augment using only current element e

I Remove J = {x1, . . . , xp},
where xi := lightest element in circuit formed in ith matroid

Further Applications: Maximization Over Matroids

Stream of elements e1, e2, . . . , em from ground set E

Matroids (E , I1), . . . , (E , Ip), given by circuit oracles:

Given A ⊆ E , returns

{
, , if A ∈ Ii
a circuit in A , otherwise

Independent sets, I =
⋂

i Ii ; size parameter n = maxI∈I |I |
Recent MWIS algorithm (compliant) [Varadaraja’11]

I Augment using only current element e

I Remove J = {x1, . . . , xp},
where xi := lightest element in circuit formed in ith matroid

Further Applications: Maximization Over Matroids

Stream of elements e1, e2, . . . , em from ground set E

Independent sets, I =
⋂

i Ii ; size parameter n = maxI∈I |I |
Recent MWIS algorithm (compliant) [Varadaraja’11]

I Augment using only current element e

I Remove J = {x1, . . . , xp},
where xi := lightest element in circuit formed in ith matroid

Follow paradigm: use f -extension of above algorithm

Results, using O(n) storage

I 4p-approx in one pass

I (p + 1 + ε)-approx in O(ε−3) passes ∗

∗ Multi-pass analysis only works for partition matroids

Further Applications: Maximization Over Matroids

Stream of elements e1, e2, . . . , em from ground set E

Independent sets, I =
⋂

i Ii ; size parameter n = maxI∈I |I |
Recent MWIS algorithm (compliant) [Varadaraja’11]

I Augment using only current element e

I Remove J = {x1, . . . , xp},
where xi := lightest element in circuit formed in ith matroid

Follow paradigm: use f -extension of above algorithm

Results, using O(n) storage

I 4p-approx in one pass

I (p + 1 + ε)-approx in O(ε−3) passes ∗

∗ Multi-pass analysis only works for partition matroids

Road Map

I Results on Maximum Submodular Matching (MSM) X

I Generalising MSM: constrained submodular maximisation X

I Set Cover: upper bounds

I Set Cover: lower bounds, with proof outline

Set Cover: Background

Offline results:

I Best possible poly-time approx (1± o(1)) ln n [Johnson’74] [Slav́ık’96]

[Lund-Yannakakis’94] [Dinur-Steurer’14]

I Simple greedy strategy gets ln n-approx:

• Repeatedly add set with highest contribution

• Contribution := number of new elements covered

Streaming results:

I One pass semi-streaming O(
√
n)-approx

I This is best possible in a single pass [Emek-Rosén’14]

I (More results in Indyk’s talk)

Set Cover: Our Results

Upper bound

I With p passes, semi-streaming space, get O(n1/(p+1))-approx

I Algorithm giving this approx based on very simple heuristic

I Deterministic

Lower bound

I Randomized

I In p passes, semi-streaming space, need Ω(n1/(p+1)/p2) space.

I Upper bound tight for all constant p

I Semi-streaming O(log n) approx requires Ω(log n/ log log n) passes

[Chakrabarti-Wirth’15]

Progressive Greedy Algorithm

1: procedure GreedyPass(stream σ, threshold τ , set Sol , array Coverer)
2: for all (i , S) in σ do
3: C ← {x : Coverer [x] 6= 0} . the already covered elements
4: if |S \ C | ≥ τ then
5: Sol ← Sol ∪ {i}
6: for all x ∈ S \ C do Coverer [x]← i

7: procedure ProgGreedyNaive(stream σ, integer n, integer p ≥ 1)
8: Coverer [1 . . . n]← 0n; Sol ← ∅
9: for j = 1 to p do GreedyPass(σ, n1−j/p, Sol ,Coverer)

10: output Sol ,Coverer

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets iff contribution ≥
√
n

I Thus, first pass adds at most
√
n sets to Sol

I Second pass: Opt cover remaining items with sets of contrib ≤
√
n

I Thus, Sol will cover the same using ≤
√
n|Opt| sets

But wait, this uses two passes for O(
√
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets iff contribution ≥
√
n

I Thus, first pass adds at most
√
n sets to Sol

I Second pass: Opt cover remaining items with sets of contrib ≤
√
n

I Thus, Sol will cover the same using ≤
√
n|Opt| sets

But wait, this uses two passes for O(
√
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets iff contribution ≥
√
n

I Thus, first pass adds at most
√
n sets to Sol

I Second pass: Opt cover remaining items with sets of contrib ≤
√
n

I Thus, Sol will cover the same using ≤
√
n|Opt| sets

But wait, this uses two passes for O(
√
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets iff contribution ≥
√
n

I Thus, first pass adds at most
√
n sets to Sol

I Second pass: Opt cover remaining items with sets of contrib ≤
√
n

I Thus, Sol will cover the same using ≤
√
n|Opt| sets

But wait, this uses two passes for O(
√
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Lower Bound Idea: One Pass

Reduce from index: Alice gets x ∈ {0, 1}n, Bob gets j ∈ [n], Alice talks
to Bob, who must determine xj . Requires Ω(n)-bit message. [Ablayev’96]

Bob’s set

q

Alice’s sets

F

n = q2

If Alice has Bob’s missing line, then |Opt| = 2, else |Opt| ≥ q

So Θ(
√
n) approx requires Ω(#lines) = Ω(n) space

Lower Bound Idea: One Pass

Reduce from index: Alice gets x ∈ {0, 1}n, Bob gets j ∈ [n], Alice talks
to Bob, who must determine xj . Requires Ω(n)-bit message. [Ablayev’96]

Bob’s set

q

Alice’s sets

F

n = q2

If Alice has Bob’s missing line, then |Opt| = 2, else |Opt| ≥ q

So Θ(
√
n) approx requires Ω(#lines) = Ω(n) space

Lower Bound Idea: One Pass

Reduce from index: Alice gets x ∈ {0, 1}n, Bob gets j ∈ [n], Alice talks
to Bob, who must determine xj . Requires Ω(n)-bit message. [Ablayev’96]

Bob’s set

q

Alice’s sets

F

n = q2

If Alice has Bob’s missing line, then |Opt| = 2, else |Opt| ≥ q

So Θ(
√
n) approx requires Ω(#lines) = Ω(n) space

Tree Pointer Jumping

Multiplayer game tpjp+1,t defined on complete (p + 1)-level t-ary tree

I Pointer to child at each internal level-i node (known to Player i)

I Bit at each leaf node (known to Player 1)

I Goal: output (whp) bit reached by following pointers from root

Model: p rounds of communication

Each round: (Plr 1, Plr 2, . . . , Plr (p + 1))

1 0 0 1 1 1 00 1

Level

Level

2

3

Level 1

Theorem: Longest message is Ω(t/p2) bits [C.-Cormode-McGregor’08]

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1
q

I Variety Xu at node u

I u above v
=⇒ Xu ⊇ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| ≥ q/(2p)

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1
q

I Variety Xu at node u

I u above v
=⇒ Xu ⊇ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| ≥ q/(2p)

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1
q

I Variety Xu at node u

I u above v
=⇒ Xu ⊇ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| ≥ q/(2p)

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1
q

I Variety Xu at node u

I u above v
=⇒ Xu ⊇ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| ≥ q/(2p)

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

I Coordinates (x , y1, y2, . . . , yp)

I Equation at each edge of tree; at level i :

yi = a1y1 + · · · ai−1yi−1 + ai fp+1−i (x)

fj(x) = monic poly in Fq[x] of degree p + j

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

I Coordinates (x , y1, y2, . . . , yp)

I Equation at each edge of tree; at level i :

yi = a1y1 + · · · ai−1yi−1 + ai fp+1−i (x)

fj(x) = monic poly in Fq[x] of degree p + j

I Variety Xu defined by equations on root-to-u path

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

I Coordinates (x , y1, y2, . . . , yp)

I Equation at each edge of tree; at level i :

yi = a1y1 + · · · ai−1yi−1 + ai fp+1−i (x)

fj(x) = monic poly in Fq[x] of degree p + j

Cardinality bound via much simpler mathematics.

I Schwartz-Zippel lemma

I Linear independence arguments via row reduction

Final Remarks

Combinatorial optimisation: old topic, but relatively new territory for
data stream algorithms

I Potential for many new research questions

I Stronger or more general results on submodular maximization? Some
new work in [Chekuri-Gupta-Quanrud’15]

I Lower bounds for submodular maximization?

I Fuller understanding of possible tradeoff for set cover?

