Distributed Submodular Maximization in Massive Datasets

Alina Ene

Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward
Combinatorial Optimization

• Given
 – A set of objects V
 – A function f on subsets of V
 – A collection of feasible subsets I

• Find
 – A feasible subset of I that maximizes f

• Goal
 – Abstract/general f and I
 – Capture many interesting problems
 – Allow for efficient algorithms
Submodularity

We say that a function $f : 2^V \rightarrow \mathbb{R}_+$ is submodular if:

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$$

We say that f is monotone if:

$$f(A) \leq f(B), \ \forall A \subseteq B$$

Alternatively, f is submodular if:

$$f(A \cup \{x\}) - f(A) \geq f(B \cup \{x\}) - f(B)$$

for all $A \subseteq B$ and $x \notin B$

Submodularity captures diminishing returns.
Submodularity

Examples of submodular functions:

– The number of elements covered by a collection of sets
– Entropy of a set of random variables
– The capacity of a cut in a directed or undirected graph
– Rank of a set of columns of a matrix
– Matroid rank functions
– Log determinant of a submatrix
Example: Multimode Sensor Coverage

• We have distinct locations where we can place sensors
• Each sensor can operate in different modes, each with a distinct coverage profile
• Find sensor locations, each with a single mode to maximize coverage
Example: Identifying Representatives In Massive Data
Example: Identifying Representative Images

- We are given a huge set X of images.
- Each image is stored multidimensional vector.
- We have a function d giving the difference between two images.
- We want to pick a set S of at most k images to minimize the loss function:

$$ L(S) = \frac{1}{|X|} \sum_{e \in X} \min_{r \in S} d(e, r) $$

- Suppose we choose a distinguished vector e_0 (e.g. 0 vector), and set:

$$ f(S) = L(\{e_0\}) - L(S \cup \{e_0\}) $$

- The function f is submodular. Our problem is then equivalent to maximizing f under a single cardinality constraint.
Need for Parallelization

• Datasets grow very large
 – TinyImages has 80M images
 – Kosarak has 990K sets

• Need multiple machines to fit the dataset

• Use parallel frameworks such as MapReduce
Problem Definition

• Given set V and submodular function f
• Hereditary constraint I (cardinality at most k, matroid constraint of rank k, ...)
• Find a subset that satisfies I and maximizes f

Parameters
– n = |V|
– k : max size of feasible solutions
– m : number of machines
Greedy Algorithm

Initialize $S = \{\}$

While there is some element x that can be added to S:

Add to S the element x that maximizes the marginal gain $f(S \cup \{x\}) - f(S)$

Return S
Greedy Algorithm

- Approximation Guarantee:
 - $1 - 1/e$ for a cardinality constraint
 - $1/2$ for a matroid constraint

- Runtime: $O(nk)$
 - Need to recompute marginals each time an element is added
 - Not good for large data sets
Distributed Greedy

Mirzasoleiman, Karbasi, Sarkar, Krause '13
Performance of Distributed Greedy

- Only requires 2 rounds of communication
- Approximation ratio is:
 \[
 \frac{(1 - \frac{1}{e})^2}{\min(m, k)}
 \]
 (where m is number of machines)
- If we use the **optimal algorithm** on each machine in both phases, we can still only get:
 \[
 \frac{1}{\min(m, k)}
 \]
Performance of Distributed Greedy

• If we use the optimal algorithm on each machine in both phases, we can still only get:

\[
\frac{1}{\min(m, k)}
\]

• In fact, we can show that using greedy gives:

\[
O \left(\frac{1}{\sqrt{\min(m, k)}} \right)
\]

• Why?
 – The problem doesn't have optimal substructure.
 – Better to run greedy in round 1 instead of the optimal algorithm.
Revisiting the Analysis

• Can construct bad examples for Greedy/optimal

• Lower bound for any poly(k) coresets (Indyk et al. ’14)

• Yet the distributed greedy algorithm works very well on real instances

• Why?
Power of Randomness

• Randomized distributed Greedy
 – Distribute the elements of V randomly in round 1
 – Select the best solution found in rounds 1 & 2

• Theorem: If Greedy achieves a C approximation, randomized distributed Greedy achieves a C/2 approximation in expectation.
Intuition

• If elements in OPT are selected in round 1 with high probability
 – Most of OPT is present in round 2 so solution in round 2 is good

• If elements in OPT are selected in round 1 with low probability
 – OPT is not very different from typical solution so solution in round 1 is good
Analysis (Preliminaries)

• Greedy Property:
 – Suppose:
 • x is not selected by greedy on $S \cup \{x\}$
 • y is not selected by greedy on $S \cup \{y\}$
 – Then:
 • x and y are not selected by greedy on $S \cup \{x, y\}$

• Lovasz extension \hat{f}: convex function on $[0,1]^V$ that agrees with f on integral vectors.
Analysis (Sketch)

• Let X be a random $1/m$ sample of V
• For e in OPT, let p_e be the probability (over choice of X) that e is selected by Greedy on $X \cup \{e\}$
• Then, expected value of elements of OPT on the final machine is $\hat{f}(p)$
• On the other hand, expected value of rejected elements is $\hat{f}(1_{\text{OPT}} - p)$
Analysis (Sketch)

The final greedy solution T satisfies:

$$\mathbb{E}[f(T)] \geq \alpha \cdot \hat{f}(p)$$

The best single machine solution S satisfies:

$$\mathbb{E}[f(S)] \geq \alpha \cdot \hat{f}(1_{OPT} - p)$$

Altogether, we get an approximation in expectation of:

$$\frac{\alpha}{2}$$
Generality

• What do we need for the proof?
 – Monotonicity and submodularity of \(f \)
 – Heredity of constraint
 – Greedy property

• The result holds in general any time greedy is an \(\alpha \)-approximation for a hereditary, constrained submodular maximization problem.
Non-monotone Functions

• In the first round, use Greedy on each machine
• In the second round, use any algorithm on the last machine
• We still obtain a constant factor approximation for most problems
Tiny Image Experiments

(n = 1M, m = 100)
It's better to distribute ellipses from each location across several machines!
Future Directions

• Can we relax the greedy property further?
• What about non-greedy algorithms?
• Can we speed up the final round, or reduce the number machines required?
• Better approximation guarantees?