Doubly Efficient Interactive Proofs

Ron Rothblum
Outsourcing Computation

Weak client outsources computation to the cloud.

\[\begin{align*}
 x \\
 y &= f(x)
\end{align*} \]
Outsourcing Computation

We do not want to blindly trust the cloud.

\[x \quad y = f(x) \]

Key security concern:

Correctness: why should we trust the server’s answer?
Interactive Proofs to the Rescue?

Interactive Proof [GMR85]: prover P tries to interactively convince a polynomial-time verifier V that $f(x) = y$.

- $f(x) = y \implies P$ convinces V.
- $f(x) \neq y \implies$ no P^* can convince V wp $\geq 1/2$.

Key Problem: in classical results complexity of proving is actually exponential:

IP=PSPACE [LFKN90,Shamir90]: Interactive Proofs for space S computations with $2^\text{poly}(S)$ prover, $\text{poly}(n,S)$ verification, $\text{poly}(S)$ rounds.
Doubly Efficient Interactive Proof
[GKR08]

Interactive proof for $f(x) = y$ where the prover is efficient, and the verifier is super efficient.

Proportional to complexity of f

Much faster than complexity of f

Soundness holds against any (computationally unbounded) cheating prover.
Why Proof and not Arguments*?

1. Security against *unbounded* adversary.
 - Post-quantum secure, post post quantum secure...

2. No reliance on unproven crypto assumptions

3. Do not use any expensive crypto operations
 - Even if not currently practical, no clear bottleneck (e.g., [GKR08])...

* Disclaimer: arguments are GREAT! (e.g., [KRR14])
Doubly Efficient Interactive Proofs: The State of the Art

1) [GKR08]: Bounded Depth
 • Any bounded-depth circuit.
 • (Almost) linear time verifier, poly-time prover.
 • Number of rounds proportional to circuit depth.

2) [RRR16]: Bounded Space
 • Any bounded-space computation.
 • (Almost) linear time verifier, poly-time prover.
 • $O(1)$ rounds.
Constant-Round Doubly Efficient Interactive Proofs

Theorem [RRR16]: $\exists \delta > 0$ s.t. every language computable in $\text{poly}(n)$ time and n^δ space has an unconditionally sound interactive proof where:

1. Verifier is (almost) linear time.
2. Prover is polynomial-time.
3. Constant number of rounds.
Define IP_{DE} as class of languages having doubly efficient interactive proofs.
Roadmap: A Taste of the Proof

Iterative construction:

1. Start with interactive proof for short computations.
2. Build interactive proof for slightly longer computations.
3. Repeat.
Iterative Construction

Suppose we have interactive proofs for time T/k and space S computations.

Consider a time T and space S computation.
Divide & Conquer

Divide: Prover sends Turing machine configuration in $k \ll T$ intermediate steps.

Conquer? recurse on all subcomputations.

Problem: verification blows up, no savings.
Divide & Conquer

Divide: Prover sends Turing machine configuration in $k \ll T$ intermediate steps.

Conquer? Choose a few at random and recurse.

Problem: huge soundness error.
Best of Both Worlds?

Can we **batch verify** k instances much more efficiently than k independent executions.

Goal:
- Suppose $x \in L$ can be verified in time t.
- Want to verify $x_1, ..., x_k \in L$ in $\ll k \cdot t$ time.
Concrete Example: Batch Verification of RSA moduli

Def: integer N is an *RSA modulos* if it is the product of two m-bit primes $N = p \cdot q$.

The proof that N is an RSA modulos is its factorization. Can we verify k RSA moduli more efficiently?

\[
P(p_1, q_1, \ldots, p_k, q_k) \quad V(N_1, \ldots, N_k)
\]

\[
\ll k \cdot m \quad \text{communication}
\]
Warmup: Batch Verification for UP

UP ⊆ NP are all relations with unique accepting witnesses.

Theorem [RRR16]: Every $L \in \text{UP}$, has an interactive proof for verifying that $x_1, \ldots, x_k \in L$ with $m \cdot \text{polylog}(k) + \tilde{O}(k)$ communication.

For batch verification of interactive proofs we introduce interactive analogs of **UP** and **PCP**.

$m = \text{witness length}$
Constant-Round Doubly Efficient Interactive Proofs

Theorem [RRR16]: \(\exists \delta > 0 \) s.t. every language computable in \(\text{poly}(n) \) time and \(n^\delta \) space has an unconditionally sound interactive proof where:

1. Verifier is (almost) linear time.
2. Prover is polynomial-time.
3. Constant number of rounds.
Motivation: statistical analysis of vast amounts of data.
Sublinear Time Verification

Can we verify without even reading the input?

Yes! If we allow for approximation.

Following Property Testing [GGR98]: only required to reject inputs that are far from the language.
Sublinear Time Verification

Revisiting classical notions of proof-systems:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Gur-R13, Fischer-Goldhirsh-Lachish13, Goldreich-Gur-R15</td>
</tr>
<tr>
<td>Zero-Knowledge</td>
<td>Berman-R-Vaikuntanathan17</td>
</tr>
<tr>
<td>PCP/MIP</td>
<td>Ergun-Kumar-Rubinfeld04, Dinur-Reingold06, BenSasson-Goldreich-Harsha-Sudan-Vadhan06, Gur-Ramnarayan-R17</td>
</tr>
</tbody>
</table>
Open Problems

• **Research directions:**
 – Bridge theory and practice.
 – **Sublinear** time verification.

• **Concrete questions:**
 – IP=PSPACE with “efficient” prover.
 – Batch verification for all of NP.
 – [GR17]: Simpler and more efficient protocols (even for smaller classes).
 – Improve [RRR16] round complexity: even exponentially.