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Matchings in Graphs 

Matching: A set of edges in a graph such that every vertex  

has at most one edge incident on it. 

 

 

 

 

Maximum Matching Problem: Find a matching with a largest 

number of edges.  

Perfect Matching: Every vertex is in the matching.  



The Streaming Model 

Introduced in the seminal work of [Alon, Matias, Szegedy’96].  

 

 Input is presented as a data stream, for instance, as a 
sequence of edges in case of a graph input. 

 Algorithm sees the entire input once but has only a small 
space to store information about the input. 

 At the end of the sequence, the algorithm outputs a 
solution using the stored information. 

 

Focus of this talk: sub-linear space streaming algorithms for 
computing approximate matchings. 

 

 

 

 



Matchings in the Streaming Model 

Insertions-only Streams 

 Edges of the graph arrive one by one in a stream.  

 

Dynamic Graph Streams 

 Edges of the graph are inserted/deleted one by one in a 
stream, where no edge is deleted before it is inserted.  

 

We will focus only on single-pass streams. 

 

 

 



Matching in Graph Streams 

Insertion-only streams: 

 Exact computation requires Ω(n2) space [Feigenbaum, et.al ’05]. 

 2-approximation in O(n) space is trivial but no better than 2-
approximation is known in o(n2) space.  

 In the random order model, (2-δ)-approximation (δ ≈ 0.02) in 
O(n) space [Konrad, Maginez, Mathew ’12]. 

 Beating (e/e-1)-approximation requires n1+Ω(1/loglog n) space [Goel, 
Kapralov, K ’12],[Kapralov ’13].  

 

Dynamic graph streams:  
 Until recently, no non-trivial results were known for single-pass 

dynamic streams. 

 

 

 
 

 

 



Linear Sketches 

 

 For a graph G with n vertices: 

 Let f denote the n2-dimensional vector of edge 
multiplicities. 

 Let A be an r×n2-dimensional matrix (possibly 
randomly chosen) for some parameter r.  

 We refer to Af as a linear sketch of G – this is an r-
dimensional vector. 

 Space needed to store the graph is reduced from 
O(n2) to O(r).  

 
 



Linear Sketches 

Application to dynamic graph streams 

 Algorithm dynamically maintains a linear sketch Af of 
the graph as it is being revealed.  

 On each update, i.e, insertion or deletion of an edge 
e: Af  = Af  ± A1e . 

 Space requirement is O(r) (+ random bits for implicitly 
storing A). 

 At the end of the stream, the algorithm applies an 
arbitrary function to Af, to compute the final answer.  

 

Essentially all existing dynamic graph streaming algorithms 
are linear sketching algorithms. 

 

 

 

 



Our Results 

We study the power of linear sketching algorithms for 
approximating matchings in dynamic graph streams. 

 

 For any 0< ε ≤ 1/2, there is an Õ(n2-3ε) space randomized 
linear sketching algorithm to compute an nε-approximate 
matching in dynamic graph streams. For each edge 
insertion/deletion, the update time is Õ(1) . 

 

 For any ε > 0, any (randomized) linear sketch that can be 
used to recover an nε-approximate maximum matching 
requires  n2-3ε-o(1) space. 

 

 

 

 



Recent Related Work 

Two recent results obtained independently and concurrently.  

 

 [Konrad ’15] For (randomized) linear sketches of nε-
approximate maximum matching: 

 O(n2-2ε) space is sufficient. 

  Ω(n3/2 - 4ε) space is necessary.  

 

 [Chitnis, Cormode, Esfandiari, Hajiaghayi, McGregor, 
Monemizadeh, Vorotnikova ’15] For any 0< ε ≤ 1/2, there is 
an O(n2-3ε)-space randomized linear sketching algorithm to 
compute an nε-approximate matching.  

 

  



nε-Approximation for Matchings 

Theorem For any 0< ε ≤ 1/2, there is an Õ(n2-3ε) space 

algorithm to find an nε-approximate matching in dynamic 

graph streams.  
 

 The algorithm maintains a linear sketch. 

 

 We can restrict our attention to bipartite graphs w.l.o.g.  

 

 For simplicity, assume there is a perfect matching M* in the 
input bipartite graph G(L, R, E). 

 



l0-Sampler 

Input: A stream of insertions and deletions over a set of  

elements (e.g., edges of a graph). 

Goal: Among all the elements whose l0-norm of the  

multiplicities is nonzero, output one uniformly at random. 

 

Theorem [Jowhari, Sağlam, Tardos ’11] For any 0 < δ < 1, there 

is a linear sketching implementation of l0-sampler for a set of 

n elements, with probability of success 1 − δ, using  

O(log2n · log (δ−1 )) bits of space.  

 

Plan: Maintain a sample of edges that has a large matching. 
 



nε nε 

Warm-up: an Õ(n2-2ε) space Algorithm 

 Randomly group the vertices in L (resp. R) into groups Li ’s 
(resp. Rj ’s)of size nε each. Treat each group as a vertex -- 
this leads to a new graph G’. 

L R Li Rj 

nε nε 

nε nε 

nε nε 

n1-ε 

G G’ 



nε nε 

Warm-up: an Õ(n2-2ε) space Algorithm 

G’ has a perfect matching: the perfect matching M* in G forms 

an nε-regular bipartite (multi-)graph in G’ and hence G’ must 

contain a perfect matching of size n1-ε. 

 

nε nε 

nε nε 

nε nε 

n1-ε 
M* 

L R Li Rj 

G G’ 



nε nε 

Warm-up: an Õ(n2-2ε) space Algorithm 

Find a perfect matching in G’: For each pair of groups, maintain  

an l0-sampler for edges between them.  

 This requires Õ(n2-2ε) space.  

 Note that so far, random grouping was not necessary. 

 

 

nε nε 
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Improving to Õ(n2-3ε) space 

For each Li, it suffices to find one Rj uniformly at random from 

the Rj’s that are matchable to Li (connected by an edge in M*). 

 For the nε -regular bipartite graph induced by M*, for 
each vertex, picking one neighbor uniformly at random 
gives a matching of size Ω(n1-ε).  

 How to implement this? 

Rj’s 

Ω(nε)  

Randomly pick  
one matchable  
Rj. 

G’ Li 



Improving to Õ(n2-3ε) space 

Algorithm: 

  For each Li, pick O(n1-2ε) Rj’s uniformly at random, and 
maintain an l0-sampler for the edges between Li and 
each picked Rj.  

 

Analysis: 

 For each Li, Ω(nε) Rj’s are matchable. 

 When Li picks an Rj uniformly at random, the probability 
of picking a matchable Rj is Ω(nε/n1- ε) = Ω(1/n1- 2ε). 

 Conditioned on the event that Li picked at least one 
matchable Rj, the matchable Rj chosen by Li is uniformly 
at random. 



Recap: An Õ(n2-3ε) space Algorithm 

nε nε 

Group vertices  
in L and R. nε nε 

nε nε 

nε nε 

n1-ε 

nε nε 

nε nε 

nε nε 

nε nε 

Each Li picks O(n1-2ε) 
Rj’s and maintain  
l0-samplers. O(n1-2ε) 

l0-samplers 

L R 
G Li Rj 

G’ 

n1-ε 

Li Rj 



Lower Bound for nε-Approximation 

Theorem. For any ε > 0, any randomized linear sketch that  

can be used to recover an nε-approximate matching of a 

bipartite graph requires  n2-3ε-o(1) space. 

 

 
 

 



Our Approach  

 We prove this lower bound, using simultaneous 
communication complexity: 

 The graph is partitioned between k players P1,…,Pk. 

 There exists another party, called the coordinator. 

 Players P1,…,Pk simultaneously send a message to the 
coordinator. 

 Communication measure: maximum # of bits sent by 
any player.  

 Players have access to public random coins. 

 

A communication lower bound in this model implies an 
identical space lower bound for linear sketching algorithms.  

 
  
 

 



Connection to Linear Sketches 

Proposition [folklore]. If there exists a linear sketch A of  

size s for a problem P, then simultaneous communication 
complexity of P is at most O(s).  

 

Proof. 

1. Players construct A using public random coins. 

2. Let xi denote the input of player Pi. Each player Pi 
computes A(xi) and sends it to the coordinator. 

3. Coordinator computes A(x) = A(x1+…+xk) = A(x1) + … + 
A(xk) (by linearity) and uses A(x) to solve P.  

 
 

 

 



Ruzsa-Szemerédi graphs 

 

(r,t)-RS graphs: A graph whose edges can be partitioned into 
t induced matchings of size r.  

 

Example: A (2,4)-RS graph on 8 vertices. 
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(r,t)-RS graphs: A graph whose edges can be partitioned into 
t induced matchings of size r each. 

 

Example: A (2,4)-RS graph on 8 vertices. 
 

 
 

 

 



Ruzsa-Szemerédi Graphs 

 

(r,t)-RS graphs: A graph whose edges can be partitioned into 
t induced matchings of size r each. 
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Ruzsa-Szemerédi Graphs 

 

(r,t)-RS graphs: A graph whose edges can be partitioned into 
t induced matchings of size r each. 

 

Example: A (2,4)-RS graph on 8 vertices. 
 

 
 

 

 



Ruzsa-Szemerédi Graphs 

 

(r,t)-RS graphs: A graph whose edges can be partitioned into 
t induced matchings each of size r each. 

 

Example: A (2,4)-RS graph on 8 vertices. 
 

 
 

 

 



Ruzsa-Szemerédi Graphs 

Theorem [Alon, Moitra, Sudakov ’12] There exists an (r,t)-RS 
graph on N vertices and Ω(N2) edges with r = N1-o(1) and t = 
Ω(N). 

 
 

 
 

 

 



 n2-3ε-o(1) Lower Bound: Distribution 

Hard distribution: 

1. Each of the k players is given an 
(r,t)-RS graph on N vertices with 
half the edges dropped 
randomly. 

  
 

 
 

 

Pi 

Local view 

   (k = nε+o(1) , n ≈ k.N, r = N1-o(1), t =Ω(N).) 
 



 n2-3ε-o(1) Lower Bound: Distribution 

Hard distribution: 

1. Each of the k players is given an 
(r,t)-RS graph on N vertices with 
half the edges dropped 
randomly. 

2. One of the induced matchings 
(red edges) is special, unknown 
to the player. 

 

 
 

 
 

 

Pi 

Hidden matching 

  (k = nε+o(1) , n ≈ k.N, r = N1-o(1), t =Ω(N).) 



 n2-3ε-o(1) Lower Bound: Distribution 

Hard distribution: 

1. Each of the k players is given an 
(r,t)-RS graph on N vertices with 
half the edges dropped 
randomly.  

2. One of the induced matchings 
(red edges) is special, unknown 
to the player. 

3. Across the players, vertices in the 
special matchings are unique, 
while other vertices are shared. 

 

 
 

 

 

Global view 

  (k = nε+o(1) , n ≈ k.N, r = N1-o(1), t =Ω(N).) 



 n2-3ε-o(1) Lower Bound: Distribution 
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  (k = nε+o(1) , n ≈ k.N, r = N1-o(1), t =Ω(N).) 



 n2-3ε-o(1) Lower Bound: Proof Sketch 

 

Call a matching M trivial if it only 
contains O(N) edges in total from the 
special matchings (red edges). 

 

Claim 1. A trivial matching is an Ω(nε)-
approximate maximum matching.  

 

Claim 2. If each player sends o(N2/nε)  
bits, the coordinator can only output 
a trivial matching. 

 
 

 
 

 

Global view 

  (k = nε+o(1) , n ≈ k.N, r = N1-o(1), t =Ω(N).) 



Concluding Remarks 

 

 For any 0< ε ≤ 1/2, we showed that n2-3ε±o(1) space is both 
sufficient and necessary for any linear sketching 
algorithm that computes an O(nε)-approximate 
maximum matching in dynamic graph streams.     

    

 For any 1/2 < ε ≤ 1, n1-ε±o(1) space is both sufficient and 
necessary for any linear sketching algorithm that 
computes an O(nε)-approximate maximum matching in 
dynamic graph streams.     

 

                                                                                                          
 

 



Concluding Remarks 

 

 Recent work of [Li, Nguyen, Woodruff ’14] and of [Ai, Hu, 
Woodruff ’15] show that our lower bounds also imply a 
lower bound for any dynamic graph streaming algorithm.  

 

 Combined together, these results resolve space 
complexity of approximating matchings in single-pass 
dynamic graph streams. 

 

 Is there a sublinear space single-pass algorithm that gives 
better than a 2-approximation for insertions-only stream? 
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