vSQL: Verifying Arbitrary SQL Queries
over Dynamic Outsourced Databases

Yupeng Zhang, Daniel Genkin, Jonathan Katz,
Dimitrios Papadopoulos and Charalampos Papamanthou

QQRSITP

IR
B FEREKE
56 ' P === THE HONG KONG
/ el l I l u JJ UNIVERSITY OF SCIENCE
o O AT AND TECHNOLOGY

v
4RYLB

Verifiable Databases

\J

client SQL database query server

result + proof
digest 6

VerifigatiRa or *

Efficiency Measures of Verifiable Databases

setup
time prover time
. /
client SQL database query server
- =
- |
@ result +|proof
digest 6 \
Verification: v or % proof size database
verification

time

Prior Work in Verifiable Databases

1. Customized Approach (E.g., ADS [Tamassiao3])

« Range [LHKR06, MNTO06, ...], multi-range [PPT14, ...], join[PJRTO05, ...]
v Efficient

x Only support limited operations

- IntegriDB [ZKP15]

Expressiveness

IntegriDB
9 multi-

range

j oin ange

Efficiency

Prior Work in Verifiable Databases

2. Generic Approach (E.g., SNARK [PHGR13, BCGTV13, BFRS*13, ...]
& PCP [Kilian92, Micaliog4,])

v Supports all functions that can be modeled as arithmetic circuits

v Constant proof size, fast verification time

x Large setup time & prover time

x Function specific setup

Expressiveness

@ SNARK

IntegriDB
O multi-
range
join range
@ @

Efficiency

Our Contribution: vSQL

« Supports arbitrary SQL queries

« Comparable prover time to IntegriDB, faster setup time
« Up to 2 orders of magnitude faster than SNARKSs

 No function specific setup

Expressiveness

@ SNARK

IntegriDB
o multi-
range
J' oin range
@ @

Efficiency

Example

1. SELECT SUM (L _extendedprice * (1 - L_discount)) AS revenue FROM lineitem, part
WHERE
(p_partkey = 1_partkey
AND p_brand = ‘Brand#41’
AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
AND [_quantity >=7 AND [_quantity <=7 + 10
AND p_size BETWEEN 1 AND 5
AND [_shipmode IN (‘AIR’, ‘AIR REG’)
AND [_shipinstruct = ‘DELIVER IN PERSON’)
OR
. (p_partkey = 1_partkey
. AND p_brand = ‘Brand#14’
. AND p_ container IN (‘MED BAG’, MED BOX’,'MED PKG’, ‘MED PACK’)
13. AND [_quantity >= 14 AND [_quantity <= 14 + 10
14. AND p_size BETWEEN 1 AND 10
15. AND [_shipmode IN (‘AIR’, ‘AIR REG’)
16. AND [_shipinstruct = ‘DELIVER IN PERSON’)
17. OR
18. (p_partkey = |_partkey
19. AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND [_quantity >= 25 AND |_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15

23. AND [_shipmode IN (‘AIR’, ‘AIR REG’) Query #19 of the TPC-H benchmark
24. AND L_shipinstruct = ‘DELIVER IN PERSON’); http://www.tpc.org/tpch

_ =
NEBY PN OTR®N

Our Construction

Interactive Proof (IP)[GKRo08, CMT12, ...]

Example

1. SELECT SUM (L _extendedprice * (1 - L_discount)) AS revenue FROM lineitem, part
WHERE
(p_partkey = 1_partkey
AND p_brand = ‘Brand#41’
AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
AND [_quantity >=7 AND [_quantity <=7 + 10
AND p_size BETWEEN 1 AND 5
AND [_shipmode IN (‘AIR’, ‘AIR REG’)
AND [_shipinstruct = ‘DELIVER IN PERSON’)
OR
. (p_partkey = 1_partkey
. AND p_brand = ‘Brand#14’
. AND p_ container IN (‘MED BAG’, MED BOX’,'MED PKG’, ‘MED PACK’)
13. AND [_quantity >= 14 AND [_quantity <= 14 + 10
14. AND p_size BETWEEN 1 AND 10
15. AND [_shipmode IN (‘AIR’, ‘AIR REG’)
16. AND [_shipinstruct = ‘DELIVER IN PERSON’)
17. OR
18. (p_partkey = |_partkey
19. AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND [_quantity >= 25 AND |_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15
23. AND [_shipmode IN (‘AIR’, ‘AIR REG’)
24. AND L_shipinstruct = ‘DELIVER IN PERSON’);

_ =
NEBY PN OTR®N

Interactive Proof (IP)[GKRo08, CMT12, ...]

Input
Output (result) client Output server

f out(X) fout(rout)

ﬁ(X) @ (rl) B

f 2(x)

‘ . I'in
fd_‘2(X) : fin(rin)
Jfaa(x)

$ £

fin(x) (Low degree extension)

I Check the relationship at a random point
(Sumcheck protocol)

Input (database)

ﬁn(rin)

Using IP for Verifiable Databases

v No setup time

v" Fast prover time (no crypto operations)

x Storage of the database locally

(Last step: evaluate a polynomial defined by the input at a random point)

Delegating Database to the Server

 Our solution: Verifiable Polynomial Delegation (VPD)
[KZG10, PST13]

client evaluation point a server

=
@ —
-~ LTI |
fla) + proof
digest oy
(32Bytes)
Verififiation: v or

vSQL protocol

SQL query
client (modeled as a circuit) server
Output (result)
result
I |
—I
digest 8fn of £, (x)! % I
for the database | Interactive proof :
I (except last step) :
database | : |
— <
() () e e ___ l
.‘ [— ===
() (+) | VPD Fin

[
I fin (rin) + proofs :
Input (database) Falmm) Vops— —— m—m - = =
Verification of polynomial

delegation

Using IP for Verifiable Databases

v No setup time

v' Fast prover time (no crypto operations)

x Storage-of-the-databaseloeally

Verifying Computations in NP

« Some functions are hard to compute using arithmetic circuits
E.g., Integer division a+b

« They are easy to verify with inputs from the server:a=qxb +r

* Interactive Proof does not support auxiliary input

Verifying Computations in NP

 Our solution: Extractable Verifiable Polynomial Delegation (VPD)

digest oy
client commitment of the auxiliary inputs Server

@ with extractability
=~

evaluation point a
—

—
Verification: v or ¥ f(a) + proot S(x)

Result: extending IP (GKR, CMT etc.) to NP computations
without using FHE [CKLR14, ...]

vSQL

v" Setup only for the database, not for queries

v" Faster prover time

(crypto operations is only linear to the database size,
does not depend on the circuit size)

v Supports auxiliary inputs

v Expressive SQL updates (details in the paper)

Experimental Results

Comparison with Prior Work

Queries and database: TPC-H benchmark
Database size: 6 million rows x 13 columns (2.8GB) in the largest table.

IntegriDB SNARK vSQL
Q:f"y Setup 7 hours 100 hours* | ¢.4 hour
? Prover 1.8 hours 54 hours* 1.3 hours
Verification 232 ms 6 ms 148 ms
Communication 184 KB 0.3 KB 28 KB

Follow-up:
4x faster!

Update

Query #15: create a new table on the fly by range and sum

Old table: 2.8GB new table: 1.7MB

Prover Verification | Communication

0.5 hour 85ms 85.7KB

Summary of vSQL

* vSQL: Verifiable Polynomial Delegation + Interactive Proof

»Comparable efficiency, better expressiveness compared
to customized VC

»Up to 2 orders of magnitude faster compared to SNARKSs

»Setup only for database, no query dependent setup

One Preprocessing to Rule Them All:
Verifiable Computation with Circuit-Independent

Preprocessing and Applications to
Verifiable RAM Programs

* Interactive argument for NP, with function
independent preprocessing

 Apply to verifiable RAM computations

e Theorem: Prover time linear in #of CPU steps T
vs. quasi-linear using SNARKS [BCTV14]

« 8x faster prover time, 120x smaller memory
consumption, up to 2 million CPU steps

RAM to Circuit Reduction [BCTV14]

By time:

state,

state,

state3

CPU state

Time

Program counter
Instruction number
Flag

Registers

stater

RAM to Circuit Reduction [BCTV14]

By time: By memory:
state, state',
CPU £., Add ry, ra,|r Memory
step consistency
state, state',

Memory
Sortin consistency
step tat] 5 '
state, Network state 3

CPU | Memory
step consistency

state; state';

il
i Qo

Inefficiency: Preprocessing

CPU
step
CPU step
CpPU All possible CPU instructions:
step
ADD, MUL, JMP, CMP,
LOAD,...
CPU

step

Our New RAM to Circuit Reduction

By Instruction: By time: By Memory:
— | state", state, state',
(| Add
of " '
< state’, state, state ',

Add
L,
_| Sorting | Sorting |

state", | | Network | | State; || Network | | state’,

-

of
o

Load
.

state" state; state';

Our New RAM to Circuit Reduction

By Instruction: By time: By Memory:
— 1 state", state, state’,
(| Add
#ot state" state state’
Add —t 2 2 2
Add
N kj Permuta Permuta
state”, -tion | state, -fion state’,
r protocol protocol
of
Load
&
state" state; state';

Our New Verifiable RAM

« 8x faster prover time

* 120x smaller memory consumption
(up to 2 million CPU steps)

 Prover time linear in #of CPU steps T

* One preprocessing for both RAM and circuit

Summary

Verifiable Polynomial Delegation + Interactive Proof
» vSQL, verifiable databases
» Verifiable RAM

Ongoing work:
» Verifiable RAM with states
» Zero-knowledge with applications to crypto-currencies

Thank you!!!
Q&A

