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What is Machine Learning?

The simple version:
Given data (x, y)" find a function f(x) which predicts y.

y €40,1} is a “label”
x € R™is "features”
f(x) = (w - x) is a linear predictor.
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y might be more complex and structured. Or nonexistent...
x might be a sparse vector or a string.

f can come from many more complex functional spaces.

In general: the discipline of data-driven prediction.



Where is Machine Learning?
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LABS
O Is the email spam or not?
@ Which news article is most interesting to a user?
© Which ad is most interesting to a user?

@ Which result should come back from a search?



Where is Machine Learning?

A YAHOO!L

LABS
O Is the email spam or not?
@ Which news article is most interesting to a user?
© Which ad is most interesting to a user?
@ Which result should come back from a search?

In the rest of the world.

@ ‘statistical arbitrage”

@ Machine Translation

© Watson

@ Face detectors in cameras

© ... constantly growing.



How does it work?

A common approach = gradient descent.

Suppose we want to choose w for f(x) = (w - x).
Start with w = 0.

Compute a “loss” according to /r(x,y) = (f(x) — y)?
Alter the weights according to w «— w — ’r]é—va.
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A common approach = gradient descent.

Suppose we want to choose w for f(x) = (w - x).
Start with w = 0.

Compute a “loss” according to /r(x, y) = (f(x) — y)?

Alter the weights according to w «— w — nﬁ.

There are many variations and many other approaches.
All efficient methods have some form of greedy optimization core.
But it’s not just optimization:

@ We must predict the y correctly for new x.

@ There are popular nonoptimization methods as well.



Demonstration

Learning to classify news articles (RCV1 dataset)
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Learning to classify news articles (RCV1 dataset)

An Outline of What's Next

Ron Bekkerman, Misha Bilenko and | are editing a book on
“Scaling up Machine Learning”. Overview Next.



What's in the book?

Parallel Unsupervised Learning Methods
@ Information-Theoretic Co-Clustering with MPI

@ Spectral Clustering using MapReduce as a subroutine
© K-Means with GPU
@ Latent Dirichlet Analysis with MPI

It's very hard to compare different results.
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Ground Rules

Ginormous caveat: Prediction performance varies wildly depending
on the problem—method pair.
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Ground Rules

Ginormous caveat: Prediction performance varies wildly depending
on the problem—method pair.

The standard: Input complexity/time.
= No credit for creating complexity then reducing it. (Ouch!)

Most interesting results reported. Some cases require creative
best-effort summary.
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My Flow Chart for Learning Optimization

@ Choose an efficient effective algorithm
@ Use compact binary representations.
@ If (Computationally Constrained)

Q then GPU

O else

@ If few learning steps
@ then Map-Reduce
© else Research Problem.



