
A Survey of Parallelism in Solving
Numerical Optimization and Operations

Research Problems
Jonathan Eckstein

Rutgers University, Piscataway, NJ, USA
(formerly of Thinking Machines Corporation)

(also consultant for Sandia National Laboratories)

January 2011 1 of 27

 I am not primarily a computer scientist

January 2011 2 of 27

 I am not primarily a computer scientist

 I am “user” interested in implementing a particular (large)
class of applications

January 2011 3 of 27

 I am not primarily a computer scientist

 I am “user” interested in implementing a particular (large)
class of applications

January 2011 4 of 27

 I am not primarily a computer scientist

 I am “user” interested in implementing a particular (large)
class of applications

January 2011 5 of 27

 Well, a relatively sophisticated user…

Optimization

 Minimize some objective function of many variables

 Subject to constraints, for example

o Equality constraints (linear or nonlinear)

o Inequality constraints (linear or nonlinear)

o General conic constraints (e.g. cone of positive
semidefinite matrices)

o Some or all variables integral of binary

 Applications

o Engineering and system design

o Transportation/logistics network planning and operation

o Machine learning

o Etc., etc…

January 2011 6 of 27

Overgeneralization: Kinds of Optimization Algorithms

 For “easy” but perhaps very large problems

o All variables typically continuous

o Either looking only for local optima, or we know any local
optimum is global (convex models)

o Difficulty may arise extremely large scale

 For “hard” problems

o Discrete variables, and not in a known “easy” special class
like shortest path, assignment, max flow, etc., or…

o Looking for a provably global optimum of a nonlinear
continuous problem with local optima

January 2011 7 of 27

Algorithms for “Easy” Problems

 Popular standard methods (not exhaustive!) that do not
assume a particular block or subsystem structure

o Active set (for example, simplex)

o Newton barrier (“interior point”)

o Augmented Lagrangian

 Decomposition methods (many flavors) – exploit some kind of
high-level structure

January 2011 8 of 27

Non-Decomposition Methods: Active Set

 Canonical example: simplex

 Core operation: a pivot

o Have a usually sparse nonsingular matrix B factored into LU

o Replace one column of B with a different sparse vector

o Want to update the factors LU to match

 The general sparse case has resisted effective parallelization

 Dense case may be effectively parallelized (E et al. 1995 on
CM-2, Elster et al. 2009 for GPU’s)

 Some special cases like just “box” constraints are also fairly
readily parallelizable

January 2011 9 of 27

Non-Decomposition Methods: Newton Barrier

 Avoid combinatorics of constraint intersections

o Use a barrier function to “smooth” the constraints (often in
a “primal-dual” way)

o Apply one iteration of Newton’s method to the resulting
nonlinear system of equations

o Tighten the smoothing parameter and repeat

 Number of iterations grows weakly with problems size

 Main work: solve a linear system involving

H J
M

J D

 System becomes increasingly ill-conditioned

 Must be solved to high accuracy

January 2011 10 of 27

Non-Decomposition Methods: Newton Barrier

 Parallelization of this algorithm class is dominated by linear
algebra issues

 Sparsity pattern and factoring of M is in general more complex
than for the component matrices H, J, etc.

 Many applications generate sparsity patterns with low-
diameter adjacency graphs

o PDE-oriented domain decomposition approaches may not
apply

 Iterative linear methods can be tricky to apply due to the ill-
conditioning and need for high accuracy

 A number of standard solvers offer SMP parallel options, but
speedups tend to be very modest (i.e. 2 or 3)

January 2011 11 of 27

Non-Decomposition Methods: Augmented Lagrangians

 Smooth constraints with a penalty instead of a barrier; use
Lagrange multipliers to “shift” the penalty; do not have to
increase penalty level indefinitely

 Creates a series of subproblems with no constraints, or much
simpler constraints

 Subproblems are nonlinear optimizations (not linear systems)

 But may be solved to low accuracy

 Parallelization efforts focused on decomposition variants, but
the standard, basic approach may be parallelizable

January 2011 12 of 27

Decomposition Methods

 Assume a problem structure of relatively weakly interacting
subsystems

o This situation is common in large-scale models

 There are many different ways to construct such methods, but
there tends to be a common algorithmic pattern:

o Solve a perturbed, independent optimization problem for
each subsystem (potentially in parallel)

o Perform a coordination step that adjusts the perturbations,
and repeat

 Sometimes the coordination step is a non-trivial optimization
problem of its own – a potential Amdahl’s law bottleneck

 Generally, “tail convergence” can be poor

 Some successful parallel applications, but highly domain-
specific

January 2011 13 of 27

Algorithms for “Hard” Problems: Branch and Bound

 Branch and bound is the most common algorithmic structure.
Integer programming example:

min
ST

0,1 n

c x
Ax b

x

o Relax the 0,1 nx constraint to x 0 1 and solve as an LP

o If all variables come out integer, we’re done

o Otherwise, divide and conquer: choose j with 0 1jx and
branch

xj = 0 xj = 1

January 2011 14 of 27

Branch and Bound Example Continued

 Loop: pool of subproblems with subsets of fixed variables

o Pick a subproblem out of the pool

o Solve its LP

o If the resulting objective is worse than some known
solution, throw it away (prune)

o Otherwise, divide the subproblem by fixing another
variable and put the resulting children back in the pool

 The algorithm may be generalized/abstracted to many other
settings

o Including global optimization of continuous problems with
local minima

January 2011 15 of 27

Branch and Bound

 In the worst case, we will enumerate an exponentially large
tree with all possible solutions at the leaves

 Thus, relatively small amounts of data can generate very
difficult problems

 If the bound is “smart” and the branching is “smart”, this class
of algorithms can nevertheless be extremely useful and
practical

o For the example problem above, the LP bound may be
greatly strengthened by using polyhedral combinatorics –
adding additional linear constraints implied by combining

 and 0,1 nx Ax b

o Clever choices of branching variable or different ways of
branching have enormous value

January 2011 16 of 27

Parallelizing Branch and Bound

 Branch and bound is a “forgiving” algorithm to parallelize

o Idea: work on multiple parts of the tree at the same time

o But trees may be highly unbalanced and their shape is not
predictable

o A variety of load-balancing approaches can work very well

 A number object-oriented parallel branch-and-bound
frameworks/libraries exist, including

o PEBBL/PICO (E et al.)

o ALPS/BiCePS/BLIS (Ralphs et al.)

o BOB (Lecun et al.)

o OOBB (Gendron et al.)

 Most production integer programming solvers have an SMP
parallel option: CPLEX, XPRESS-MP, GuRoBi, CBC

January 2011 17 of 27

Effectiveness of Parallel Branch and Bound

 I have seen examples with near-linear speedup through
hundreds of processors, and it should scale up further

 Sometimes there are even apparently superlinear speedup
anomalies (for which there are reasonable explanations)

 I have also seen disappointing speedups. Why?

o Non-scalable load balancing techniques

 Central pool for SMPs or master-slave

o Task granularity not matched to platform

 Too fine excessive overhead

 Too coarse too hard to balance load

o Ramp-up/ramp-down issues

o Synchronization penalties from requiring determinism

January 2011 18 of 27

Big Picture: Where We Are (Both “Hard” and “Easy” Problems)

 Most numerical optimization is done by large, encapsulated
solvers / callable libraries which encapsulate the expertise of
numerical optimization experts

 Models are often passed to these libraries using specialized
modeling languages

o Leading example: AMPL

o Digression – challenge to merge these optimization model
description languages with a usable procedural language

January 2011 19 of 27

Monolithic Solvers and Callable Libraries

 These libraries / solvers have some parameters (often poorly
understood by our users), but are otherwise fairly monolithic

 Results

o Minimal or no speedups on LP and other continuous
problems

o Moderate speedups on hard integer problems

o Usually available only on SMP platforms

 Why?

o “Hard” problems: we need to assemble the right teams

o “Easy” problems: we need a different approach

January 2011 20 of 27

“Hard” Problems

 For branch-and-bound-related algorithms, the monolithic
approach can take us much farther than we are today

 Today’s parallel implementations are somewhat weak, but the
right combination of domain knowledge and implementation
knowledge should yield monolithic solvers that could exploit
parallelism far better

“Easy” (But Huge) Problems

 The monolithic approach will not get us much farther

 Fully analyzing the structure of a gigantic problem and picking
the optimal problem partitioning & solution algorithm is a tall
order

o To work effectively, a monolithic parallel solver must
analyze the input model much more deeply than a serial
one

January 2011 21 of 27

New Approaches for Large “Easy” Problems

1. Better decomposition algorithms – but results will probably be
application-specific

2. A “toolkit” approach for non-decomposition algorithms

o Provide high-quality, rigorous fundamental optimization
algorithms

 Avoid user ad hoc approaches and “reinventing the
wheel” for basic optimization algorithms

o But give users control over data layout and function /
gradient evaluation to best suit their application

o Somewhat similar in spirit to CMSSL

o Could still plug this framework to a monolithic solver that
attempts to analyze problem structure and find good
decomposition strategies

January 2011 22 of 27

A Particular Approach I’m Working On

 “Outer loop”: augmented Lagrangian with a relative error
criterion (E + Silva 2010)

o Generates a sequence of nonlinear box-constrained
subproblems solved to gradually increasing accuracy

 “Inner loop”: CG-DESCENT/ASA (Hager and Zhang 2005/2006),
with minor modifications for parallelism

 User provides

o “Primal layout”: assignment of variables to processors
(some may be replicated on multiple processors)

o “Dual layout”: assignment of constraints to processors
(some may be replicated on multiple processors)

o Function / gradient evaluators adapted to these layouts

 Asking for parallelization help from user, …

o but in a natural application domain (not matrix factoring)

January 2011 23 of 27

Programming Environments

 What framework should we implement this in?

 What framework should we ask our users to employ for the
function / gradient evaluator?

 What approach would make applications as portable as
possible?

 C++ / MPI ? (what I do most of my current work in)

 CUDA ?

 OpenCL ?

 Yecch…

January 2011 24 of 27

 Programming Environments

 These environments are the assembly languages of parallelism

 Literally:

o CUDA and OpenCL resemble C/PARIS, the assembly
language of the CM-2

 Conceptually:

o Low level of abstraction

o Lots of clutter

o Will only work (well) on certain families of platforms

January 2011 25 of 27

Wish List

 We need a “C of parallelism”

o Something that allows reasonably low level control and is
built for performance

o But also supports a proper level of abstraction

o … and is not heavily platform dependent

 Is it possible? PGAS? Chapel? UPC? Fortress? ?

 Note:

o The #1 linear programming code of the 60’s-80’s (MPSX)
was written in IBM/360 assembler

o Competitors were in FORTRAN

o In the 80’s, they were swept aside by fast C codes

 If the right tools are there, they will get used

January 2011 26 of 27

January 2011 27 of 27

Wish List Continued

 Ideally, should be a superset of a recognizable standard
language

o We’ll need users to code modules for us

o Otherwise, it should interface easily to standard languages

 Aggregate operation support

o Witness popularity of MATLAB, despite its many flaws

o Also SciPy

 But also some kind of task / nested parallelism

o More than just data parallelism and aggregate operations

 “Locality” support

o Must express more than a flat global address space

	A Survey of Parallelism in Solving Numerical Optimization and Operations Research Problems

