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 Well, a relatively sophisticated user… 



Optimization 

 Minimize some objective function of many variables 

 Subject to constraints, for example 

o Equality constraints (linear or nonlinear) 

o Inequality constraints (linear or nonlinear) 

o General conic constraints (e.g. cone of positive 
semidefinite matrices) 

o Some or all variables integral of binary 
 

 Applications 

o Engineering and system design 

o Transportation/logistics network planning and operation 

o Machine learning 

o Etc., etc… 

January 2011        6 of 27 



Overgeneralization: Kinds of Optimization Algorithms 
 

 For “easy” but perhaps very large problems 

o All variables typically continuous 

o Either looking only for local optima, or we know any local 
optimum is global (convex models) 

o Difficulty may arise extremely large scale 
 

 For “hard” problems 

o Discrete variables, and not in a known “easy” special class 
like shortest path, assignment, max flow, etc., or… 

o Looking for a provably global optimum of a nonlinear 
continuous problem with local optima 
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Algorithms for “Easy” Problems 

 Popular standard methods (not exhaustive!) that do not 
assume a particular block or subsystem structure 

o Active set (for example, simplex) 

o Newton barrier (“interior point”) 

o Augmented Lagrangian 

 Decomposition methods (many flavors) – exploit some kind of 
high-level structure 
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Non-Decomposition Methods: Active Set 

 
 Canonical example: simplex 

 Core operation: a pivot 

o Have a usually sparse nonsingular matrix B factored into LU 

o Replace one column of B with a different sparse vector 

o Want to update the factors LU to match 

 The general sparse case has resisted effective parallelization 

 Dense case may be effectively parallelized (E et al. 1995 on 
CM-2, Elster et al. 2009 for GPU’s) 

 Some special cases like just “box” constraints are also fairly 
readily parallelizable 
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Non-Decomposition Methods: Newton Barrier 

 Avoid combinatorics of constraint intersections 

o Use a barrier function to “smooth” the constraints (often in 
a “primal-dual” way) 

o Apply one iteration of Newton’s method to the resulting 
nonlinear system of equations 

o Tighten the smoothing parameter and repeat 

 Number of iterations grows weakly with problems size 

 Main work: solve a linear system involving 

H J
M

J D
 

  
 



 

 System becomes increasingly ill-conditioned 

 Must be solved to high accuracy 
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Non-Decomposition Methods: Newton Barrier 

 Parallelization of this algorithm class is dominated by linear 
algebra issues 

 Sparsity pattern and factoring of M is in general more complex 
than for the component matrices H, J, etc. 

 Many applications generate sparsity patterns with low-
diameter adjacency graphs 

o PDE-oriented domain decomposition approaches may not 
apply 

 Iterative linear methods can be tricky to apply due to the ill-
conditioning and need for high accuracy 
 

 A number of standard solvers offer SMP parallel options, but 
speedups tend to be very modest (i.e. 2 or 3) 
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Non-Decomposition Methods: Augmented Lagrangians 

 Smooth constraints with a penalty instead of a barrier; use 
Lagrange multipliers to “shift” the penalty; do not have to 
increase penalty level indefinitely 

 

 Creates a series of subproblems with no constraints, or much 
simpler constraints 

 Subproblems are nonlinear optimizations (not linear systems) 

 But may be solved to low accuracy 

 Parallelization efforts focused on decomposition variants, but 
the standard, basic approach may be parallelizable 
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Decomposition Methods 

 Assume a problem structure of relatively weakly interacting 
subsystems 

o This situation is common in large-scale models 

 There are many different ways to construct such methods, but 
there tends to be a common algorithmic pattern: 

o Solve a perturbed, independent optimization problem for 
each subsystem (potentially in parallel) 

o Perform a coordination step that adjusts the perturbations, 
and repeat 

 Sometimes the coordination step is a non-trivial optimization 
problem of its own – a potential Amdahl’s law bottleneck 

 Generally, “tail convergence” can be poor 

 Some successful parallel applications, but highly domain-
specific 
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Algorithms for “Hard” Problems: Branch and Bound 

 Branch and bound is the most common algorithmic structure.  
Integer programming example: 

 

min
ST

0,1 n

c x
Ax b

x







 

o Relax the  0,1 nx  constraint to x 0 1 and solve as an LP 

o If all variables come out integer, we’re done 

o Otherwise, divide and conquer: choose j with 0 1jx   and 
branch 

xj = 0 xj = 1 
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Branch and Bound Example Continued 

 Loop: pool of subproblems with subsets of fixed variables 

o Pick a subproblem out of the pool 

o Solve its LP 

o If the resulting objective is worse than some known 
solution, throw it away (prune) 

o Otherwise, divide the subproblem by fixing another 
variable and put the resulting children back in the pool 
 

 The algorithm may be generalized/abstracted to many other 
settings 

o Including global optimization of continuous problems with 
local minima 
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Branch and Bound 

 In the worst case, we will enumerate an exponentially large 
tree with all possible solutions at the leaves 

 Thus, relatively small amounts of data can generate very 
difficult problems 

 If the bound is “smart” and the branching is “smart”, this class 
of algorithms can nevertheless be extremely useful and 
practical 

o For the example problem above, the LP bound may be 
greatly strengthened by using polyhedral combinatorics – 
adding additional linear constraints implied by combining 

   and 0,1 nx Ax b  

o Clever choices of branching variable or different ways of 
branching have enormous value 
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Parallelizing Branch and Bound 

 Branch and bound is a “forgiving” algorithm to parallelize 

o Idea: work on multiple parts of the tree at the same time 

o But trees may be highly unbalanced and their shape is not 
predictable 

o A variety of load-balancing approaches can work very well 

 A number object-oriented parallel branch-and-bound 
frameworks/libraries exist, including 

o PEBBL/PICO (E et al.) 

o ALPS/BiCePS/BLIS (Ralphs et al.) 

o BOB (Lecun et al.) 

o OOBB (Gendron et al.) 

 Most production integer programming solvers have an SMP 
parallel option:  CPLEX, XPRESS-MP, GuRoBi, CBC 
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Effectiveness of Parallel Branch and Bound 

 I have seen examples with near-linear speedup through 
hundreds of processors, and it should scale up further 

 Sometimes there are even apparently superlinear speedup 
anomalies (for which there are reasonable explanations) 
 

 I have also seen disappointing speedups.  Why? 

o Non-scalable load balancing techniques 

 Central pool for SMPs or master-slave 

o Task granularity not matched to platform 

 Too fine  excessive overhead 

 Too coarse  too hard to balance load  

o Ramp-up/ramp-down issues 

o Synchronization penalties from requiring determinism 
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Big Picture: Where We Are (Both “Hard” and “Easy” Problems) 

 Most numerical optimization is done by large, encapsulated 
solvers / callable libraries which encapsulate the expertise of 
numerical optimization experts 

 Models are often passed to these libraries using specialized 
modeling languages  

o Leading example: AMPL 

o Digression – challenge to merge these optimization model 
description languages with a usable procedural language 
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Monolithic Solvers and Callable Libraries 

 These libraries / solvers have some parameters (often poorly 
understood by our users), but are otherwise fairly monolithic 

 Results 

o Minimal or no speedups on LP and other continuous 
problems 

o Moderate speedups on hard integer problems 

o Usually available only on SMP platforms 

 Why? 

o “Hard” problems: we need to assemble the right teams 

o “Easy” problems: we need a different approach 
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“Hard” Problems 

 For branch-and-bound-related algorithms, the monolithic 
approach can take us much farther than we are today 

 Today’s parallel implementations are somewhat weak, but the 
right combination of domain knowledge and implementation 
knowledge should yield monolithic solvers that could exploit 
parallelism far better 
 

“Easy” (But Huge) Problems 

 The monolithic approach will not get us much farther 

 Fully analyzing the structure of a gigantic problem and picking 
the optimal problem partitioning & solution algorithm is a tall 
order 

o To work effectively, a monolithic parallel solver must 
analyze the input model much more deeply than a serial 
one 
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New Approaches for Large “Easy” Problems 

1. Better decomposition algorithms – but results will probably be 
application-specific 
 

2. A “toolkit” approach for non-decomposition algorithms 

o Provide high-quality, rigorous fundamental optimization 
algorithms 

 Avoid user ad hoc approaches and “reinventing the 
wheel” for basic optimization algorithms 

o But give users control over data layout and function / 
gradient evaluation to best suit their application 

o Somewhat similar in spirit to CMSSL 

o Could still plug this framework to a monolithic solver that 
attempts to analyze problem structure and find good 
decomposition strategies 
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A Particular Approach I’m Working On 

 “Outer loop”: augmented Lagrangian with a relative error 
criterion (E + Silva 2010) 

o Generates a sequence of nonlinear box-constrained 
subproblems solved to gradually increasing accuracy 

 “Inner loop”: CG-DESCENT/ASA (Hager and Zhang 2005/2006), 
with minor modifications for parallelism 

 User provides 

o “Primal layout”: assignment of variables to processors 
(some may be replicated on multiple processors) 

o “Dual layout”: assignment of constraints to processors 
(some may be replicated on multiple processors) 

o Function / gradient evaluators adapted to these layouts 

 Asking for parallelization help from user, … 

o but in a natural application domain (not matrix factoring) 
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Programming Environments 

 What framework should we implement this in? 

 What framework should we ask our users to employ for the 
function / gradient evaluator? 

 What approach would make applications as portable as 
possible? 
 

 C++ / MPI ?  (what I do most of my current work in) 

 CUDA ? 

 OpenCL ? 
 

 Yecch…         
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 Programming Environments 

 These environments are the assembly languages of parallelism 
 

 Literally: 

o CUDA and OpenCL resemble C/PARIS, the assembly 
language of the CM-2 
 

 Conceptually: 

o Low level of abstraction 

o Lots of clutter 

o Will only work (well) on certain families of platforms 
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Wish List 

 We need a “C of parallelism” 

o Something that allows reasonably low level control and is 
built for performance 

o But also supports a proper level of abstraction 

o … and is not heavily platform dependent 

 Is it possible?  PGAS?  Chapel?  UPC?  Fortress?  ? 
 

 Note: 

o The #1 linear programming code of the 60’s-80’s (MPSX) 
was written in IBM/360 assembler 

o Competitors were in FORTRAN 

o In the 80’s, they were swept aside by fast C codes 

 If the right tools are there, they will get used 
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Wish List Continued 

 Ideally, should be a superset of a recognizable standard 
language 

o We’ll need users to code modules for us 

o Otherwise, it should interface easily to standard languages 

 Aggregate operation support 

o Witness popularity of MATLAB, despite its many flaws 

o Also SciPy 

 But also some kind of task / nested parallelism 

o More than just data parallelism and aggregate operations 

 “Locality” support 

o Must express more than a flat global address space 
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