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Palindrome

A string which reads the same forwards and 
backwards.

Kayak

Level

Stressed?  No tips? Spit on desserts.

(tip your waiter!)



Goals/Model

 Find long(est) palindrome in a given sequence
 Ideally, with errors.  Currently, exact match, 

approximate length.
 Streaming model



Properties of Palindromes

P is a palindrome (eg AABBACCDDCCABBAA)

-- P consists of a string and its reverse on two 
sides of a midpoint.

    P= P
1
P

1

R    AABBACCD DCCABBAA

 -- P contains nested, smaller palindromes inside 
it with the same midpoint.

       AABBACCDDCCABBAA 
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Find palindromes in given text:

A  A B A C A D D A C A B D A B A C

 



Palindromes 

Find palindromes in given text:

A  A B A C A D D A C A B D A B A C

What about these?

Find  long palindromes.  (longest?)
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Observations and Definitions

A  A B A C A D D A C A B D A B A C

                        m

P[m] denotes the maximal length palindrome centered 
at index m; its length is l(m).

The first half of the palindrome is the inverse of the 
second half.



Odd Length Palindromes

What about palindromes such as

A B C D C B A?

Where is the midpoint?

Simple fix: double all letters.

A A B B C C D D C C B B A A 

Length is doubled, palindromes are doubled.

Complexity not changed.
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Observations and Definitions

A  A B A C A D D A C A B D A B A C

                        m

Palindromes show a “nested” structure.

Our goal is to find the maximal palindromes.  

Compromise: find close to maximal
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  Commonly used in streaming string algorithms
  Can be combined/separated efficiently
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Rabin-Karp Fingerprints

  Commonly used in streaming string algorithms
  Can be combined/separated efficiently

  Trivial to keep running fingerprints of 
substrings and their reversals

a b

ab

f(a)

f(ab)

f(b)



Computation of KR-Fingerprints

S is a string of length k.

Given prime p � {n4,n4} and a random

r � {1,...,p},

    Φ
r,p

(S) =Σ
i=1..k 

(S[i] ∙ ri) mod r



Manipulating KR-Fingerprints

S = a b c d e f               S' = b c d e f g

Given Φ(S), how do we get Φ(S')?

Let S'' = a b c d e f g

Φ(S) =Σ
i=1..k 

(S[i] ∙ ri) mod r

Φ(S'') = ( Φ(S) +  g ∙ ri ) mod r

Φ(S') = ( Φ(S'') -  a ∙ r ) / r mod r
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First Algorithm

Given S of length n:

Finds all palindromes in S.

Lengths of these palindromes are approximated to  
an additive ε√n factor.

Space usage is O( √n/ε).



How?

Let X' denote the reverse of a string X.

Any palindrome P is of the form XX'.

Guess the midpoint, compare fingerprints of 
substrings before the midpoint to those after.

  A B C D A A B B A A D C B C C C  



Short Palindromes, Long Palindromes

We run a sliding window of length √n along S.

A short palindrome is length at most √n.

Easily found since it fits within the window.

A long palindrome must contain a short 
palindrome, so we can generate “candidates.” 



Long Palindrome Candidates

Window size = 6

Palindrome detected in window.

Size = 6, thus potential to be long.  

A B C A D C C D B B D C C D A C D A 
 



Growing A Palindrome

4 characters later...

If we could compare the contents of the braces, 
we would note that there is a long palindrome.

But we cannot keep track of every substring.

A B C A D C C D B B D C C D A C D A 
 



Keeping Track

Insert a checkpoint every ε√n locations.

Remember the substring between every adjacent 
pair of checkpoints.

Altogether, O(√n/ε) space.

Can reconstruct any substring of S with some loss
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Keeping Track

Insert a checkpoint every ε√n locations.

Remember the substring between every adjacent 
pair of checkpoints.

Altogether, O(√n/ε) space.

Can reconstruct any substring of S with some loss

How much loss?

O(√n/ε) characters lost at each end of S if 
endpoints of S fall between checkpoints.

 

                   
  



More Keeping Track

For every candidate midpoint m, store the 
substring up to m.

Store prefix up to current character

Store everything forward and backward (not 
really necessary)



Space Needs

Checkpointing not too bad.

Storing midpoints is potentially a problem.

We could be storing up to linear midpoints.

More on midpoint storage later.



“Growing” A Palindrome

When we first notice a long palindrome, its size 
is exactly the same as the sliding window.

As we go, we “grow” our palindrome.

Once we can't grow anymore, we report it in 
terms of its

- Midpoint (we need to be exact)

- Length (we can underestimate a bit)



“Growing” A Palindrome

The blue box is a known candidate palindrome 
centered at point m.  We would like to grow this 
palindrome if possible.

This can only be done when we are at point m+d, 
where m-d is a checkpoint.

  

                  m-d                m                    m+d

                                                    



“Growing” A Palindrome

We can reconstruct the string from a midpoint m 
to any checkpoint that comes before it (say at 
distance d).

At location m+d, we check the d spots before 
and after m: is P' reverse of P?

     

                  m-d                m                    m+d

                         P'                           P 



Approximation

     

                   

Any palindrome we detect necessarily starts at a 
checkpoint.

If the left endpoint of a palindrome falls between 
two checkpoints, the portion until the first 
checkpoint is missed.



Approximation

     

                   

Any palindrome we detect necessarily starts at a 
checkpoint.

If the left endpoint of a palindrome falls between 
two checkpoints, the portion until the first 
checkpoint is missed.



Approximation Analysis

The distance between successive checkpoints is 
ε√n, which is an upper bound on the additive 
error.  



How Much Space?

We store O(√n/ε) fingerprints for everything 
except the midpoints.  

Midpoints need to be stored as long as the 
palindrome around them is growing. There 
could be a linear number. 

If any point is covered by a constant number of 
palindromes, we can process them separately.

It is possible that each character is in a linear 
number of palindromes.  BAD!



How Much Space?

If a point lies under many palindromes, these 
palindromes must be overlapping in a major 
way.

In pattern matching, overlaps are well 
understood -- they can occur in very specific 
ways and overlapping patterns can be 
compressed due to periodicity.

Overlapping palindromes show a very distinct 
pattern as well. 



Overlapping Palindromes

ABBAABBAABBAABBAABBAABBAABBAABBA

Palindromes cannot overlap arbitrarily.

If they do, they show a periodic pattern.



Simple Example on Patterns

On general strings, studied in [PP,EJ,GB]

A B C D B C D B C D B B C D B C D B C K L

Simplified view: a pattern can overlap with 
another copy of itself either at periodic 
intervals, or at most once. 



More on Overlaps

A B C D B C D B C D B B C D B C D B C K L

Closely spaced (n/2 or closer) overlaps are 
indicators of a periodic string.

A periodic string can be summarized as:

Length, period/length of period, #repeats, suffix 

(10, BCD, 3, B).

Then we can reconstruct substrings of the string 
on the fly.  



What about Overlapping 
Palindromes ?

A run is a contiguous sequence of midpoints with 
“small” distance between them.

A run must have the following form:

                 w w' w w' w w' w w'...

Where w is a short substring and w' is its 
reverse.

A run can be remembered and reconstructed on 
the fly using constant space.



So, Ultimately...

 Short palindromes: they fit in the sliding window, 

 Long palindromes, one of two cases:

They are far apart and we don't have too many;   
     we can process them in O(1) space

They are close together, then they form a run;  
we can store in O(1) space again.

In either case we do not need to keep too many 
midpoints.



Final Theorem

We can return all palindromes in stream S of 
length n in one pass using √n/ε space, where 
the lengths of the palindromes are 
underestimated by at most ε√n. 
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What Can We Obtain from One More 
Pass?

Adding one more pass to our algorithm yields an 
exact algorithm that returns the following in 
O(√n) space:

 A value l
max 

which is the length of the longest 

palindrome in S

 All palindromes of length l
max 

in S.

 



An Exact Algorithm

     

                   

Recall: our error due to left endpoints falling 
between checkpoints.

To fix this error, we need to remember this 
section that we never track.

Remember first turquoise, compare with second 
turquoise.



Outline of Exact Algorithm

During the first pass, make note of palindromes 
that span the largest number of checkpoints.

During the second pass, pay more attention to 
each such palindrome: remember the intervals 
at both their ends (for runs, it suffices to 
remember the palindrome in the middle only).

Calculating the lengths exactly this way will not 
increase asymptotic space.
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A Logspace Algorithm

A slightly different question:

Find the (approximately) longest palindrome in 
stream S of length n.

Accuracy: of length at least l
max 

/(1+ε)

in space O(log n/εlog(1+ε)).

We may not return the longest palindrome, but 
one which is very close.



Intuition

Why is the previous algorithm space inefficient? 
It keeps track of many checkpoints.

If we reduce the number of checkpoints to 
logarithmic, additive error will jump to n/log n.

We will space checkpoints at exponentially 
dropping intervals as distance from current 
location grows.



Exponentially Increasing Intervals

Technique used in many disguises in 
approximation algorithms:

As the potential length of a palindrome grows, so 
 does the size of allowed multiplicative error.  
We will thus use sparser checkpoints for longer 
palindromes.



Checkpoint Layers:
X

  x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x      S 

 x x  x x x x x x x x x x x x x x x x x x x x x x x x x x x   x  x x x x     Level 1 

x x x  x x x x x x x x x x x x x x x x x x x x x x  x x x x x x x x x        Level 2 

x x x  x x x x x xx x x x x xx x x x x x x x x x x x x x x x x x x x        Level 3

x x x   x x x x x x x x x x x x x x x x x x x x x x x x x                         Level 4

x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x        Level 5

x x  x  x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x        Level 6

   



Space Use

In each layer we have four checkpoints.

Palindromes in each layer can be compressed 
as before (checkpointing is the main reason for 
space usage)

We have a logarithmic number of layers.

Space required is O(log n).
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Lower Bound

Additive √n-approximation to the longest 
palindrome requires √n space.

How? 

For deterministic, generate a distribution whose 
inputs need to be separated.

Use Yao's technique to convert into randomized 
lower bound. 



Wish List/Future Work

A simpler technique exists which does not 
change complexity.

Palindromes with mismatches: what we would 
like for real applications.  Hamming, and finally, 
Edit Distance.

Other structures than palindromes/generalized 
palindromes.



Thank youoy knahT
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