From Asymptotic PRAM Speedups To Easy-To-
Obtain Concrete XMT Ones

Uzi Vishkin

For background and more information:

Using Simple Abstraction to Reinvent Computing for Parallelism, CACM, January 2011, pp. 75-85
& http://www.umiacs.umd.edu/users/vishkin/XMT/

Didn’t want to repeat my 5/2009 T&MC workshop

QEP\SITJ,
> N\ O,

MIACS &
/

University of iﬂ;r'}'l:md Institute for Advanced Computer Studies 18

A. JAMES CLARK SCHOOL + ENGINEERING

Commodity computer systems
1946=>» 2003 General-purpose computing: Serial. 5SKHz=»4GHz.

2004 General-purpose computing goes parallel.
Clock frequency growth flat. #Transistors/chip 1980=»2011: 29K=>30B!
cores : increase exp.

M - E
Intel Platform 2015, March05: Masaivaly parelis]
53 applications
SiC TS £ Y Multi-core Era

e lar an
If yOlJ. W.a':]t your program to Peor Soclast 10 - F’araﬁ:laapplicgtions
run significantly faster ...
you' re going to have to
parallelize it

But, what about the programmer? “The Trouble with Multicore: Chipmakers
are busy designing microprocessors that most programmers can't
handle "—D. Patterson, IEEE Spectrum 7/2010

Only heroic programmers can exploit the vast parallelism in current machines
— The Future of Computing Performance: Game Over or Next Level?,
Report by CSTB, NAE 12/2010. Conclusion need new stack: algorithms to
HW. In spite of no algorithms people on committee.

HT

2003

My 2020 Vision

 Unprecedented opportunity for Chinese (or other)
to dominate processors & systems in mainstream
computers and major devices

Is the game really over? Or, why is the success
of parallel machines so limited?

e All parallel machines to date failed to generate a broad base of
application programmers because they have been too difficult to
program

* They sidestepped ease-of-programming (EoP), or treat it as an
afterthought. [Can adding architectural support be good enough?]

e Current parallel computing government/industry efforts, even as it is
becoming mainstream, are at risk of investing in yet another
generation of too-hard-to-program parallel machines

e [Counting out multi-core technology “pushers”] how big is current
demand for undergrad parallel programming education from
application SW developers? My impression: very small. Reason:
future products unclear (ROI) (& too difficult to program).

Diagnosis Mismatch of algorithms/EoP and architecture

- Reward system matters. Consider reward of addressing one symptom
at a time.. symptomatic medicines for life versus diagnosis =2 cure

Who benefits from which

 Symptomatic medicine for life:

- Farma companies

- DGP

- Wall Street

- Washington

- Even your Drs&spouses may get a free cruise to Hawaii
* Diagnosis and cure:

- Your unpatriotic self

What do you think will happen?

Why most programmers can’t handle today’s
machines? (cont’ d)

Hypothesis: Flawed architecture foundation

- originated with ‘design-first figure-out-how-to-program-later’
- Where are the rewards?
1. Funding for new general-purpose architectures: basically gone

2. Originality-seeking publications culture =2 mismatch provides rich
opportunities; flawed system legitimate if vendor-backed

Will discuss one approach to do things differently

- ldea preempt the mismatch by a back-to-the-future playback, to just
before the turn. Take a different one. Rebuilb and generate evidence
that improvements by order-of-magnitude may be possible.

- Reward alert: Try to publish a paper boasting easy results =2 Is the so
badly needed EoP a lose-lose proposition?

A fool may throw a stone into a well which a
hundred wise men cannot pull out

©

- But they can write many papers about

- Will not be so bad if we accept the papers, but reject
the system

But, how much can we gain in

- Performance and
- Ease-of-programming (EoP)
Rules if you believe in your own theory/architecture

1. Don’t stop at asymptotics; IMO theory with no
form of (eventual) validation remains ‘fluffy’

2. Don’t repeat EoP failure since ‘not quantifiable’;
do your best and show it

Will note some new, examples for performance
1 For more: Wed talk, by James Edwards

Approach
Stage 1 (community wide) PRAM theory: p synchronous
processors communicating in unit time through shared memory

Sought to define parallel algorithmic thinking. Created unmatched
wealth of parallel algorithms

Perception given above machines whose programming mandates
decomposition-first: ‘PRAM simplest parallel model’ [e.g.,
TCPP 12/2010 curriculum meant simplistic, but were too polite]

Stage 2 XMT — explicit multithreading.
Make EoP a first-order architectural objective.

‘Objecting’ to TCPP: ‘PRAM is way too difficult’ ; why care
about processors and allocating them to jobs? Instead:

Any number of ‘concurrent instructions’ can execute next

Build system (HW, compiler, programming methodology). See
what you can do on performance & EoP. Compare

Not Just Talking

Algorithms PRAM-On-Chip HW Prototypes

PRAM parallel algorithmic theory. 64-core, 75MHZ FPGA of XMT
“Natural selection”. Latent, : ‘ SPAA98..CFO8
though not widespread, 2 e

knowledgebase Toolchain
Work-depth.CACM11: “immediate Compiler + simulator HIPS™ 11

concurrent execution (ICE)” 128-core intercon. network
SV82 conjectured: Full PRAM IBM 90nm: 9mmX5mm,

algorithm just a matter of skill. 400 MHz [Hotl07]

Used as framework in main PRAM
algorithms texts: JaJa92, KKTO1

Later: programming & workflow

FPGA design=>» ASIC
IBM 90nm: 10mmX10mm
150 MHz

Rudimentary yet stable compiler. Architecture scales to 1000+ cores on-chip

Are PRAM graph algorithms any good in practice?

* NSF/IEEE-TCPP curriculum: not really.
No poly-logarithmic PRAM graph algorithms
* Very limited evidence to counter that:

* Graph algorithms in particular tend to be difficult to
implement efficiently:

— Biconnectivity [CBO5] (12-processor Sun machine): <= 4X
speedups after major change in [TarjanV85]. <1X
otherwise

— Max flow (hybrid GPU-CPU implementation): Speedups
of up to 2.5x [HH10]

15t quantitative results 2" context/significance 3" EoP 1

Back to topic From Asymptotic PRAM Speedups
To Easy-To-Obtain Concrete XMT Ones

XMT speedups. Comparing cycles with best serial algorithm and
compiler on modern CPU:

e Connectivity [EV11] 39X-100X. Direct implementation of [SV82]
* Biconnectivity [EV11] 9X-33X. Direct implementation of [TV85]

 MaxFlow [CV-SPAA11] up to 108X. Balance push-relabel [GT88]
with the original layered PRAM MaxFlow algorithm [SV82].
Then direct implementation.

Biconnectivity: most advanced problem in parallel algorithms texts
MaxFlow: ~ most advanced in serial algorithms texts

First XMT papers on a single problem.

No publication on biconnectivity yet on GPUs.

Quant results in GPU context

Compared:

1. XMT running a PRAM algorithm with few or no
modifications

2. A multi-core CPU or GPU. Either heavily modified version -
same PRAM algorithm, or another algorithm

Connectivity [EV11]:

2.2x-4x over an optimized GPU implementation that greatly
modified the original algorithm.

GPU: Non-trivial paper

PRAM algorithm: one of 6 programming assignments in
standard PRAM algorithm class; even done by couple of 10th
graders, Blair HS, MD

BFS [HotPAR10]:
5.4x speedups over optimized GPU implementation
73x for large radius (low average parallelism)

More evidence on ease of obtaining
speedups
Breadth-first-search (BFS)
e 40+ students in fall 2010 joint UIUC/UMD course
- <1X speedups using OpenMP on 8-processor SMP
- 8x-25x speedups on 64-processor XMT FPGA prototype.

But, what’ s the big deal of 64 processors beating 8?
* Silicon area of 64 XMT processors ~= 1-2 SMP processors

But, what is the performance penalty for easy

programming?

Surprise benefit! vs. GPU [HotPar10]

9 __

Speedup

S = D W s N 3 o
I

Bfs Bprop Conv

1024-TCU XMT simulations vs. code by others for GTX280.< 1 is
slowdown. Sought: similar silicon area & same clock.

Msort

NW

Postscript regarding BFS

- 59X if average parallelism is 20
- 111X if XMT is ... downscaled to 64 TCUs

Reduct

Spmy

Problem acronyms

BFS: Breadth-first search on graphs

Bprop: Back propagation machine learning alg.
Conv: Image convolution kernel with separable filter
Msort: Merge-sort algorith

NW: Needleman-Wunsch sequence alignment
Reduct: Parallel reduction (sum)

Spmyv: Sparse matrix-vector multiplication

Ease of Programming

* Benchmark Can any CS major program your manycore?

Cannot really avoid it!
Teachability demonstrated so far for XMT [SIGCSE’ 10]

- To freshman class with 11 non-CS students. Some prog.
assignments: merge-sort*, integer-sort™ & sample-sort.

Other teachers:
- Magnet HS teacher. Downloaded simulator, assignments, class
notes, from XMT page. Self-taught. Recommends: Teach XMT
first. Easiest to set up (simulator), program, analyze: ability to

anticipate performance (as in serial). Can do not just for
embarrassingly parallel. Teaches also OpenMP, MPI, CUDA. See

also, keynote at CS4HS’ 09@CMU + interview with teacher.

- High school & Middle School (some 10 year olds) students
from underrepresented groups by HS Math teacher.

*Also in Nvidia’ s Satish, Harris & Garland IPDPS09

Teachability almost as good as quantitative

- Time to confuse us with facts

* At what stage can you teach the programming of
your approach

MS Intro to PRAM
9-10th grade Conjecture: Basic PRAM
11-12t grade [Limited validation]
Lower division undergrad
Upper division undergrad Where are: BSP, CUDA?
Grad core

Grad advanced

‘Dark secret’, EduWrkshp@PPoPP’11: majority teachers of parallelism
never require hard speedups. Try to find in TCPP curriculum.

* Allows claims for order-of-magnitude improvement

Middle School Summer Camp Class Picture,
July’” 09 (20 of 22 students)

19

What is the reason for low speedups and bigger
programming efforts on other platforms?

* Not caused by inefficient algorithms or their
implementation

* Rather: by the mismatch between the algorithmic
model and the architecture

* Strengthens the case for XMT as an efficient,
general-purpose, easy-to-program many-core

In summary,
Claim 1 Easier parallel programming is feasible

* Current curricula: unconvincing speed-ups, if at all.
Hodgepodge of topics that fail to get across ideas

* Finding a new programming model appears to be
the holy grail for some. Hard to believe that after 40
years of research there is still some hidden
programming model that once discovered will solve
all productivity problems? What about models
whose success was already shown in some subfields
such as PRAM?

Claim 2 Ease-of-Programming requires a separate program

Real success of parallel computing
i.e., parallelism becomes the dominant computing paradigm

cannot happen before ease-of-programming (EOP) becomes a 15t class
concern for parallel architecture

Many long agreed that EOP is very important. Evidence:

1980s PRAM - simple algorithms model

1991 "Parallel SW crisis’

2002-2011 DARPA HProductivityCS — development-time + run-time

2011 CSTB: only heroic programmers succeed. Need new ‘stack’

So, why didn’ t it happen?

EOP tends to be consumed by other objectives. Easier to measure
performance and power. Wed EoP to one of them =» forget about EoP

HPCS: S650M, but not even a benchmark
New: ExaScale and other (CSTB): # FLOPS + power =»Non starter for EOP

=» EoP requires a separate program

22

Imagine two algorithms for the same
problem: ParAlg and SerAlg

Suppose that:
 W(ParAlg) = c W(SerAlg), and 10 <= c<=100

 The breakdown of the time ParAlg, T(ParAlg) in total includes a

fraction which is serial and its serial execution amountsto 1% of T
(SerAlg)

What speedup relative to SerAlg on a uniprocessor can you expect
from ParAlg on:

e 16-core CPU?
e Cutting edge GPU?

For more information: Please hear James Edwards on Wednesday

Conclusion

All parallel machines to date failed to generate a broad base of application
programmers because they have been too difficult to program

All current government and industry efforts known to us in the domain of
parallel computing, even as it is becoming mainstream, are at investing in
yet another generation of too-hard-to-program parallel machines

Rather than sidestep ease-of-programming, or treat it as afterthought,
PRAM appears to have been the only algorithmic theory, and XMT the only
active holistic research project in the community today, that handle ease-
of-programming of many cores as a first class constraint

For perspective See Ran Ginosar’ s Parallel Computing course, Fall 2010,
http://webee.technion.ac.il/courses/048874/ [VLSI/Plurality startup]

Insufficient competition in the West opened an unprecedented opportunity
for order-of-magnitude improvement

Opportunity for ambitious competitor (with deep pockets) to take over

2020 Vision: Chinese (or Indian) dominate processors & systems in
mainstream computers and major devices,

unless warning on need for EoP-driven systems is acted upon

