G p Y~ N
PARALELSK ,';1
LABRATRY

Taming Heterogeneous
Parallelism with Domain

Specific Languages

Kunle Olukotun
Pervasive Parallelism Laboratory
Stanford University
ppl.stanford.edu

PERVASIVE
2020 Vision for Parallelism ﬁﬁ"a%%ﬁ%ﬁ%’?%

m Make parallelism accessible to all
programmers

m Parallelism is not for the average
programmer

= Too difficult to find parallelism, to debug,

maintain and get good performance for the
masses

s Need a solution for “Joe/Jane the
programmer”

m Can’t expose average programmers to
parallelism

= But auto parallelizatoin doesn’t work

PERVASIVE
Computing System Power %}m%

Ops

Power = Lnergy,, X
second

FIXED l I

PERVASIVE
Heterogeneous Hardware PL“AW%

m Heterogeneous HW for energy efficiency
= Multi-core, ILP, threads, data-parallel engines, custom engines

m H.264 encode study

1000

-—Performance

-@-Energy Savings

4 cores + ILP + SIMD + custom ASIC
inst

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA'10)

PERVASIVE
DE Shaw Research: Anton o

Molecular dynamics computer

= 40z
,H, Qv_-!_),xo:n
§u]_&g‘_00:). Lo

T me

ABCDEFGH SRLMNPR
Ea 1

100 times more power efficient

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize

Heterogeneous Parallel R oo
Architectures Today I o |

H Nvidia
#H Fermi

Altera
FPGA

‘llllllllllllllll!!:L
Jaguar

Heterogeneous Parallel i

Programming il o

Verilog S
VHDL

Nvidia

Altera
FPGA

Cray
Jaguar

Programmability Chasm

PERVASIE
PARALLELISH e
LABORATORY I P

Applications

Scientific
Engineering
Virtual
Worlds

Personal
Robotics

Data
informatics

Verilog
VHDL

MPI
PGAS

Too many different programming models

Altera
FPGA

Cray
Jaguar

PERVASIE T
PARALLELISW “‘ y)"

Hypothesis JRIR

It is possible to write one program
and
run it on all these machines

Programmability Chasm

PERVASIE
PARALLELISH e
LABORATORY I P

Applications

Scientific
Engineering
Virtual é C\‘&&‘ A
": : .“.j‘ ‘W—J C-[L'

Verilog
VHDL

Ideal Parallel
— Prormmmg Language
Robotics :
Data
informatics

Altera
FPGA

Cray
Jaguar

The ldeal Parallel Mokl >~
74V,

Programming Language 1] o

Performance

Productivity Generality

PERVASIVE I

Successful Languages il 2

Performance

Productivity Generality

@ python %

i PERVAGIE
True Hypothesis = W] ®

Domain Specific Languages ummk

Performance
(Heterogeneous Parallelism)

Domain
Specific
Languages

Productivity Generality

@, python m

PERVASIVE
: . PARALLELISN
Domain Specific Languages iy I

= Domain Specific Languages (DSLs)

= Programming language with restricted expressiveness for a
particular domain

= High-level, usually declarative, and deterministic

A}

MATLAB
penG L | ‘\ MySCQoL.

Benefits of Using DSLs for mur

Parallelism e

Productivity

e Shield average programmers from the difficulty of parallel
programming
e Focus on developing algorithms and applications and not on low
\ level implementation details

Performance

e Match high level domain abstraction to generic parallel execution
patterns

e Restrict expressiveness to more easily and fully extract available
parallelism

e Use domain knowledge for static/dynamic optimizations

Portability and forward scalability

e DSL & Runtime can be evolved to take advantage of latest
hardware features

e Applications remain unchanged
e Allows innovative HW without worrying about application portability

/

Bridging the (1

Programmability Chasm o] <

. . Scientific Virtual Personal Data

Domain Machine
Specific Rendering Physics Data Analysis Probabilistic Learning

Languages (Liszt) (SaL) (RandomT) (OptiML)

Domain Embedding Language (Scala)

DSL Polymorphic Embedding Staging Static Domain Specific Opt.

Infrastructure]
Parallel Runtime (Delite)

Dynamic Domain Spec. Opt. Task & Data Parallelism Locality Aware Scheduling

Heterogeneous
Hardware

PERVASIVE

Liszt: DSL for Mesh PDEs [iuiF

m Z. DeVito, N. Joubert, P. Hanrahan

m Solvers for mesh-based PDEs
Complex physical systems
Huge domains

millions of cells

Example: Unstructured Reynolds- I | [[.

averaged Navier Stokes (RANS) B ombusu/ |
SOIVer Turbulence é -J_ T

= Goal: simplify code of mesh-based _ % ¢ ¥1
PDE SO|VerS -:."'ransition injection

= Write once, run on any type of Tl

parallel machine SR
= From multi-cores and GPUs to \

clusters

>

PERVASIVE |
Liszt Language Features ﬁi’%%%ﬁ%ﬁ%’?%

= Minimal Programming language
= Aritmetic, short vectors, functions, control flow

Built-in mesh interface for arbitrary polyhedra
= Vertex, Edge, Face, Cell

= Optimized memory representation of mesh

Collections of mesh elements
= Element Sets: faces(c:Cell), edgesCCW(f:Face)

Mapping mesh elements to fields
= Fields: val vert_position = position(v)

Parallelizable iteration
s forall statements: for(f <- faces(cell)) { .. }

PERASIE |
Liszt Code Example SPPL

for(edge <- edges(mesh)) { ——— Simple Set Comprehension

val flux = flux_calc(edge) «— Functions, Function Calls
val v@ = head(edge)

val vl = tail(edge) | © Mesh Topology Operators

Flux(ve) += flux]_< Field Data Storage
Flux(vl) -= flux

Code contains possible write conflicts!

We use architecture specific strategies guided
by domain knowledge

= MPI: Ghost cell-based message passing
= GPU: Coloring-based use of shared memory

PERASIE |
MPI| Performance %ﬁ%’uﬁ?%

= Using 8 cores per node, scaling up to 96
cores (12 nodes, 8 cores per node, all
communication using MPI%J

MPI Speedup 750k Mesh MPI Wall-Clock Runtime

1000 N

[EnY
o

S
L
©
(54
n
S
o
>
o
o
3
©
o
@
o
)

Runtim Log Scale (seconds)

[E=N

0 20 40 60 80

o

20 40 60 80

Number of MPI Nodes Number of MPI Nodes

Linear Scaling =#—Liszt Scaling Joe Scaling Lisst Runtime Joe Runtime

i P

GPU Performance e 2d

m Scaling mesh size from 50K (unit-sized) cells to 750K
(16x) on a Tesla C2050. Comparison is against singhle
threaded runtime on host CPU (Core 2 Quad 2.66Ghz)

GPU Speedup over Single-Core

w
(O}

w
o

N
u

N
o

[EEN
]

=0==Speedup Double
== Speedup Float

[EEN
o

S
£
©
(%3
w
S
o
>
o
o
3
7}
7}
o
v

Ul

o

8 10 12 14 16 18

Problem Size

Single-Precision: 31.5x, Double-precision: 28x

PERVASIVE
OptiML: ADSLformL Sppl

m A. Sujeeth and H. Chafi

m Machine Learning domain

= Learning patterns from data

= Applying the learned models to tasks
=« Regression, classification, clustering, estimation

= Computationally expensive

P
= Regular and irregular parallelism < re CAPTCHA™
|

= Motivation for OptiML

s Raise the level of abstraction

= Use domain knowledge to identify coarse—graine
parallelism

= Single source = multiple heterogeneous targets
= Domain specific optimizations

PERVASIVE
OptiML Language Features ﬁi“a%%ﬁ%ﬁ%’?%

m Provides a familiar (MATLAB-like) language and
API for writing ML applications

= Ex. valc=a * b (a, bare Matrix[Double])

m Implicitly parallel data structures
= General data types : Vector[T], Matrix[T]
« Independent from the underlying implementation

= Special data types : TrainingSet, TestSet, IndexVector,
Image, Video ..

= Encode semantic information

= Implicitly parallel control structures
= sum{...}, (0O::end) {...}, gradient { ... }, untilconverged { ... }

= Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures

PARALLELISM

Example OptiML / MATLAB code
(Gaussian Discriminant Analysis)

ML-specific data types
Ilx: II'rainingSet[DoubIe] — % x : Matrix, y: Vector

/[mu0O, mu1 : Vector[Double] % mu0, mu1: Vector

val sigma sum]O,x.numSampIes) { n = size(x,2);
if (x.IabeIs(T == false) { sigma = zeros(n,n);

(x(_)-mu0).trans.outerx(_)tmu0)

} parfor i=1:length(y)

).trans.outer(x(_)-nu1 sigma = sigma + (x(i,:)-mu0)*(x(i,:)-mu0);
} else

} sigma = sigma + (x(i,:)-mu1)™*(x(i,:)-mu1);
end

end

(x(_)-mu

else { 1* if (y(i) == 0)

Implicitly parallel Restricted index
control structures semantics

OptiML code (parallel) MATLAB code

PERVSHE
OptiML vs. MATLAB e |

GDA

Naive Bayes

+
CPU CPU CPU CPU oL 1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

Normalized Execution

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

K-means SVM

—
o -

S
s <
o

1 CPU 2 CPU 4 CPU 8 CPU CPU + 1 CPU 2 CPU 4 CPU 8 CPU CPU + 1CPU 2 CPU 4 CPU 8 CPU CPU +
GPU GPU GPU

m OptiML = MATLAB ®Jacket ——

Measuring Intracellular oy

Signaling with Mass Cytometry umm

m Bioinformatics Algorithm

= Spanning-tree Progression Analysis of Density-normalized Events (SPADE)
= P. Qiu, E. Simonds, M. Linderman, P. Nolan
@)

Marker 2

Marker 1
Cytometry data

Density-dependent Hierarchical
downsampling clustering

7

Marker 1 intensity Marker 2 intensity Cell abundance

f.a*""",""f

® -

:-._:r e {‘...... y_;-s‘l.....

0% 1 00%

Minimum spanning
Graph representations of the underlying hierarchy tree construction

SPADE is computationally mug

intensive il 2d

Processing time for 30 files:

» Matlab (parfor & vectorized loops)
By 2.5 days

C++ (hand-optimized OpenMP)
2.5 hours

...what happens when we have 1,000 files?

SPADE Downsample:
OptiML

PERVASIVE
PARALLELISM
LABORATORY

B. Wang and A. Sujeeth

Downsample:

L1 distances
between all 10°
events in 13D

space... reduce to
50,000 events

for (node <- G.nodes if node.density == 0)
val (closeNbrs,closerNbrs) =

/

kernelWidth

node.neighbors filter {dist(_,node) < kernelWidth}
{dist(_,node) < approxWidth}

node.density = closeNbrs.count
for (nbr <- closerNbrs) {
nbr.density = closeNbrs.count

}
}

SPADE Downsample: mﬁf@%%
Matlab IR

while sum(local_density==0)~=0
% process no more than 1000 nodes each time
ind = find(local_density==0); ind = ind(1:min(1000,end));

data_tmp = data(:,ind);
local_density_tmp = local_density(ind);
all_dist = zeros(length(ind), size(data,2));

parfor i=1:size(data,2)
all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -
data_tmp),1)";
end

for i=1:size(data_tmp,2)
local_density_tmp(i) = sum(all_dist(i,:) < kernel_width);
local_density(all_dist(i,:) < apprx_width) = local_density_tmp(i);
end
end

)
E
-

c

o
2

3

Q

0

X
w
o

0
N
©

£

1)

o
Z

OptiML vs. C++

PERVASIE
PARALLELISH e
LABORATORY I P

Template Match

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

™
=]

1 CPU 2 CPU

1CPU 2CPU 4CPU 8CPU

MOptiML ®C++

1CPU 2CPU 4CPU 8CPU

m OptiML provides much simpler programming model
m OptiML performance as good as C++ on full applications

PERASH
New Problem .

= We need to develop all of these DSLs

m Current DSL methods are unsatisfactory

Current DSL Development mﬁﬁﬂ'?ﬂ'sﬁ%
Approaches BRATRY

m Stand-alone DSLs
= Can include extensive optimizations
= Enormous effort to develop to a sufficient degree of maturity
« Actual Compiler/Optimizations
« Tooling (IDE, Debuggers,...)
= Interoperation between multiple DSLs is very difficult

m Purely embedded DSLs = “just a library”
= Easy to develop (can reuse full host language)
Easier to learn DSL
Can Combine multiple DSLs in one program
Can Share DSL infrastructure among several DSLs
Hard to optimize using domain knowledge
Target same architecture as host language

Need to do better

PERVASIVE
Need to Do Better HpPL

m Goal: Develop embedded DSLs that
perform as well as stand-alone ones

= Intuition: General-purpose languages
should be designed with DSL embedding
in mind

PERVASIE
PARALLELISH e

DSL Embedding Language ik

m Mixes OO and FP paradigms
A comprehensive step-by-step guide - Ta r g et S JVM

Programming 1n Expressive type system allows

powerful abstraction
Scalable language

Stanford/EPFL collaboration on
leveraging Scala for parallelism

“Language Virtualization for
Heterogeneous Parallel
Computing” Onward 2010, Reno

Martin Odersky
. Lex Spoon
artima Bill Venners

Lightweight Modular i

PARALLELISH 8

Staging Approach et

Modular Staging provides a hybrid approach

DSLs adopt front-el
highly express
embedding lang

Stand-alone DSL an customize IR and
implements everything Eie=NNsElo < Nl EEES

Parser
checker

Typical Compiler

GPCE’'10: Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs

Delite: A Framework for R oo
DSL Parallelism i

H. Chafi, A. Sujeeth, K. Brown, H. Lee

DSLs adopt front-end from :
highly expressive but can customize IR and
embedding language participate in backend phases

Type

checker [T} Analysis = Del Ite -

Parser

Need a framework to simplify
development of DSL backends

PERVASIVE I

Delite DSL Compiler —

Liszt OptiML _
program program Provide a common IR that

v v can be extended while still
benefitting from generic
Scala Embedding Delite Parallelism analysis and opt.

Extend common IR and
provide IR nodes that
Intermediate Representation (IR) encode data parallel

Framework Framework

execution patterns
= Now can do parallel

Base IR Delite IR
\w/i

\v/ optimizations and
Analysis & Opt. Opt. & Mapping Analysis & Opt. .
m DSL extends appropriate

data parallel nodes for
their operations

Code Generation = Now can do domain-
specific analysis and opt.

Delite Kernels Data Structures Generate an execution

Execution C(:ﬁgzla,l\ncP,l (arrays, trees, graph, kernels and data
Graph Verilog, ...) graphs, ...) structures

The Delite IR

PERVASIYE
PARALLELISH
LABORATORY

Domain User
Interface

M1 =M2 + M3

Application

V1 = exp(V2) s = sum(M)

C2 = sort(C1)

Domain Analysis

& Opt.

Matrix
Plus

DS IR

Vector Matrix
Exp Sum

Collection
Quicksort

Parallelism
Analysis & Opt.

Code Generation

& Execution

ZipWith

Delite Op IR

Map Reduce

Divide &
Conquer

Generic Analysis

& Opt.

Expression

Base IR

Delite

Delite

Delite Execution

PERVASIYE I
PARALLELISH
LABORATORY

. Kernels Data
Dellt.e (Scala, C, Structures Sl
Execution =

Cuda, (arrays, trees,
el Verilog, ...) graphs, ...) SMP ~ GPU

Application Inputs Machine Inputs

Walk-Time

Code Generator

Scheduler Fusion, Specialization, Synchronization

Partial schedules, Fused & specialized kernels

Run-Time

Schedule Dispatch, Dynamic load balancing, Memory management,
Lazy data transfers, Kernel auto-tuning, Fault tolerance

Maps the machine-
agnostic DSL compiler
output onto the machine
configuration for
execution

Walk-time scheduling
produces partial
schedules

Code generation
produces fused,
specialized kernels to be
launched on each
resource

Run-time executor
controls and optimizes
execution

PERVASIVE
Conclusions iﬁ%‘&ﬁ%ﬁ?%

m DSLs have potential to solve the heterogeneous
parallel programming problem

= Don’t expose programmers to explicit parallelism unless
they ask for it

= Determinism is a byproduct
m Need to simplify the process of developing DSLs
for parallelism

Need programming languages to be designed for flexible
embedding

Lightweight modular staging in Scala allows for more
powerful embedded DSLs

Delite provides a framework for adding parallelism

m Early embedded DSL results are very promising

