
Palindrome Recognition
in the Streaming Model

P. Berenbrink, F. Ergun, F. Mallmann-Tren, E. Sadeqi-Azer

Palindrome

A string which reads the same forwards and
backwards.

Palindrome

A string which reads the same forwards and
backwards.

Kayak

Level

Palindrome

A string which reads the same forwards and
backwards.

Kayak

Level

Stressed? No tips? Spit on desserts.

(tip your waiter!)

Goals/Model

 Find long(est) palindrome in a given sequence
 Ideally, with errors. Currently, exact match,

approximate length.
 Streaming model

Properties of Palindromes

P is a palindrome (eg AABBACCDDCCABBAA)

-- P consists of a string and its reverse on two
sides of a midpoint.

 P= P
1
P

1

R AABBACCD DCCABBAA

 -- P contains nested, smaller palindromes inside
it with the same midpoint.

 AABBACCDDCCABBAA

Finding Palindromes

Find palindromes in given text:

A A B A C A D D A C A B D A B A C

Palindromes

Find palindromes in given text:

A A B A C A D D A C A B D A B A C

What about these?

Find long palindromes. (longest?)

Outline

 Preliminaries, observations
 An additive-error approximation
 An exact algorithm
 A multiplicative error approximation
 A quick look at a lower bound

Observations and Definitions

A A B A C A D D A C A B D A B A C

 m

P[m] denotes the maximal length palindrome centered
at index m; its length is l(m).

The first half of the palindrome is the inverse of the
second half.

Odd Length Palindromes

What about palindromes such as

A B C D C B A?

Where is the midpoint?

Simple fix: double all letters.

A A B B C C D D C C B B A A

Length is doubled, palindromes are doubled.

Complexity not changed.

Observations and Definitions

A A B A C A D D A C A B D A B A C

 m

Palindromes show a “nested” structure.

Observations and Definitions

A A B A C A D D A C A B D A B A C

 m

Palindromes show a “nested” structure.

Observations and Definitions

A A B A C A D D A C A B D A B A C

 m

Palindromes show a “nested” structure.

Our goal is to find the maximal palindromes.

Compromise: find close to maximal

Rabin-Karp Fingerprints

 Commonly used in streaming string algorithms
 Can be combined/separated efficiently

a b

ab

f(a)

f(ab)

f(b)

Rabin-Karp Fingerprints

 Commonly used in streaming string algorithms
 Can be combined/separated efficiently

 Trivial to keep running fingerprints of
substrings and their reversals

a b

ab

f(a)

f(ab)

f(b)

Computation of KR-Fingerprints

S is a string of length k.

Given prime p � {n4,n4} and a random

r � {1,...,p},

 Φ
r,p

(S) =Σ
i=1..k

(S[i] ∙ ri) mod r

Manipulating KR-Fingerprints

S = a b c d e f S' = b c d e f g

Given Φ(S), how do we get Φ(S')?

Let S'' = a b c d e f g

Φ(S) =Σ
i=1..k

(S[i] ∙ ri) mod r

Φ(S'') = (Φ(S) + g ∙ ri) mod r

Φ(S') = (Φ(S'') - a ∙ r) / r mod r

Outline

 Preliminaries, observations
 An additive-error approximation
 An exact algorithm
 A multiplicative error approximation
 A quick look at a lower bound

First Algorithm

Given S of length n:

Finds all palindromes in S.

Lengths of these palindromes are approximated to
an additive ε√n factor.

Space usage is O(√n/ε).

How?

Let X' denote the reverse of a string X.

Any palindrome P is of the form XX'.

Guess the midpoint, compare fingerprints of
substrings before the midpoint to those after.

 A B C D A A B B A A D C B C C C

Short Palindromes, Long Palindromes

We run a sliding window of length √n along S.

A short palindrome is length at most √n.

Easily found since it fits within the window.

A long palindrome must contain a short
palindrome, so we can generate “candidates.”

Long Palindrome Candidates

Window size = 6

Palindrome detected in window.

Size = 6, thus potential to be long.

A B C A D C C D B B D C C D A C D A

Growing A Palindrome

4 characters later...

If we could compare the contents of the braces,
we would note that there is a long palindrome.

But we cannot keep track of every substring.

A B C A D C C D B B D C C D A C D A

Keeping Track

Insert a checkpoint every ε√n locations.

Remember the substring between every adjacent
pair of checkpoints.

Altogether, O(√n/ε) space.

Can reconstruct any substring of S with some loss

 c
1

 c
2

c
3

c
4

Keeping Track

Insert a checkpoint every ε√n locations.

Remember the substring between every adjacent
pair of checkpoints.

Altogether, O(√n/ε) space.

Can reconstruct any substring of S with some loss

How much loss?

O(√n/ε) characters lost at each end of S if
endpoints of S fall between checkpoints.

More Keeping Track

For every candidate midpoint m, store the
substring up to m.

Store prefix up to current character

Store everything forward and backward (not
really necessary)

Space Needs

Checkpointing not too bad.

Storing midpoints is potentially a problem.

We could be storing up to linear midpoints.

More on midpoint storage later.

“Growing” A Palindrome

When we first notice a long palindrome, its size
is exactly the same as the sliding window.

As we go, we “grow” our palindrome.

Once we can't grow anymore, we report it in
terms of its

- Midpoint (we need to be exact)

- Length (we can underestimate a bit)

“Growing” A Palindrome

The blue box is a known candidate palindrome
centered at point m. We would like to grow this
palindrome if possible.

This can only be done when we are at point m+d,
where m-d is a checkpoint.

 m-d m m+d

“Growing” A Palindrome

We can reconstruct the string from a midpoint m
to any checkpoint that comes before it (say at
distance d).

At location m+d, we check the d spots before
and after m: is P' reverse of P?

 m-d m m+d

 P' P

Approximation

Any palindrome we detect necessarily starts at a
checkpoint.

If the left endpoint of a palindrome falls between
two checkpoints, the portion until the first
checkpoint is missed.

Approximation

Any palindrome we detect necessarily starts at a
checkpoint.

If the left endpoint of a palindrome falls between
two checkpoints, the portion until the first
checkpoint is missed.

Approximation Analysis

The distance between successive checkpoints is
ε√n, which is an upper bound on the additive
error.

How Much Space?

We store O(√n/ε) fingerprints for everything
except the midpoints.

Midpoints need to be stored as long as the
palindrome around them is growing. There
could be a linear number.

If any point is covered by a constant number of
palindromes, we can process them separately.

It is possible that each character is in a linear
number of palindromes. BAD!

How Much Space?

If a point lies under many palindromes, these
palindromes must be overlapping in a major
way.

In pattern matching, overlaps are well
understood -- they can occur in very specific
ways and overlapping patterns can be
compressed due to periodicity.

Overlapping palindromes show a very distinct
pattern as well.

Overlapping Palindromes

ABBAABBAABBAABBAABBAABBAABBAABBA

Palindromes cannot overlap arbitrarily.

If they do, they show a periodic pattern.

Simple Example on Patterns

On general strings, studied in [PP,EJ,GB]

A B C D B C D B C D B B C D B C D B C K L

Simplified view: a pattern can overlap with
another copy of itself either at periodic
intervals, or at most once.

More on Overlaps

A B C D B C D B C D B B C D B C D B C K L

Closely spaced (n/2 or closer) overlaps are
indicators of a periodic string.

A periodic string can be summarized as:

Length, period/length of period, #repeats, suffix

(10, BCD, 3, B).

Then we can reconstruct substrings of the string
on the fly.

What about Overlapping
Palindromes ?

A run is a contiguous sequence of midpoints with
“small” distance between them.

A run must have the following form:

 w w' w w' w w' w w'...

Where w is a short substring and w' is its
reverse.

A run can be remembered and reconstructed on
the fly using constant space.

So, Ultimately...

 Short palindromes: they fit in the sliding window,

 Long palindromes, one of two cases:

They are far apart and we don't have too many;
 we can process them in O(1) space

They are close together, then they form a run;
we can store in O(1) space again.

In either case we do not need to keep too many
midpoints.

Final Theorem

We can return all palindromes in stream S of
length n in one pass using √n/ε space, where
the lengths of the palindromes are
underestimated by at most ε√n.

Outline

 Preliminaries, observations
 An additive-error approximation
 An exact algorithm
 A multiplicative error approximation
 A quick look at a lower bound

What Can We Obtain from One More
Pass?

Adding one more pass to our algorithm yields an
exact algorithm that returns the following in
O(√n) space:

 A value l
max

which is the length of the longest

palindrome in S

 All palindromes of length l
max

in S.

An Exact Algorithm

Recall: our error due to left endpoints falling
between checkpoints.

To fix this error, we need to remember this
section that we never track.

Remember first turquoise, compare with second
turquoise.

Outline of Exact Algorithm

During the first pass, make note of palindromes
that span the largest number of checkpoints.

During the second pass, pay more attention to
each such palindrome: remember the intervals
at both their ends (for runs, it suffices to
remember the palindrome in the middle only).

Calculating the lengths exactly this way will not
increase asymptotic space.

Outline

 Preliminaries, observations
 An additive-error approximation
 An exact algorithm
 A multiplicative error approximation
 A quick look at a lower bound

A Logspace Algorithm

A slightly different question:

Find the (approximately) longest palindrome in
stream S of length n.

Accuracy: of length at least l
max

/(1+ε)

in space O(log n/εlog(1+ε)).

We may not return the longest palindrome, but
one which is very close.

Intuition

Why is the previous algorithm space inefficient?
It keeps track of many checkpoints.

If we reduce the number of checkpoints to
logarithmic, additive error will jump to n/log n.

We will space checkpoints at exponentially
dropping intervals as distance from current
location grows.

Exponentially Increasing Intervals

Technique used in many disguises in
approximation algorithms:

As the potential length of a palindrome grows, so
 does the size of allowed multiplicative error.
We will thus use sparser checkpoints for longer
palindromes.

Checkpoint Layers:
X

 x S

 x x x x x x x x Level 1

x x x x x x x x x x x x x Level 2

x x x x x x x x xx x x x x xx Level 3

x x x x Level 4

x x x xx Level 5

x x x x Level 6

Space Use

In each layer we have four checkpoints.

Palindromes in each layer can be compressed
as before (checkpointing is the main reason for
space usage)

We have a logarithmic number of layers.

Space required is O(log n).

Outline

 Preliminaries, observations
 An additive-error approximation
 An exact algorithm
 A multiplicative error approximation
 A quick look at a lower bound

Lower Bound

Additive √n-approximation to the longest
palindrome requires √n space.

How?

For deterministic, generate a distribution whose
inputs need to be separated.

Use Yao's technique to convert into randomized
lower bound.

Wish List/Future Work

A simpler technique exists which does not
change complexity.

Palindromes with mismatches: what we would
like for real applications. Hamming, and finally,
Edit Distance.

Other structures than palindromes/generalized
palindromes.

Thank youoy knahT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

