Efficient Parallel approximation algorithms

lessons from facility location

Kanat Tangwongsan

Carnegie Mellon University

One thing I learned from greedy facility location....

which you can apply to set cover, max cover, min-sum set cover, etc.

How to get the most out of our cores?

How to get the most out of our cores?

lots of parallelism

How to get the most out of our cores?

lots of parallelism

only necessary work

How to get the most out of our cores?

lots of parallelism

only necessary work

good locality

How to get the most out of our cores?

lots of parallelism

only necessary work

How to get the most out of our cores?

depth - longest chain of dependencies

"small"

polylog depth

only necessary work

How to get the most out of our cores?

lots of parallelism

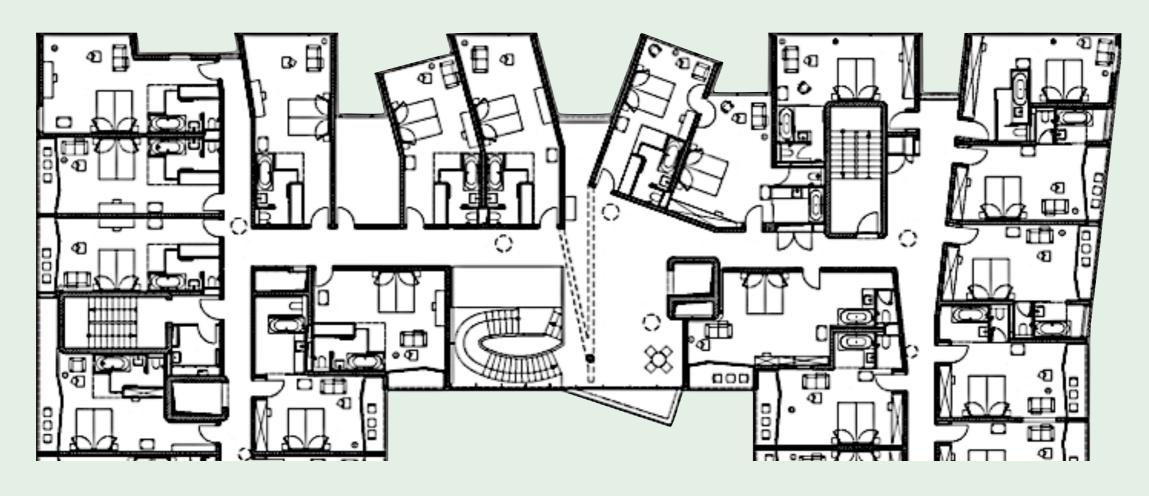
depth - longest chain of dependencies

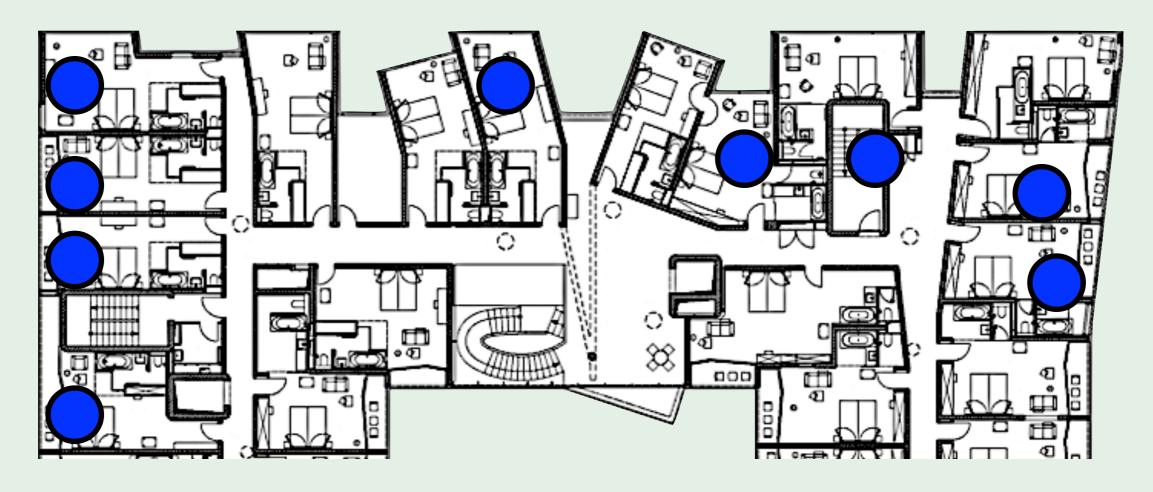
"small"

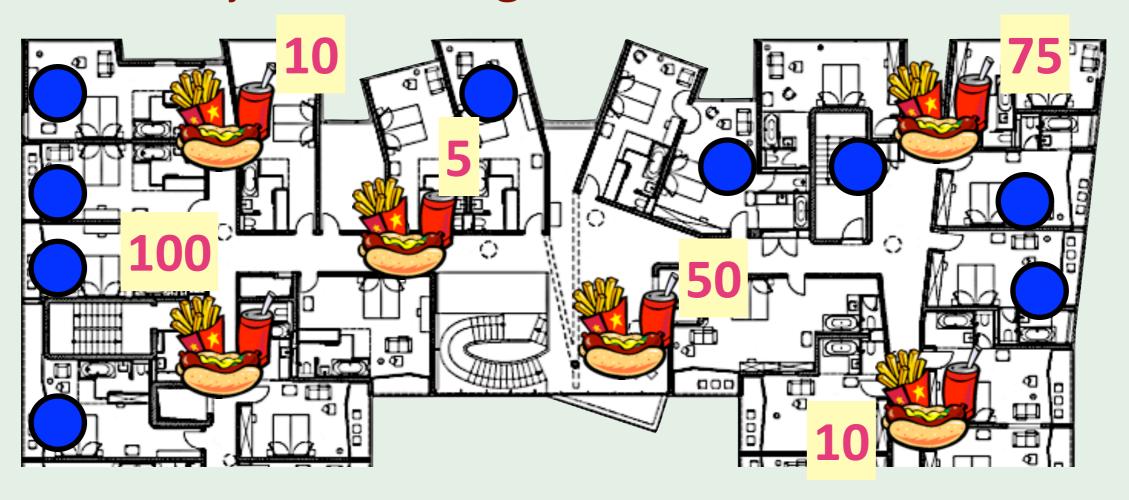
polylog depth

only necessary work

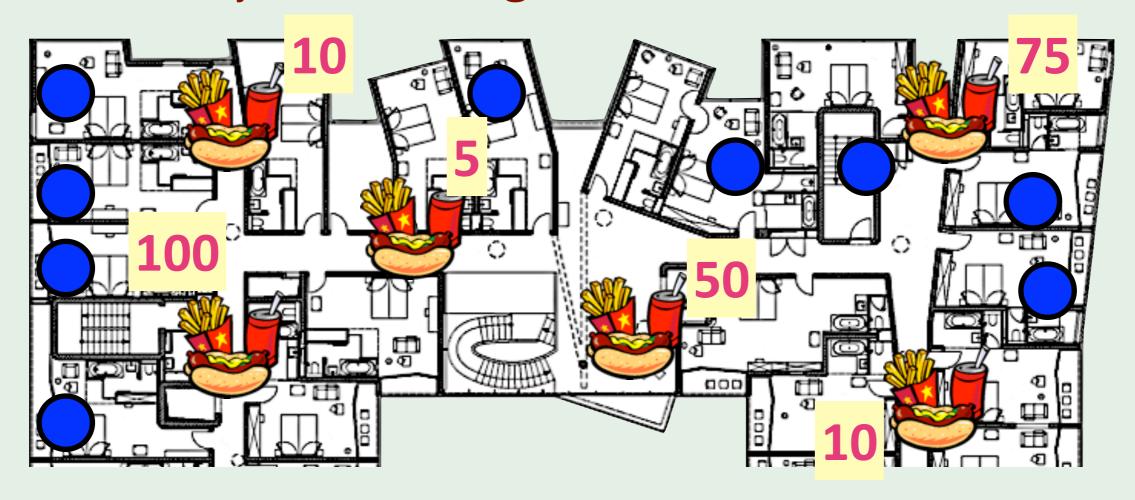
work - total operation count





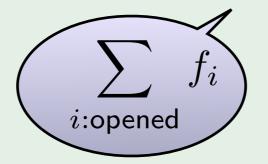


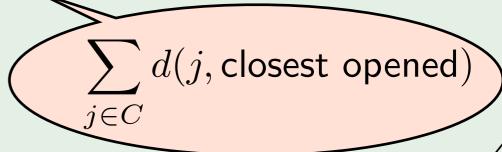
Free Food Project at Carnegie Mellon



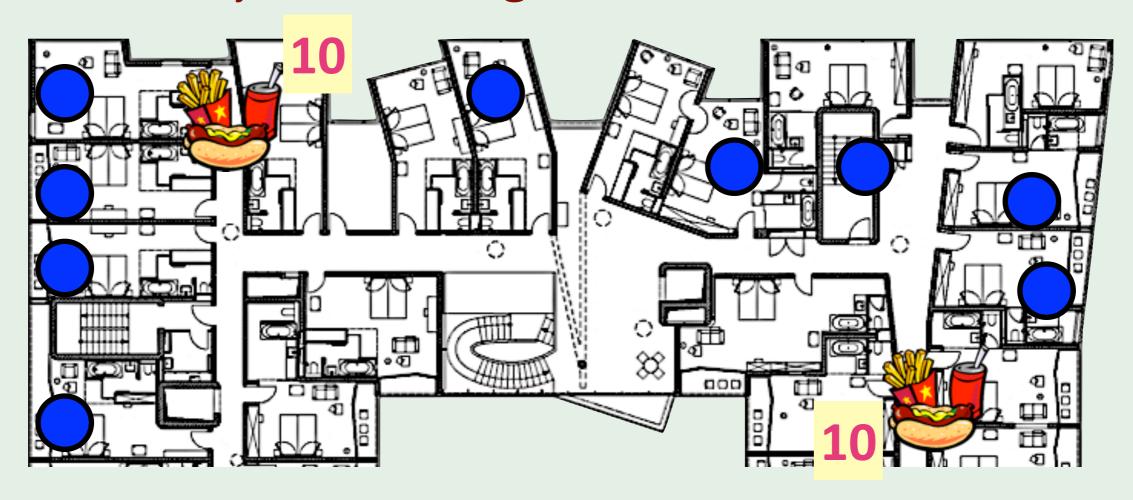
Q: Which food stations to open to minimize the cost?

Cost = Facility Cost + Connection Cost



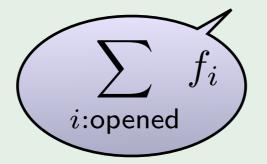


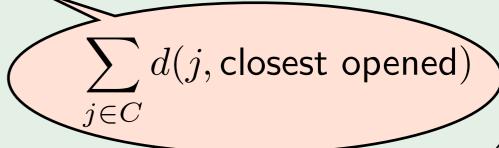
Free Food Project at Carnegie Mellon



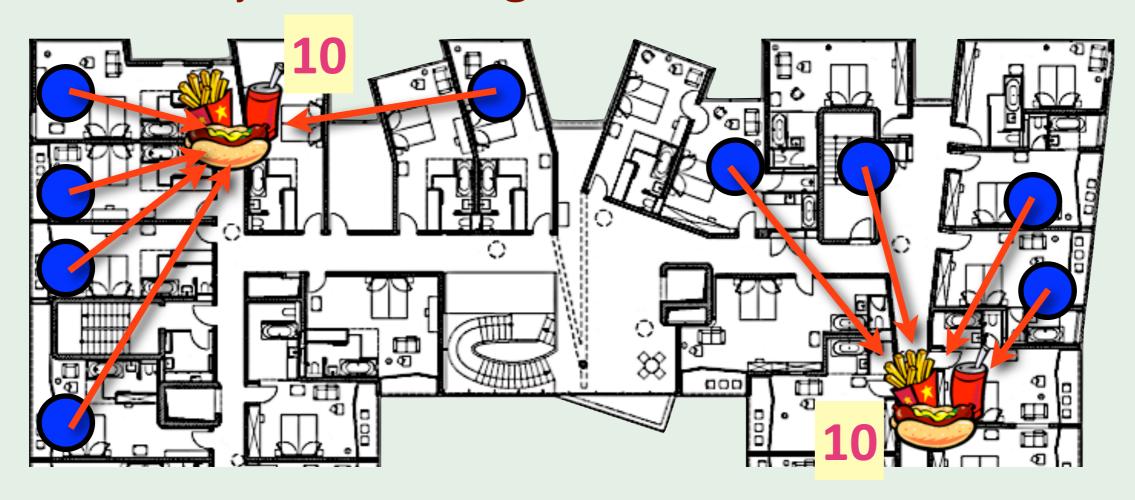
Q: Which food stations to open to minimize the cost?

Cost = Facility Cost + Connection Cost



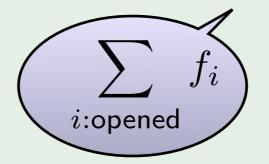


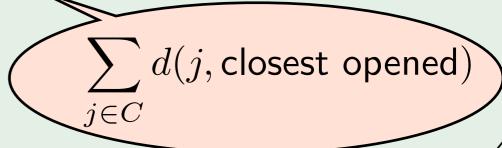
Free Food Project at Carnegie Mellon



Q: Which food stations to open to minimize the cost?

Cost = Facility Cost + Connection Cost





Formal Definition

```
Input: facilities F; cost f_i
```

clients C

connection cost d(i, j)

Formal Definition

Input: facilities F; cost f_i clients C connection cost d(i, j)

Formal Definition

obeys triangle inequality

Input: facilities F; cost f_i

clients C

connection cost d(i, j)

Task: choose facilities $F_A \subseteq F$ to minimize

Cost =
$$\sum_{i \in F_A} f_i + \sum_{j \in C} d(j, F_A)$$

Facility Cost + Connection Cost

Formal Definition

obeys triangle inequality

Input: facilities F; cost f_i

clients C

connection cost d(i, j)

Applications:

clustering, network design, "testbed" for techniques, ...

Task: choose facilities $F_A \subseteq F$ to minimize

Cost =
$$\sum_{i \in F_A} f_i + \sum_{j \in C} d(j, F_A)$$

Facility Cost + Connection Cost

What was known about this problem?

Hardness

NP-hard and factor-1.463 is hard [Guha and Khuller '99]

Several Constant Approximation Algorithms

factor-4 linear program (LP) rounding [Shmoys et al.'97]

factor-3 primal dual [Jain and Vazirani'01]

factor-1.861 greedy [Jain et al.'03]

•••

factor-1.5 LP + scaling + ... [Byrka'07]

What was known about this problem?

Hardness

NP-hard and factor-1.463 is hard [Guha and Khuller '99]

Several Constant Approximation Algorithms

factor-4 linear program (LP) rounding [Shmoys et al.'97]

factor-3 primal dual [Jain and Vazirani'01]

factor-1.861 greedy [Jain et al.'03]

•••

factor-1.5 LP + scaling + ... [Byrka'07]

What was known about this problem?

- Hardness
 - NP-hard and factor-1.463 is hard [Guha and Khuller '99]
- Several Constant Approximation Algorithms

factor-4 linear program (LP) rounding [Shmoys et al.'97]

factor-3 primal dual [Jain and Vazirani'01]

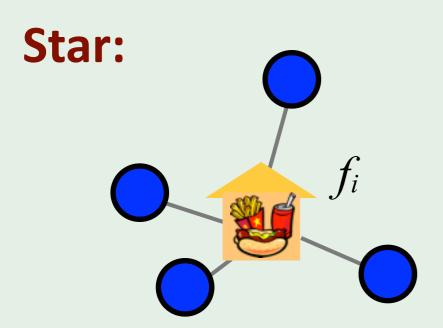
Theorem:

RNC O(m log m)-work, factor-(1.861+ ϵ) greedy-style approximation algorithm.

factor-1.5 LP + scaling + ... [Byrka'07]

Jain et. al's Sequential Algorithm

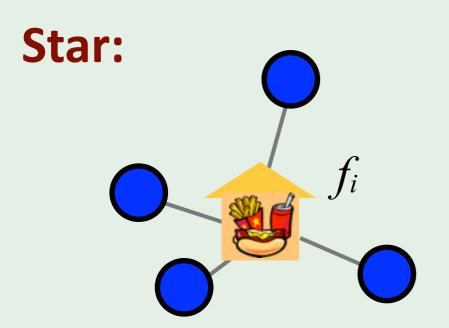
Jain et. al's Sequential Algorithm



facility clients
$$\mathcal{S} = (i, T \subseteq C)$$

$$\mathbf{price(S)} = \frac{f_i + \sum_{j \in T} d(j, i)}{\text{#clients in } T}$$

Jain et. al's Sequential Algorithm



facility clients
$$\mathcal{S} = (i, T \subseteq C)$$

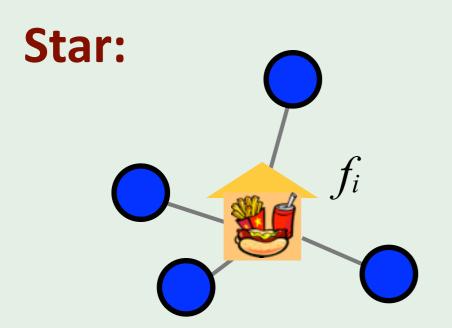
$$\mathbf{price(S)} = \frac{f_i + \sum_{j \in T} d(j, i)}{\text{#clients in } T}$$

Algorithm: factor-1.861 approx

While (C not empty)

- 1. Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open *i*, set $f_i = 0$ and remove *T* from *C*

Jain et. al's Sequential Algorithm



facility clients
$$\mathcal{S} = (i, T \subseteq C)$$

$$\mathbf{price(S)} = \frac{f_i + \sum_{j \in T} d(j, i)}{\text{#clients in } T}$$

Algorithm: factor-1.861 approx

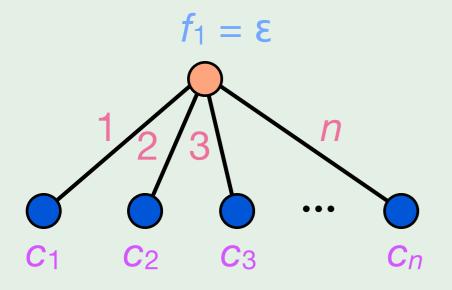
While (C not empty)

parallelizable: prefix sum

- 1. Each facility i finds the cheapest star centered at i
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open i, set $f_i = 0$ and remove T from C

- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open *i*, set $f_i = 0$ and remove *T* from *C*

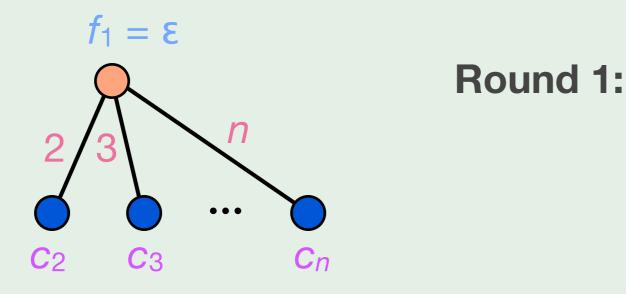
a technical example:



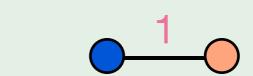
n clients, 1 facility

- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open *i*, set $f_i = 0$ and remove *T* from *C*

a technical example:



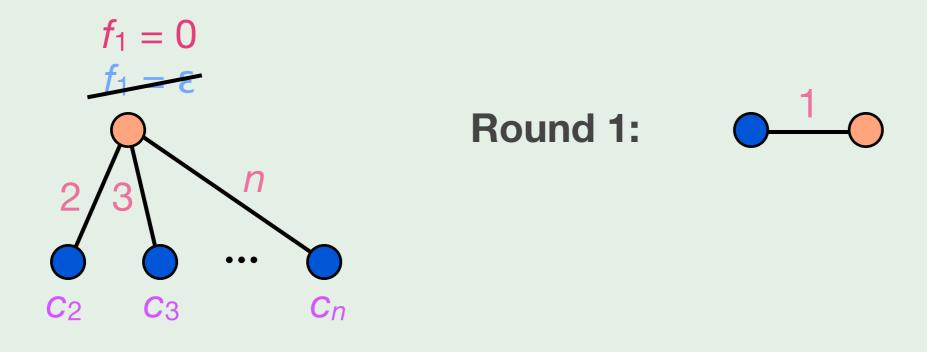
n clients, 1 facility



- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open *i*, set $f_i = 0$ and remove *T* from *C*

a technical example:

n clients, 1 facility



8

- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open *i*, set $f_i = 0$ and remove *T* from *C*

a technical example:

n clients, 1 facility

- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open *i*, set $f_i = 0$ and remove *T* from *C*

a technical example:

n clients, 1 facility

- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open *i*, set $f_i = 0$ and remove *T* from *C*

a technical example:

$$f_1 = 0$$

$$f_1 = 0$$

Round 1:

Round 2:

• • •

n clients, 1 facility

Round n:

- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open i, set $f_i = 0$ and remove T from C

a technical example:

$$f_1 = 0$$

$$f_1 = 0$$

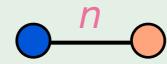
Round 1:

price = 1.5

Round 2:

n clients, 1 facility

Round n:



price = n

Observations:

- 1. Greedy process can be inherently sequential
- 2. Clients between stars don't overlap

a technical example:

$$f_1 = 0$$

$$f_1 = 0$$

Round 1:

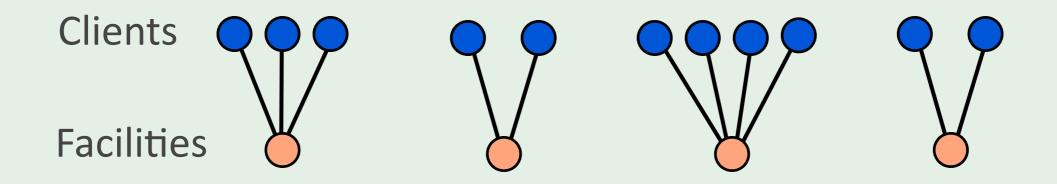
Round 2:

n clients, 1 facility

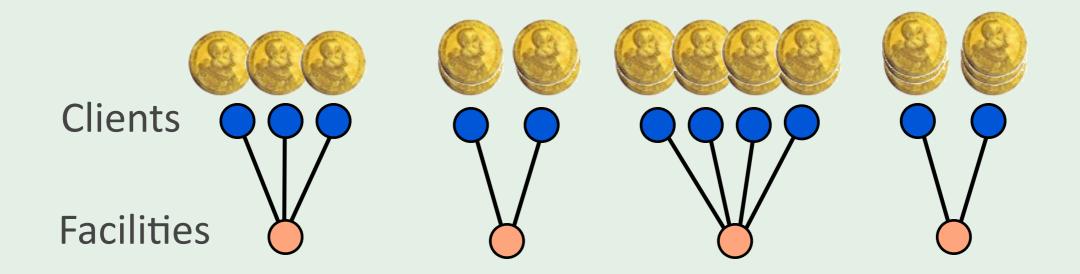
Round *n*:

price = n

Proof in a Nutshell

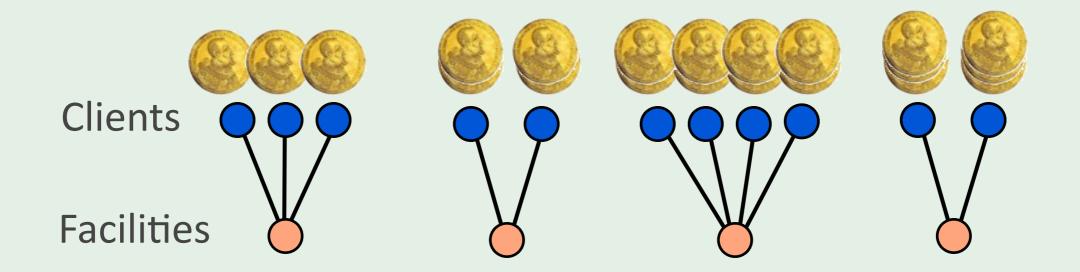


Proof in a Nutshell



For each star S, put price(S) tokens on each client

Proof in a Nutshell

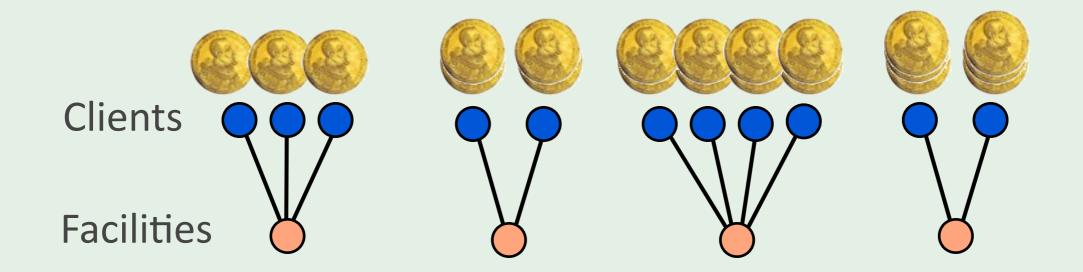


For each star S, put price(S) tokens on each client

Lemma 1: Facility Cost + Connection Cost ≤ Total #tokens

The stars have no overlapping clients

Proof in a Nutshell



For each star S, put price(S) tokens on each client

Lemma 1: Facility Cost + Connection Cost ≤ Total #tokens

The stars have no overlapping clients

Lemma 2: Total #tokens ≤ 1.861**OPT**

factor-revealing LP + dual fitting
[Jain et al. '03]

How to parallelize something that looks inherently sequential?

Idea #1: Geometric Scaling

Create opportunities for parallelism

Greedy Algorithm

While (C not empty)

- **1.** Each facility *i* finds the cheapest star centered at *i*
- **2.** Choose the cheapest star (i, T)
- **3. Open this star:** open i, set $f_i = 0$ and remove T from C

Idea #1: Geometric Scaling

Create opportunities for parallelism

Greedy Algorithm

Greedier Algorithm

idea previously used in set cover, vertex cover, ...

While (C not empty)

- **1.** Each facility *i* finds the cheapest star centered at *i*
- 2. Suppose the cheapest star has price p
- 3. GOOD = { star centered at i if price $\leq p(1+\varepsilon)$ }, open them: Open i, set $f_i = 0$, and remove attached clients from C

Idea #1: Geometric Scaling

Create opportunities for parallelism

Greedy Algorithm

Greedier Algorithm

idea previously used in set cover, vertex cover, ...

While (C not empty)

- **1.** Each facility *i* finds the cheapest star centered at *i*
- 2. Suppose the cheapest star has price p
- 3. GOOD = { star centered at i if price $\leq p(1+\varepsilon)$ }, open them: Open i, set $f_i = 0$, and remove attached clients from C

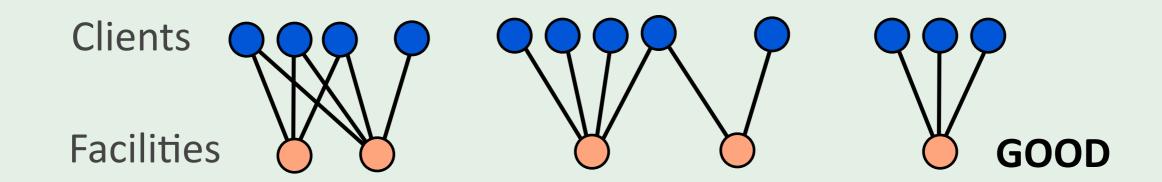
Good news: $\approx \log_{1+\varepsilon} m$ rounds; price goes up by $(1 + \varepsilon)$

Problem: Stars Overlap

Opening all "good" stars is too aggressive

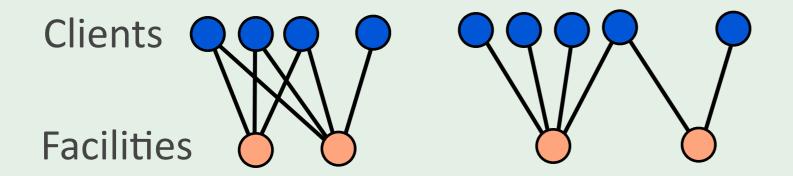
While (C not empty)

- **1.** Each facility i finds the cheapest star centered at i
- 2. Suppose the cheapest star has cost *p*
- 3. GOOD = { star centered at i if price $\leq p(1+\varepsilon)$ }, open them: Open i, set $f_i = 0$, and remove attached clients from C



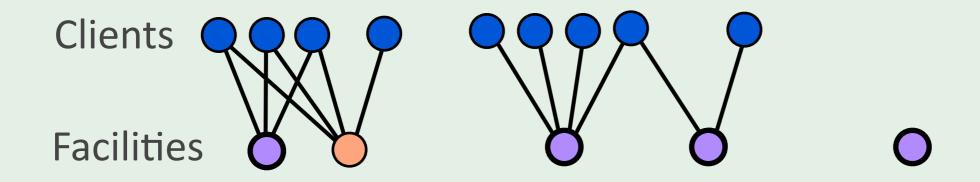
Control how much overlap is allowed

In this round: cheapest star has price p



Control how much overlap is allowed

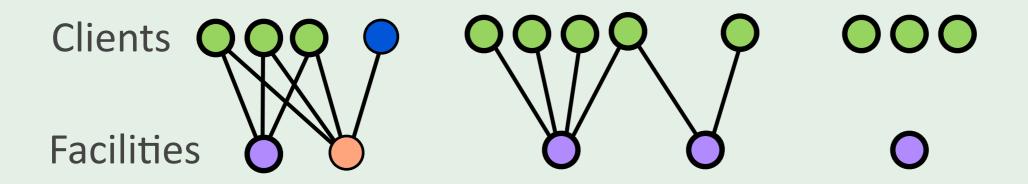
In this round: cheapest star has price p



Want: Select a subset of facilities such that

Control how much overlap is allowed

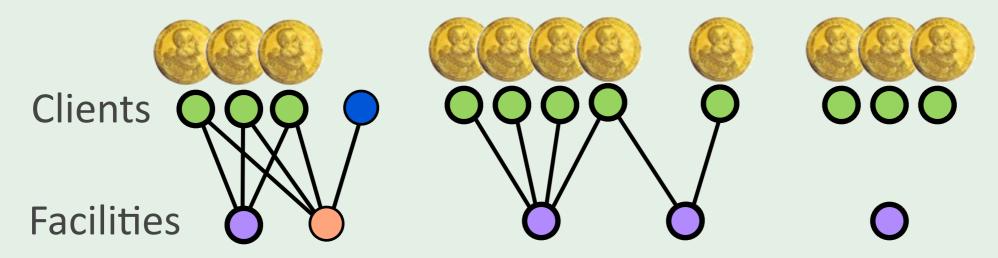
In this round: cheapest star has price p



Want: Select a subset of facilities such that

Control how much overlap is allowed

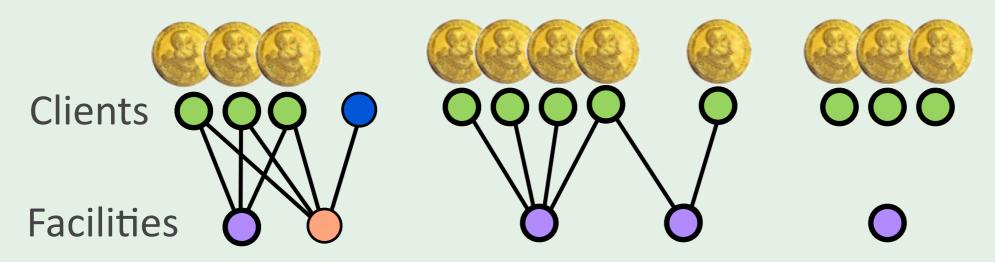
In this round: cheapest star has price p



Want: Select a subset of facilities such that if we put *p* tokens on each "covered" client

Control how much overlap is allowed

In this round: cheapest star has price p

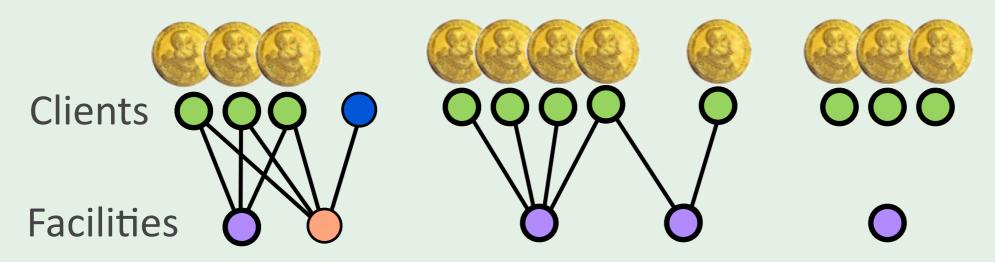


Want: Select a subset of facilities such that if we put p tokens on each "covered" client

Property 1: Fac Cost(\bigcirc) + Conn Cost(\bigcirc) \leq (1+ δ)Total #tokens

Control how much overlap is allowed

In this round: cheapest star has price p

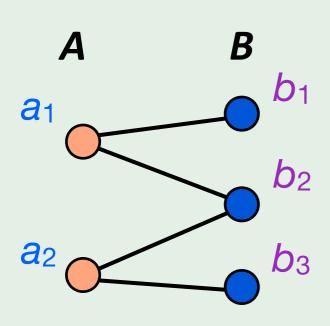


Want: Select a subset of facilities such that if we put p tokens on each "covered" client

Property 1: Fac Cost(\bigcirc) + Conn Cost(\bigcirc) \leq (1+ δ)Total #tokens

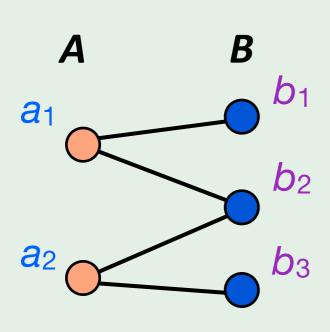
Property 2: Price after this round $> p(1+\epsilon)$

Formalizing small overlap and maximality N(X) = neighbors of X



bipartite graph modeling coverage

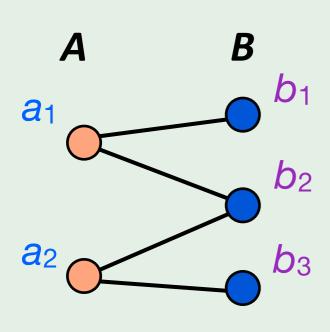
Formalizing small overlap and maximality N(X) = neighbors of X



bipartite graph modeling coverage

$$(\varepsilon, \delta)$$
-MaNIS is $J \subseteq A$ such that

Formalizing small overlap and maximality N(X) = neighbors of X



bipartite graph modeling coverage

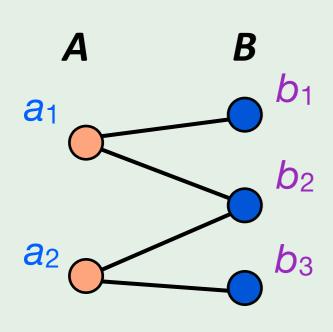
 (ε, δ) -MaNIS is $J \subseteq A$ such that

1 small overlaps

near independence:

$$|N(J)| \ge (1 - \delta) \sum_{j \in J} |N(j)|$$

Formalizing small overlap and maximality N(X) = neighbors of X



bipartite graph modeling coverage

 (ε, δ) -MaNIS is $J \subseteq A$ such that

1 small overlaps

near independence:

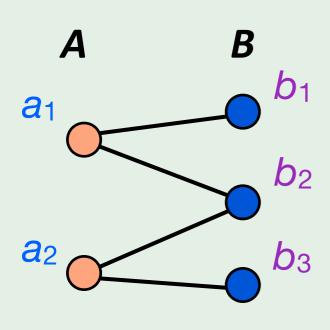
$$|N(J)| \ge (1 - \delta) \sum_{j \in J} |N(j)|$$

2 "maximal"

maximality: for all a outside of J,

$$|N(a) \setminus N(J)| < (1-\varepsilon)|N(a)|$$

Formalizing small overlap and maximality N(X) = neighbors of X



bipartite graph modeling coverage

 (ε, δ) -MaNIS is $J \subseteq A$ such that

1 small overlaps

near independence:

$$|N(J)| \ge (1 - \delta) \sum_{j \in J} |N(j)|$$

- 1. not unique
- 2. $\varepsilon = \delta = 0$ no overlap —> maximal set packing
- 3. simple O(|E|) seq. alg

2 "maximal"

maximality: for all a outside of J,

$$|N(a) \setminus N(J)| < (1 - \varepsilon)|N(a)|$$

Back to Facility Location

Lemma: If we can compute (ε, δ) -MaNIS, then we have a $1.861/(1-\varepsilon-\delta)$ -approx.

Back to Facility Location

Lemma: If we can compute (ε, δ) -MaNIS, then we have a $1.861/(1-\varepsilon-\delta)$ -approx.

Lemma 1*:

Facility Cost + Connection Cost \leq Total #tokens/(1- δ)

The stars have almost no overlapping clients

Back to Facility Location

Lemma: If we can compute (ε, δ) -MaNIS, then we have a $1.861/(1-\varepsilon-\delta)$ -approx.

Lemma 1*:

Facility Cost + Connection Cost \leq Total #tokens/(1- δ)

The stars have almost no overlapping clients

Lemma 2*: Total #tokens ≤ 1.861 **OPT/**(1 - ε)

factor-revealing LP + dual fitting
[Jain et al. '03]

+ geometric scaling

Implicit in algorithms from previous work

$$m = |F| \times |C|$$

Implicit in algorithms from previous work

$$m = |F| \times |C|$$

Berger, Rompel, and Shor'94
(also Chierichetti, Kumar, and Tomkins'10)

 $(\varepsilon, 8\varepsilon)$ -MaNIS

RNC O($m \log^4 m$)-work (1.861 + ϵ)-approx

Implicit in algorithms from previous work

$$m = |F| \times |C|$$

Berger, Rompel, and Shor'94 (also Chierichetti, Kumar, and Tomkins'10)

 $(\varepsilon, 8\varepsilon)$ -MaNIS

RNC O($m \log^4 m$)-work (1.861 + ϵ)-approx

Rajagopalan and Vazirani'98

 $(\varepsilon, \frac{1}{2} + \varepsilon)$ -MaNIS

RNC O($m \log^2 m$)-work (3.722 + ϵ)-approx

Implicit in algorithms from previous work

$$m = |F| \times |C|$$

Berger, Rompel, and Shor'94 (also Chierichetti, Kumar, and Tomkins'10)

 $(\varepsilon, 8\varepsilon)$ -MaNIS

RNC O($m \log^4 m$)-work (1.861 + ϵ)-approx

Rajagopalan and Vazirani'98

 $(\varepsilon, \frac{1}{2} + \varepsilon)$ -MaNIS

RNC O($m \log^2 m$)-work (3.722 + ϵ)-approx

Next step: Linear work for any value of ε?

Implicit in algorithms from previous work

$$m = |F| \times |C|$$

Berger, Rompel, and Shor'94 (also Chierichetti, Kumar, and Tomkins'10)

 $(\varepsilon, 8\varepsilon)$ -MaNIS

RNC O($m \log^4 m$)-work (1.861 + ϵ)-approx

Rajagopalan and Vazirani'98

 $(\varepsilon, \frac{1}{2} + \varepsilon)$ -MaNIS

RNC O($m \log^2 m$)-work (3.722 + ϵ)-approx

Next step: Linear work for any value of ε?

RNC O($m \log m$)-work (1.861 + ϵ)-approx

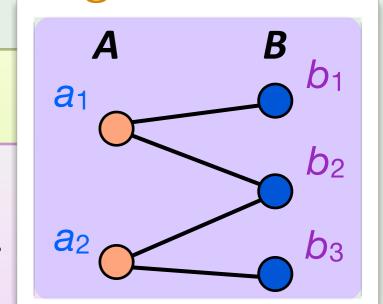
A Simple Linear-Work MaNIS

 $O(\log^2 |E|)$ -depth MaNIS

[Blelloch-Peng-T'11]

While (A not empty)

- a) Pick a random permutation π of A
- **b)** Each $b \in B$ joins the highest π -ranked nbr



- c) For each $a \in A$, if (1δ) fraction of nbrs joined it, add a to output and remove a's nbr
- **d)** Remove $a \in A$ if degree less than $(1-\varepsilon)$ fraction of its original degree

Idea: random permutation removes a const fraction of edges takes $O(\log |E|)$ rounds

Putting things together

Putting things together

Idea #1: Geometric Scaling

outer loop: mimic greedy behavior

price goes up by $(1 + \varepsilon)$, so $O(\log m)$ rounds

Putting things together

Idea #1: Geometric Scaling

outer loop: mimic greedy behavior price goes up by $(1 + \varepsilon)$, so $O(\log m)$ rounds

Idea #2: Subselection

polylog depth and O(m) work, whp.

Putting things together

Idea #1: Geometric Scaling

outer loop: mimic greedy behavior price goes up by $(1 + \varepsilon)$, so $O(\log m)$ rounds

Idea #2: Subselection

polylog depth and O(m) work, whp.

Plus, additional O(log m) depth, O(m) work basic operations in the outer loop.

Putting things together

- Idea #1: Geometric Scaling
 - outer loop: mimic greedy behavior
 - price goes up by $(1 + \varepsilon)$, so $O(\log m)$ rounds
- Idea #2: Subselection

polylog depth and O(m) work, whp.

Theorem:

RNC O(m log m)-work, factor-(1.861+ ϵ) greedy-style approximation algorithm.

Putting things together

- Idea #1: Geometric Scaling
 - outer loop: mimic greedy behavior
 - price goes up by $(1 + \varepsilon)$, so $O(\log m)$ rounds
- Idea #2: Subselection

polylog depth and O(m) work, whp.

Using MaNIS: Linear-work algorithms for

Theorem: max cover, (weighted) set cover, min-sum set cover

RNC O(m log m)-work, factor-(1.861+ ϵ) greedy-style approximation algorithm.

Take-Home Points

Maximal Nearly Independent Set

Pick a maximal collection that has small overlap

... more at SPAA'11

Linear-Work Greedy Parallel Approximation Algorithms for Set Covering and Variants

Acknowledgments:

Guy Blelloch, Anupam Gupta, Ioannis Koutis, Gary Miller, Richard Peng

Take-Home Points

Thank you!

Maximal Nearly Independent Set

Pick a maximal collection that has small overlap

... more at SPAA'11

Linear-Work Greedy Parallel Approximation Algorithms for Set Covering and Variants

Acknowledgments:

Guy Blelloch, Anupam Gupta, Ioannis Koutis, Gary Miller, Richard Peng

Take-Home Points

Thank you!

Maximal Nearly Independent Set

Pick a maximal collection that has small overlap

... more at SPAA'11

Linear-Work Greedy Parallel Approximation Algorithms for Set Covering and Variants

Shameless Plug Near-Linear Work SDD Solver

Solve Ax = b in $\widetilde{O}(\#nnz)$ -work $O(\#nnz^{1/3})$ -depth if A is symmetric diagonally dominant (SDD)

... more at SPAA'11

Near Linear-Work Parallel SDD Solvers, Low-Diameter Decomposition, and Low-Stretch Subgraphs

Acknowledgments:

Guy Blelloch, Anupam Gupta, Ioannis Koutis, Gary Miller, Richard Peng