
vSQL: Verifying Arbitrary SQL Queries
over Dynamic Outsourced Databases

Yupeng Zhang, Daniel Genkin, Jonathan Katz,

Dimitrios Papadopoulos and Charalampos Papamanthou

Verifiable Databases

client server

result + proof
digest δ

Verification:  or database

SQL database query

Efficiency Measures of Verifiable Databases

client server

database

result + proof
digest δ

Verification:  or 

setup
time prover time

proof size

verification
time

SQL database query

Prior Work in Verifiable Databases

1. Customized Approach (E.g., ADS [Tamassia03])

• Range [LHKR06, MNT06, …], multi-range [PPT14, …], join[PJRT05, …]

Efficient

× Only support limited operations

• IntegriDB [ZKP15]

Efficiency

Expressiveness

range

multi-
range

join

IntegriDB

Prior Work in Verifiable Databases

2. Generic Approach (E.g., SNARK [PHGR13, BCGTV13, BFRS+13, …]

& PCP [Kilian92, Micali94, ….])

Supports all functions that can be modeled as arithmetic circuits

Constant proof size, fast verification time

× Large setup time & prover time

× Function specific setup

Efficiency

Expressiveness

range

multi-
range

join

IntegriDB

SNARK

Our Contribution: vSQL

• Supports arbitrary SQL queries

• Comparable prover time to IntegriDB, faster setup time

• Up to 2 orders of magnitude faster than SNARKs

• No function specific setup

Efficiency

Expressiveness

range

multi-
range

join

IntegriDB

SNARK vSQL

1. SELECT SUM (l_extendedprice * (1 - l_discount)) AS revenue FROM lineitem, part
WHERE
2. (p_partkey = l_partkey
3. AND p_brand = ‘Brand#41’
4. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
5. AND l_quantity >= 7 AND l_quantity <= 7 + 10
6. AND p_size BETWEEN 1 AND 5
7. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
8. AND l_shipinstruct = ‘DELIVER IN PERSON’)
9. OR
10. (p_partkey = l_partkey
11. AND p_brand = ‘Brand#14’
12. AND p_container IN (‘MED BAG’, ‘MED BOX’,‘MED PKG’, ‘MED PACK’)
13. AND l_quantity >= 14 AND l_quantity <= 14 + 10
14. AND p_size BETWEEN 1 AND 10
15. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
16. AND l_shipinstruct = ‘DELIVER IN PERSON’)
17. OR
18. (p_partkey = l_partkey
19. AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND l_quantity >= 25 AND l_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15
23. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
24. AND l_shipinstruct = ‘DELIVER IN PERSON’);

Query #19 of the TPC-H benchmark
http://www.tpc.org/tpch

Example

Our Construction

Interactive Proof (IP)[GKR08, CMT12, …]

1. SELECT SUM (l_extendedprice * (1 - l_discount)) AS revenue FROM lineitem, part
WHERE
2. (p_partkey = l_partkey
3. AND p_brand = ‘Brand#41’
4. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
5. AND l_quantity >= 7 AND l_quantity <= 7 + 10
6. AND p_size BETWEEN 1 AND 5
7. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
8. AND l_shipinstruct = ‘DELIVER IN PERSON’)
9. OR
10. (p_partkey = l_partkey
11. AND p_brand = ‘Brand#14’
12. AND p_container IN (‘MED BAG’, ‘MED BOX’,‘MED PKG’, ‘MED PACK’)
13. AND l_quantity >= 14 AND l_quantity <= 14 + 10
14. AND p_size BETWEEN 1 AND 10
15. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
16. AND l_shipinstruct = ‘DELIVER IN PERSON’)
17. OR
18. (p_partkey = l_partkey
19. AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND l_quantity >= 25 AND l_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15
23. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
24. AND l_shipinstruct = ‘DELIVER IN PERSON’);

Example

+ × ×……

× × +……

…
…

× + +……

× ×……

Input (database)

Output (result)

fin(x)

fout(x)
client serverOutput

Input

fin(rin)

fout(rout)

f1(x)

f2(x)

fd-2(x)

fd-1(x)

r1

f1(r1)

…
…

rin

fin(rin)

Check the relationship at a random point
(Sumcheck protocol)

…
…

(Low degree extension)

Interactive Proof (IP)[GKR08, CMT12, …]

Using IP for Verifiable Databases

 No setup time

 Fast prover time (no crypto operations)

× Storage of the database locally
(Last step: evaluate a polynomial defined by the input at a random point)

Delegating Database to the Server

• Our solution: Verifiable Polynomial Delegation (VPD)

[KZG10, PST13]

evaluation point aclient server

f(a) + proof
digest δf

(32Bytes)

Verification:  or f(x)

vSQL protocol

SQL query
(modeled as a circuit)

client server

database

digest δfin of fin(x)
for the database

result

Interactive proof
(except last step)

…
…

rin

fin (rin) + proofs

fin (rin)  or 
Verification of polynomial

delegation

fin(rin)

IP

VPD

Using IP for Verifiable Databases

 No setup time

 Fast prover time (no crypto operations)

× Storage of the database locally

(Last step: evaluate a polynomial defined by the input at a random point)

Verifying Computations in NP

• Some functions are hard to compute using arithmetic circuits

E.g., Integer division a÷b

• They are easy to verify with inputs from the server: a = q × b + r

• Interactive Proof does not support auxiliary input

• Our solution: Extractable Verifiable Polynomial Delegation (VPD)

evaluation point a

client server

f(a) + proof

digest δf

Verification:  or  f(x)

commitment of the auxiliary inputs
with extractability

Result: extending IP (GKR, CMT etc.) to NP computations
without using FHE [CKLR11, …]

Verifying Computations in NP

vSQL

 Setup only for the database, not for queries

 Faster prover time
(crypto operations is only linear to the database size,
does not depend on the circuit size)

 Supports auxiliary inputs

 Expressive SQL updates (details in the paper)

Experimental Results

Comparison with Prior Work

Query
#19

IntegriDB SNARK vSQL

Setup

Prover

Verification

Communication

7 hours 100 hours* 0.4 hour

1.8 hours 54 hours* 1.3 hours

232 ms 6 ms 148 ms

Queries and database: TPC-H benchmark
Database size: 6 million rows × 13 columns (2.8GB) in the largest table.

184 KB 0.3 KB 28 KB

Follow-up:
4× faster!

Update

Query #15: create a new table on the fly by range and sum

Old table: 2.8GB new table: 1.7MB

Prover Verification Communication

0.5 hour 85ms 85.7KB

Summary of vSQL

• vSQL: Verifiable Polynomial Delegation + Interactive Proof

Comparable efficiency, better expressiveness compared
to customized VC

Up to 2 orders of magnitude faster compared to SNARKs

Setup only for database, no query dependent setup

One Preprocessing to Rule Them All:
Verifiable Computation with Circuit-Independent

Preprocessing and Applications to
Verifiable RAM Programs

• Interactive argument for NP, with function
independent preprocessing

• Apply to verifiable RAM computations

• Theorem: Prover time linear in #of CPU steps T

vs. quasi-linear using SNARKs [BCTV14]

• 8× faster prover time, 120× smaller memory
consumption, up to 2 million CPU steps

RAM to Circuit Reduction [BCTV14]

state1

state2

state3

stateT

…
…

By time:

CPU state

• Time
• Program counter
• Instruction number
• Flag
• Registers
• …..

RAM to Circuit Reduction [BCTV14]

state1

state2

state3

stateT
…

…

CPU
step

CPU
step

CPU
step

By time:

E.g., Add r1, r2, r3

state'1

state'2

state'3

state'T

…
…

By memory:

Memory
consistency

Memory
consistency

Memory
consistency

Sorting
Network

Inefficiency: Preprocessing

CPU
step

CPU
step

CPU
step

CPU step

All possible CPU instructions:

ADD, MUL, JMP, CMP,
LOAD,…

Our New RAM to Circuit Reduction

state1

state2

state3

stateT

…
…

state''1

state''2

state''3

state''T
…

…

Add

Add

By time:By Instruction:

Sorting
Network

Load

of
Add

of
Load

state'1

state'2

state'3

state'T

…
…

By Memory:

Sorting
Network

Our New RAM to Circuit Reduction

state1

state2

state3

stateT

…
…

state''1

state''2

state''3

state''T
…

…

Add

Add

By time:By Instruction:

Permuta
-tion

protocol

Load

of
Add

of
Load

state'1

state'2

state'3

state'T

…
…

By Memory:

Permuta
-tion

protocol

Our New Verifiable RAM

• 8× faster prover time

• 120× smaller memory consumption

(up to 2 million CPU steps)

• Prover time linear in #of CPU steps T

• One preprocessing for both RAM and circuit

Summary

Verifiable Polynomial Delegation + Interactive Proof
 vSQL, verifiable databases

 Verifiable RAM

Ongoing work:
 Verifiable RAM with states

 Zero-knowledge with applications to crypto-currencies

