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Concurrent Data Structures: 
Our NOBLE Library project

 Fundamental shared data structures
 Stacks
 Queues
 Deques
 Priority Queues

 Memory Management
 Memory allocation
 Memory reclamation (garbage collection)

 Atomic primitives
 Single-word and Multi-word transactions.

 Dictionaries
 Linked Lists
 Snapshots



Many-core?

 No clear definition, but at least more than 10 cores
 Some say thousands

Dual-, Quad-, Hexa-, Octo-, Dekaexi-? Trianta dyo-? Many-core!

 The most commonly available many-core platforms are the 
medium to high end graphics processors

 Have up to 30 multiprocessors and available at a low-cost
 CUDA and OpenCL have made them easily accessible

Framework for parallel computing

Computing platform developed by NVIDIA



A Basic Comparison

 Large cache
 Few threads

 Small/No cache
 SIMD
 Wide and fast memory 

bus with memory 
operations that can be 
coalesced

 Thousands of threads 
masks memory latency

Normal processors Graphics processors



CUDA System Model

Global Memory
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Shared
Memory

Shared
Memory

Thread 
Block 0

Thread 
Block 1

Thread 
Block x

Thread 
Block y



CUDA System Model

 Atomic primitives
 None -> For global memory -> For shared memory

 Threads per multiprocessor
 768 -> 1024 -> 1536

 Shared memory 
 16KB -> 48KB

 SIMD width
 8 words -> 32 words



Locks are not supported

 Not in CUDA, not in OpenCL
 Fairness of hardware scheduler unknown
 Thread block holding a lock might be swapped out 

indefinitely, for example



No Fairness Guarantees

…
…
while(atomicCAS(&lock,0,1));
ctr++;
lock = 0;
…

Thread holding lock is 
never scheduled!



Lock-free Data Structures 
 Mutual exclusion (Semaphores, mutexes, spin-locks, disabling interrupts: Protects critical 

sections)
 Locks limits concurrency, priority inversion
 Busy waiting – repeated checks to see if lock has been released or not
 Convoying – processes stack up before locks
 Blocking Locks are not composable

All code that accesses a piece of shared state must know and obey the locking 
convention, regardless of who wrote the code or where it resides.

 Lock-freedom is a progress guarantee
 In practice it means that

 A fast process doesn’t
have to wait for a slow
or dead process

 No deadlocks
 Shown to scale better than blocking

approaches

Definition
For all possible 

executions, at least one
concurrent operation 
will succeed in a finite

number of its own steps
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A Lock-free Implementation of a 
Counter

class Counter {
int next = 0;

int getNumber () {
int t;
do {

t = next;
} while (CAS (&next, t, t + 1) != t);
return t;

}
}

 In this case a non-blocking design is easy:

Atomic compare and swap

Location
Expected value

New value



Lock Free Concurrent Data Structures

LF DS in Normal Processors:
Joint work with D. Cederman, 

A. Gidenstamn, Ph. Ha, M. 
Papatriantafilou, H. Sundell, Y. 

Zhang

Graphics Processors:
Joint work D. Cederman, Ph. 

Ha, O. Anshus

Skiplists

Queues, Priority, Deques

Hashtables, Dictionaries

…

H 1 5 8 T

Doubly Linked Lists



A Basic Comparison

 Large cache
 Few threads
 Atomics (CAS, …)

 Small/No cache
 SIMD
 Wide and fast memory bus 

with memory operations 
that can be coalesced

 Thousands of threads 
masks memory latency

 No atomics -> …-> 
expensive ones

Normal processors Graphics processors



Emulating CAS from Coalesced Memory Access

Lock-free Data Structures Without
Atomics?





Aligned-inconsecutive word (aiword)

 Memory is aligned to m-unit words, m is a constant.
 m-aiword for short

 A read/write operation accesses an arbitrary non-empty subset of 
the m units of an aiword.
 m-aiwrite = m-aiword assignment. 

 Alignment restriction
 m-aiwords must start at addresses that are multiples of m.

 Ex: 8-aiwrite

13120 1 2 3 654 7 8 9 10 11 14 15 …

8-aiword 8-aiword

8-aiwrite





p0,p1,
p2,p3

p4

Binary consensus (BC) for 4+1 processes Consensus for 5 processes

p0 p1 p3

BC

BC

p0,p1

p0,p1,p2,p3,p4

time

7654 8
10 32

p0 p1 p2 p3

p4

1
8

0 32
4 5 6 7

p0 p1 p2 p3

p4

writing
schema

[0,4,8] ⇒ p4 → p0
[1,5,8] ⇒ p1 → p4
[2,6,8] ⇒ p4 → p2
[3,7,8] ⇒ p4 → p3

⇒ red wrote first

p2 p4

p0,p1,p2,p3
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Concurrent Data Structures Need Scalable 
Strong Synchronization Primitives

 Scalable
 Universal

 powerful enough to support any kind of synchronization (like CAS, 
LL/SC)

 Feasible
 Easy to implement in hardware

 Easy-to-use in Algorithmic Design

Desired Features



Joined work with Phuong Ha and Otto Anshus

Non-blocking Full/Empty Bit



Non-blocking Full/Empty Bit

 Combinable operations
 Universal
 Feasible

 Slight modification of a primitive that has been implemented in 
hardware

 Easy-to-use 



Original FEB: Store-if-
Clear-and-Set
SICAS(x,v) {

Wait for flagx to be false;
(x, flagx) ← (v, true);

}

A variant of the original FEB that always returns a  value 
instead of waiting for a conditional flag

Test-Flag-and-Set
TFAS( x, v) {

(o, flago) ← (x, flagx);
if flagx = false then

(x, flagx) ← (v, true);
end if

return (o, flago);
}



A variant of the original FEB that always returns a  value 
instead of waiting for a conditional flag

Test-Flag-and-Set
TFAS( x, v) {

(o, flago) ← (x, flagx);
if flagx = false then

(x, flagx) ← (v, true);
end if

return (o, flago);
}

Store-And-Clear
SAC( x, v) {

(o, flago) ← (x, flagx);
(x, flagx) ← (v, false);

return (o, flago);
}

Store-And-Set
SAS( x, v) {

(o, flago) ← (x, flagx);
(x, flagx) ← (v, true);

return (o, flago);
}

Load
Load( x) {

return (x, flagx);
}



Combinability

 Key idea: Combinability
⇒ eliminates contention & reduce load
 Ex: TFAS

x=⊥

TFAS(x,1)
TFAS(x,2)

TFAS(x,3)
TFAS(x,4)

TFAS(x,1) TFAS(x,3)

TFAS(x,1)

x=1

⊥ 1 1 1

⊥ 1

⊥

Note: CAS or LL/SC is not combinable



New algorithmic techniques that come from the introduction of 

new hardware features.

Core algorithmic design did not change when going from GP CPU to GPU.

Optimistic concurrency control works in manycore systems. Hard to derive

worst case guarantees.

Scheduler part of the reference model?

Need to start a discussion with the architects about the

abstractions/primitives that we want/need.  

Conclusions
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Thank You!
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