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Prior Work in Verifiable Databases

1. Customized Approach (E.g., ADS [Tamassia03])

• Range [LHKR06, MNT06, …], multi-range [PPT14, …], join[PJRT05, …]

Efficient

× Only support limited operations

• IntegriDB [ZKP15]
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Prior Work in Verifiable Databases

2. Generic Approach (E.g., SNARK  [PHGR13, BCGTV13, BFRS+13, …]

& PCP [Kilian92, Micali94, ….])

Supports all functions that can be modeled as arithmetic circuits

Constant proof size, fast verification time

× Large setup time & prover time

× Function specific setup
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Our Contribution: vSQL

• Supports arbitrary SQL queries

• Comparable prover time to IntegriDB, faster setup time

• Up to 2 orders of magnitude faster than SNARKs

• No function specific setup
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1.    SELECT SUM (l_extendedprice * (1 - l_discount))  AS revenue FROM lineitem, part
WHERE
2.    ( p_partkey = l_partkey
3.    AND p_brand = ‘Brand#41’
4.    AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
5.    AND l_quantity >= 7 AND l_quantity <= 7 + 10
6.    AND p_size BETWEEN 1 AND 5
7.    AND l_shipmode IN (‘AIR’, ‘AIR REG’)
8.    AND l_shipinstruct = ‘DELIVER IN PERSON’ )
9.    OR
10.   ( p_partkey = l_partkey
11.   AND p_brand = ‘Brand#14’
12.  AND p_container IN (‘MED BAG’, ‘MED BOX’,‘MED PKG’, ‘MED PACK’)
13.  AND l_quantity >= 14 AND l_quantity <= 14 + 10
14.  AND p_size BETWEEN 1 AND 10
15.  AND l_shipmode IN (‘AIR’, ‘AIR REG’)
16.  AND l_shipinstruct = ‘DELIVER IN PERSON’ )
17.  OR
18.  ( p_partkey = l_partkey
19.  AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND l_quantity >= 25 AND l_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15
23. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
24. AND l_shipinstruct = ‘DELIVER IN PERSON’ );

Query #19 of the TPC-H benchmark
http://www.tpc.org/tpch

Example



Our Construction



Interactive Proof (IP)[GKR08, CMT12, …]



1.    SELECT SUM (l_extendedprice * (1 - l_discount))  AS revenue FROM lineitem, part
WHERE
2.    ( p_partkey = l_partkey
3.    AND p_brand = ‘Brand#41’
4.    AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
5.    AND l_quantity >= 7 AND l_quantity <= 7 + 10
6.    AND p_size BETWEEN 1 AND 5
7.    AND l_shipmode IN (‘AIR’, ‘AIR REG’)
8.    AND l_shipinstruct = ‘DELIVER IN PERSON’ )
9.    OR
10.   ( p_partkey = l_partkey
11.   AND p_brand = ‘Brand#14’
12.  AND p_container IN (‘MED BAG’, ‘MED BOX’,‘MED PKG’, ‘MED PACK’)
13.  AND l_quantity >= 14 AND l_quantity <= 14 + 10
14.  AND p_size BETWEEN 1 AND 10
15.  AND l_shipmode IN (‘AIR’, ‘AIR REG’)
16.  AND l_shipinstruct = ‘DELIVER IN PERSON’ )
17.  OR
18.  ( p_partkey = l_partkey
19.  AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND l_quantity >= 25 AND l_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15
23. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
24. AND l_shipinstruct = ‘DELIVER IN PERSON’ );

Example
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Using IP for Verifiable Databases

 No setup time

 Fast prover time (no crypto operations)

× Storage of the database locally
(Last step: evaluate a polynomial defined by the input at a random point)



Delegating Database to the Server

• Our solution: Verifiable Polynomial Delegation (VPD) 

[KZG10, PST13]
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Using IP for Verifiable Databases

 No setup time

 Fast prover time (no crypto operations)

× Storage of the database locally

(Last step: evaluate a polynomial defined by the input at a random point)



Verifying Computations in NP

• Some functions are hard to compute using arithmetic circuits

E.g., Integer division a÷b

• They are easy to verify with inputs from the server: a = q × b + r

• Interactive Proof does not support auxiliary input



• Our solution: Extractable Verifiable Polynomial Delegation (VPD)

evaluation point a

client server

f(a) + proof

digest δf

Verification:  or  f(x)

commitment of the auxiliary inputs 
with extractability

Result: extending IP (GKR, CMT etc.) to NP computations 
without using FHE [CKLR11, …]

Verifying Computations in NP



vSQL

 Setup only for the database, not for queries

 Faster prover time 
(crypto operations is only linear to the database size, 
does not depend on the circuit size)

 Supports auxiliary inputs

 Expressive SQL updates (details in the paper)



Experimental Results



Comparison with Prior Work

Query
#19

IntegriDB SNARK vSQL

Setup

Prover

Verification

Communication

7 hours 100 hours* 0.4 hour

1.8 hours 54 hours* 1.3 hours

232 ms 6 ms 148 ms

Queries and database: TPC-H benchmark
Database size: 6 million rows × 13 columns (2.8GB) in the largest table.

184 KB 0.3 KB 28 KB

Follow-up:
4× faster!



Update

Query #15: create a new table on the fly by range and sum

Old table: 2.8GB  new table: 1.7MB

Prover Verification Communication

0.5 hour 85ms 85.7KB



Summary of vSQL

• vSQL: Verifiable Polynomial Delegation + Interactive Proof

Comparable efficiency, better expressiveness compared 
to customized VC

Up to 2 orders of magnitude faster compared to SNARKs

Setup only for database, no query dependent setup



One Preprocessing to Rule Them All:
Verifiable Computation with Circuit-Independent 

Preprocessing and Applications to 
Verifiable RAM Programs

• Interactive argument for NP, with function 
independent preprocessing

• Apply to verifiable RAM computations

• Theorem: Prover time linear in #of CPU steps T 

vs. quasi-linear using SNARKs [BCTV14]

• 8× faster prover time, 120× smaller memory 
consumption, up to 2 million CPU steps



RAM to Circuit Reduction [BCTV14]
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RAM to Circuit Reduction [BCTV14]
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Inefficiency: Preprocessing
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Our New RAM to Circuit Reduction
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Our New RAM to Circuit Reduction
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Our New Verifiable RAM

• 8× faster prover time

• 120× smaller memory consumption 

(up to 2 million CPU steps)

• Prover time linear in #of CPU steps T

• One preprocessing for both RAM and circuit



Summary

Verifiable Polynomial Delegation + Interactive Proof
 vSQL, verifiable databases

 Verifiable RAM

Ongoing work: 
 Verifiable RAM with states

 Zero-knowledge with applications to crypto-currencies


