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Design Guidelines & Model

HOw to get the most out of our cores?

lots of parallelism
depth - longest chain of dependencies

\

“small”
polylog depth

only necessary work
work - total operation count

\ same as the sequential counterpart
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Formal Definition

obeys triangle inequality

Input: facilities F; cost f;

Applications:
clustering,
network design,
“testbed” for techniques, ...

clients C

connection cost d(i, j)

Task: choose facilities F4 € F to minimize

Cost= » fi+ Y d(j,Fa)

1€F 4

AN

Facility Cost + Connection Cost
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Metric Facility Location

What was known about this problem?

D Hardness
NP-hard and factor-1.463 is hard

D Several Constant Approximation Algorithms

factor-4 linear program (LP) rounding
fartar-2 nrimal dual
Theorem:

RNC O(m log m)-work, factor-(1.861+€) greedy-style
approximation algorithm.

factor-1.5 LP + scaling + ...
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\
S=(i,T CC)

fi + ZjeT d(]v Z)

price(S) =

H#clientsin T

Algorithm: factor-1.861 approx

While (C not empty) parallelizable: prefix sum
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While (C not empty)
1. Each facility i finds the cheapest star centered at i

2. Choose the cheapest star (i, 7)
3. Open this star: open i, set ;=0 and remove 7 from C

a technical example:

fi=0
/
O Round 1: —O

Round 2: o—O

n clients, 1 facility Round n: O ®



While (C not empty)

1. Each faci
2. Choose t

ity 7 finds the cheapest star centered at i

ne cheapest star (i, 7)

3. Open this star: open i, set /= 0 and remove 7 from C

a technical example:

fi=0
/
O

Round 1: @ —O price=1.5

Round 2: @ —O price=2

n clients, 1 facility Round n: @ —O price=n



Observations:

1. Greedy process can be inherently sequential

2. Clients between stars don’t overlap

a technical example:

fi=0
/
O Round 1: @ —O price=1.5

Round 2: @ —O price=2

n clients, 1 facility Round n: @ —O price=n
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Proof in a Nutshell

76 76

Clients
Facilities 8
For each star S, put price(S) tokens on each client

Lemma 1: Facility Cost + Connection Cost < Total #tokens

L ——

The stars have no overlapping clients

Lemma 2: Total #tokens £ 1.8610PT

T ——— —————

factor-revealing LP + dual fitting
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How to parallelize
something that looks
inherently sequential?

[Blelloch-T'10, Blelloch-Peng-T'11] 10



Idea #1. Geometric Scaling

Create opportunities tor parallelism

Greedy
Algorithm

While (C not empty)
1. Each facility i finds the cheapest star centered at i

2. Choose the cheapest star (i, 7)
3. Open this star: open i, set /;= 0 and remove T from C

11
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Algorithm Algorithm
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Idea #1. Geometric Scaling

Create opportunities tor parallelism

Greedy Greedier
Algorithm Algorithm

idea previously used in

set cover, vertex cover, ...
While (C not empty) — B

1. Each facility i finds the cheapest star centered at i

2. Suppose the cheapest star has price p

3. GOOD = { star centered at i if price < p(1+¢€) }, open them:

Open i, set /; = 0, and remove attached clients from C

Good news: = logi+ - m rounds; price goes up by (1 + €)

11



Problem: Stars Overlap

Opening all “good” stars IS too aggressive

While (C not empty)
1. Each facility i finds the cheapest star centered at i

2. Suppose the cheapest star has cost p

3. GOOD = { star centered at i if price < p(1+¢) }, open them:
Open i, set fi = 0, and remove attached clients from C

Clients

Facilities GOOD

12
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In this round: cheapest star has price p

Clients W
Facilities
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Idea #2: Subselect Facilities

control how much overlap Is allowed

In this round: cheapest star has price p

AL CACA AL \& A AL
Clients

W T
Facilities O

Want: Select a of facilities such that
if we put p tokens on each

Property 1: Fac Cost(Q) + Conn Cost(Q) < (1+06)Total #tokens

Property 2: Price after this round > p(1+¢)
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Formalizing small overlap and maximality [ V(X) = neighbors of X

A B bipartite graph modeling coverage

. Py (¢,8)-MaNIS is J C A such that
b2 n small overlaps
ao PR bs near independence:

IN(J)[ > (1=6)) NG

jeJ
E “maximal”

maximality: for all a outside of J,
[N(a)\ N(J)| < (1—-¢)|N(a)

14



Maximal Nearly Independent Set

Formalizing small overlap and maximality [ V(X) = neighbors of X

A B
a- ° b+
b2
az P b3
1. not unique

2. ¢ =6 =0 nooverlap
—> maximal set packing

3. simple O(|E]) seq. alg

bipartite graph modeling coverage
(¢,)-MaNIS is J C A such that

n small overlaps
near independence:

IN(J)[ > (1=6)) NG

jeJ

E “maximal”

maximality: for all a outside of J,

IN(a) \ N(J)| < (1 —e¢)

N(a)

14
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Back to Facility Location

Lemma: If we can compute (g, 6)-MaNIS, then
we have a 1.861/(1-£-6)-approx.

L

Lemma 1%*:
Facility Cost + Connection Cost < Total #tokens/(1-0)

L T——

The stars have almost no overlapping clients

Lemma 2*: Total #tokens < 1.8610PT/(1 - &)

T ——— —————

factor-revealing LP + dual fitting

+ geometric scaling

15
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A Simple Linear-work MaNIS

O(log? |E|)-depth MaNIS
A

b

While (A not empty) ar @
a) Pick a random permutation it of A oz

b) Each b € B joins the highest t-ranked nbr @2 @ b3

c) For each a € A, if (1 - 6) fraction of nbrs joined it,
add o to output and remove a’s nbr

d) Remove a € A if degree less than (1-€) fraction
of its original degree

Idea: random permutation removes a const fraction of edges
takes O(log |E|) rounds

17
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} ldea #1: Geometric Scaling
outer loop: mimic greedy behavior
price goes up by (1 + €), so O(log m) rounds

D Idea #2: Subselection

polylog depth and O(m) work, whp.

Plus, additional O(log m) depth, O(m) work basic
operations in the outer loop.
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Parallel Greedy Facility Location
Putting things together

D Idea #1: Geometric Scaling
outer loop: mimic greedy behavior
price goes up by (1 + €), so O(log m) rounds

D Idea #2: Subselection

polylog depth and O(m) work, whp.
Using MaNIS: Linear-work algorithms for

Theorem:
RNC O(m log m)-work, factor-(1.861+¢) greedy-style
approximation algorithm.
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Take-Home PointS  thank you!

Maximal Nearly Independent Set

Pick a maximal collection that has small overlap

... more at SPAA'11

Linear-Work Greedy Parallel Approximation Algorithms for Set Covering and Variants

" Near-Linear Work SDD Solver
Solve Ax = b in O(#nnz)-work O(#nnz'/3)-depth

if Ais symmetric diagonally dominant (SDD)

... more at SPAA'11

Near Linear-Work Parallel SDD Solvers, Low-Diameter Decomposition, and Low-Stretch Subgraphs

Acknowledgments:
Guy Blelloch, Anupam Gupta, loannis Koutis, Gary Miller, Richard Peng



