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Combinatorial Optimisation Problems'

» 1950s, 60s: Operations research
» 1970s, 80s: NP-hardness
> 1990s, 2000s: Approximation algorithms, hardness of approximation

> 2010s: Space-constrained settings, e.g., streaming
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Graph Streams: Maximum Matching, Generalisations'

Maximum cardinality matching (MCM)

> Input: stream of edges (u, v) € [n] x [n]

» Describes graph G = (V, E): n vertices, m edges, undirected, simple
» Each edge appears exactly once in stream

» Goal

e Output a matching M C E, with |M| maximal
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> Input: stream of edges (u, v) € [n] x [n]
» Describes graph G = (V, E): n vertices, m edges, undirected, simple
» Each edge appears exactly once in stream
» Goal
e Output a matching M C E, with |M| maximal
e Use sublinear (in m) working memory
e Ideally O(npolylogn) ... “semi-streaming”

e Need Q(nlog n) to store M
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Graph Streams: Maximum Matching, Generalisations'

Maximum cardinality matching (MCM)

> Input: stream of edges (u,v) € [n] x [n]

> Describes graph G = (V, E): n vertices, m edges, undirected, simple
> Goal: output a matching M C E, with |M| maximal

Maximum weight matching (MWM)

> Input: stream of weighted edges (u, v, w,,) € [n] X [n] x R

» Goal: output matching M C E, with w(M) =" __,, w(e) maximal

Maximum submodular-function matching (MSM)  [Chakrabarti-Kale'14]

» Input: unweighted edges (u, v), plus submodular f : 2F — R+

» Goal: output matching M C E, with f(M) maximal
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Set Cover with Sets Streamed'

> Input: stream of m sets, each C [n]

> Goal: cover universe [n] using as few sets as possible



Set Cover with Sets Streamed'

> Input: stream of m sets, each C [n]

> Goal: cover universe [n] using as few sets as possible
e Use sublinear (in m) space
e Ideally O(npolylogn) ... “semi-streaming”

o Need Q(nlog n) space to certify: for each item, who covered it?

Think m>n



> Results on Maximum Submodular Matching (MSM)

» Generalising MSM: constrained submodular maximisation

> Set Cover: upper bounds

» Set Cover: lower bounds, with proof outline



Maximum Submodular Matching'

> Stream of edges 0 = (e1, €2,...,€m)
» Valuation function f : 2f — R+

Input

e Submodular:

XCYCEecE = f(X+e)—Ff(X)>Ff(Y+e)—F(Y)
e Monotone:

XCY = f(X)<f(Y)

e Normalised:
f(@)=0

» Oracle access to f: query at X C E, get f(X)
e May only query at X C (stream so far)
Goal
> Output matching M C E, with f(M) maximal “large”
> Store O(n) edges and f-values



Some Results on MSM'

Can't solve MSM exactly
» MCM, approx < e/(e —1) = space w(npolylogn)  [Kapralov'13]
» Offline MSM, approx < e/(e —1) = n“(}) oracle calls

¢ Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]
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Some Results on MSM'

Can't solve MSM exactly

» MCM, approx < e/(e —1) = space w(npolylogn)  [Kapralov'13]
» Offline MSM, approx < e/(e —1) = n“(}) oracle calls

¢ Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, (3 + ¢)-approx in O(e™3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg — MSM approx alg
Meta-Thm 2 Similarly, max weight independent set (MWIS) — MSIS
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Compliant Algorithms for MWMI

unpicked edge

picked edge

Maintain “current solution” M,
update if new edge improves it sufficiently



Compliant Algorithms for MWM: Details'

Update of “current solution” M
> Given new edge e, pick “augmenting pair” (A, J)
o A+ {e}
e J<— MmA ... edges in M that conflict with A
e Ensure w(A) > (1 + vy)w(J)
> Update M+ (M\ J)UA

Choice of gain parameter
» v =1, approx factor 6 [Feigenbaum-K-M-S-Z'05]
» v = 1/+/2, approx factor 5.828 [McGregor'05]
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Update of “current solution” M
> Given new edge e, pick “augmenting pair” (A, J)
o A«—{fe} A<+ "best” subset of 3-neighbourhood of e
e J<— MmA ... edges in M that conflict with A
e Ensure w(A) > (1 + vy)w(J)
> Update M+ (M\ J)UA

Choice of gain parameter
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» v = 1.717, approx factor 5.585 [Zelke'08]



Compliant Algorithms for MWM: Details'

Update of “current solution” M + pool of “shadow edges” S
> Given new edge e, pick “augmenting pair” (A, J)
o A«fe} A< "best” subset of 3-neighbourhood of e
e J<— MmA ... edges in M that conflict with A
e Ensure w(A) > (1 + vy)w(J)
» Update M+ (M\ J)UA
» Update S < appropriate subset of (S\ A)U J

Choice of gain parameter
» v =1, approx factor 6 [Feigenbaum-K-M-S-Z'05]
» v = 1/+/2, approx factor 5.828 [McGregor'05]
» v = 1.717, approx factor 5.585 [Zelke'08]



Generic Compliant Algorithm and f-Extension for MSMI

1: procedure PROCESS-EDGE(e, M, S, ~)
2:
3: (A, J) < a well-chosen augmenting pair for M
with AC MUS + e, w(A) > (1+v)w(J)
4: M+ (M\J)UA
5: S < a well-chosen subset of (S\ A)UJ

MWM alg A + submodular f — MSM alg A" (the f-extension of A)
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Generalise: Submodular Maximization (MWIS, MSIS)I

1: procedure PROCESS-ELEMENT(e, [, S, )
2: w(e) « f(lUS+e)—f(IUS)
3: (A, J) + a well-chosen augmenting pair for /
with AC TUS + e, w(A) > (1+~)w(J)
4: I+ (I\J)UA
5: S < a well-chosen subset of (S\ A)U J

MWM alg A + submodular f — MSM alg A" (the f-extension of A)
MWIS (arbitrary ground set E, independent sets Z C 2F) + f — MSIS
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Hypermatching = subset of pairwise disjoint edges



Further Applications: Hypermatchings'

Stream of hyperedges e, €,..., e, C [n], each |g| < p
Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

> Augment using only current edge e

> Use v =1 for first pass, v = ¢/(p + 1) subsequently
> Make passes until solution doesn’t improve much
Results

> 4p-approx in one pass

» (p+ 1+ ¢)-approx in O(¢~3%) passes



Further Applications: Maximization Over Matroids'

Stream of elements ey, e, ..., ey, from ground set £
Matroids (E,Z3), ..., (E,Zp), given by circuit oracles:

© fAeT
Given A C E, returns T mAc !
a circuit in A, otherwise

Independent sets, 7 = (), Z;; size parameter n = max;cz |/|
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> Augment using only current element e

> Remove J = {x1,..., Xy},
where x; := lightest element in circuit formed in /th matroid
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Further Applications: Maximization Over Matroids'

Stream of elements ey, e, . .., e, from ground set E
Independent sets, 7 = (), Z;; size parameter n = max;cz |/|
Recent MWIS algorithm (compliant) [Varadaraja'11]
> Augment using only current element e
> Remove J = {x1,..., Xy},
where x; := lightest element in circuit formed in ith matroid

Follow paradigm: use f-extension of above algorithm
Results, using O(n) storage

> 4p-approx in one pass

» (p+ 1+ ¢)-approx in O(c~3) passes *

* Multi-pass analysis only works for partition matroids



> Results on Maximum Submodular Matching (MSM) v/

» Generalising MSM: constrained submodular maximisation v/

> Set Cover: upper bounds

» Set Cover: lower bounds, with proof outline



Set Cover: Background'

Offline results:

> Best possible poly-time approx (1 4+ o(1))Inn [Johnson'74] [Slavik'96]
[Lund-Yannakakis'94] [Dinur-Steurer'14]

> Simple greedy strategy gets In n-approx:
e Repeatedly add set with highest contribution
e Contribution := number of new elements covered
Streaming results:
> One pass semi-streaming O(+/n)-approx
» This is best possible in a single pass [Emek-Rosén’14]

> (More results in Indyk's talk)



Set Cover: Our Results'

Upper bound
» With p passes, semi-streaming space, get O(nl/(”+1))—appr0x
» Algorithm giving this approx based on very simple heuristic

» Deterministic

Lower bound

» Randomized

> In p passes, semi-streaming space, need Q(n/(P*1)/p?) space.

» Upper bound tight for all constant p

> Semi-streaming O(log n) approx requires Q(log n/ loglog n) passes

[Chakrabarti-Wirth'15]
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Progressive Greedy AIgorithmI

: procedure GREEDYPASS(stream o, threshold 7, set Sol, array Coverer)
for all (i,S) in o do
C < {x: Coverer[x] # 0} > the already covered elements
if |S\ C| > 7 then
Sol + Sol U {i}
for all x € S\ C do Coverer[x] < i

: procedure PROGGREEDYNAIVE(stream o, integer n, integer p > 1)
Coverer[l...n] < 0"; Sol + @

for j = 1 to p do GREEDYPASS(o, n' /P, Sol, Coverer)

output Sol, Coverer
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Consider p = 2 passes

» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
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Progressive Greedy: Analysis Idea'

Consider p = 2 passes

» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
» Second pass: Opt cover remaining items with sets of contrib < \/n

> Thus, Sol will cover the same using < /n|Opt| sets
But wait, this uses two passes for O(+/n) approx!

» Logic of last pass especially simple: add set if positive contrib

» Can fold this into previous one

Final result: p passes, O(n*/(P*1))-approx



Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]
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Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]

o o o [o] 0 0 e o o o o o o
(o o o [of @ <exX o) e o o o o o o

e o o (o o o\o e o o o o o o

.X o 0 0 o o Fq e o o o o o o >
\ n=gq

e oo e o o o e o o o o o o

o o X0 o o o e o o o o o o

(A L e o o o o o o

Ali sets Bob’s set

If Alice has Bob's missing line, then |Opt| = 2, else |Opt| > q
So ©(4/n) approx requires Q(#lines) = Q(n) space



Tree Pointer Jumping'

Multiplayer game TPJp,41 ; defined on complete (p + 1)-level t-ary tree

» Pointer to child at each internal level-i node (known to Player /)
> Bit at each leaf node (known to Player 1)

> Goal: output (whp) bit reached by following pointers from root

Level 3
Model: p rounds of communication

Level 2
Each round: (PIr1, PIr2, ..., Plr (p+1))

Level 1

100111001

Theorem: Longest message is Q(t/p?) bits [C.-Cormode-McGregor'08]



Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)P+1

................. Pointer encoded
as Xy \ Xy

[Xleafl = q [Xz n Xv| = 2p
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Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)P+1

> Universe FPt!
» Variety X, at node u

» u above v

= X, 2 X,
................. Pointer encoded ” Leaf z with bit =1
as Xy \ Xy encoded as set X,

[Xleafl = q [Xz n Xv| = 2p



Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)P+1

v

Universe ]Fg+1

Variety X, at node u

v

» u above v

= Xy 2 X,
____________ Pointer encoded  ” Leaf z with bit =1
as Xy \ Xy encoded as set X,
> If player 1 has the

missing variety, then
|Opt| = p+1, else
|Opt| > q/(2p)

[Xleafl = q [Xz n Xv| = 2p
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Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.
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» Coordinates (X, y1,y2,...,¥p)

» Equation at each edge of tree; at level /:

yi=ay1+ - ai—1yi-1 + aifpr1-i(x)
fi(x) = monic poly in F4[x] of degree p +

» Variety X, defined by equations on root-to-u path



Construction of an Edifice'

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

» Coordinates (x, y1,¥2,...,¥p)

» Equation at each edge of tree; at level /:

yi =ay1 + - ai—1yi-1 + aifpr1-i(x)
fi(x) = monic poly in Fg4[x] of degree p+ j
Cardinality bound via much simpler mathematics.

» Schwartz-Zippel lemma

» Linear independence arguments via row reduction



Final Remarks '

Combinatorial optimisation: old topic, but relatively new territory for
data stream algorithms
» Potential for many new research questions

> Stronger or more general results on submodular maximization? Some
new work in [Chekuri-Gupta-Quanrud'15]

» Lower bounds for submodular maximization?

» Fuller understanding of possible tradeoff for set cover?



