Doubly Efficient Interactive Proofs

Ron Rothblum

Outsourcing Computation

Weak client outsources computation to the cloud.

Outsourcing Computation

We do not want to blindly trust the cloud.

Key security concern:

Correctness: why should we trust the server's answer?

Interactive Proofs to the Rescue?

Interactive Proof [GMR85]: prover *P* tries to *interactively* convince a polynomial-time verifier *V* that f(x) = y. $f(x) = y \Rightarrow P$ convinces *V*. $f(x) \neq y \Rightarrow$ no P^* can convince *V* wp $\geq 1/2$.

Key Problem: in classical results complexity of *proving* is actually exponential:

IP=PSPACE [LFKN90,Shamir90]: Interactive Proofs for space *S* computations with $2^{poly(S)}$ prover, poly(n, S) verification, poly(S) rounds.

Doubly Efficient Interactive Proof [GKR08]

Interactive proof for f(x) = y where the prover is **efficient**, and the verifier is **super efficient**.

Proportional to complexity of f

Much faster than complexity of *f*

Soundness holds against <u>any</u> (computationally unbounded) cheating prover.

Why Proof and not Arguments*?

- 1. Security against *unbounded* adversary.
 - Post-quantum secure, post post quantum secure...

- 2. No reliance on unproven crypto assumptions
- 3. Do not use any expensive crypto operations
 - Even if not currently practical, no clear bottleneck (e.g., [GKR08])...
 - * Disclaimer: arguments are GREAT! (e.g., [KRR14])

Doubly Efficient Interactive Proofs: The State of the Art

1) [GKR08]: Bounded Depth

Logspace uniform NC

- Any bounded-depth circuit.
- (Almost) linear time verifier, poly-time prover.
- Number of rounds proportional to circuit depth.

2) [RRR16]: Bounded Space

- Any bounded-space computation.
- (Almost) linear time verifier, poly-time prover.
- **0**(1) rounds.

Constant-Round Doubly Efficient Interactive Proofs

Theorem [RRR16]: $\exists \delta > 0$ s.t. every language computable in poly(*n*) time and n^{δ} space has an <u>unconditionally sound</u> interactive proof where:

- 1. Verifier is (almost) linear time.
- 2. Prover is polynomial-time.
- 3. Constant number of rounds.

Tightness

Define IP_{DE} as class of languages having doubly efficient interactive proofs.

Roadmap: A Taste of the Proof

Iterative construction:

- 1. Start with interactive proof for short computations.
- 2. Build interactive proof for slightly longer computations.
- 3. Repeat.

Iterative Construction

Suppose we have interactive proofs for time T/kand space *S* computations.

Consider a time *T* and space *S* computation.

Divide & Conquer

Divide: Prover sends Turing machine configuration in $k \ll T$ intermediate steps.

 $t_{T/k}$ $t_{2T/k}$... $t_{(k-1)T/k}$

Conquer? recurse on all subcomputations.

Problem: verification blows up, no savings.

Divide & Conquer

Divide: Prover sends Turing machine configuration in $k \ll T$ intermediate steps.

 $t_{T/k}$ $t_{2T/k}$... $t_{(k-1)T/k}$

<u>Conquer</u>? Choose a few at random and recurse.

Problem: huge soundness error.

Best of Both Worlds?

Can we **batch verify** k instances much more efficiently than k independent executions.

Goal:

- Suppose $x \in L$ can be verified in time t.
- Want to verify $x_1, \dots, x_k \in L$ in $\ll k \cdot t$ time.

Concrete Example: Batch Verification of *RSA* moduli

<u>Def</u>: integer N is an **RSA** modulos if it is the product of two m-bit primes $N = p \cdot q$.

The proof that N is an RSA modulos is its factorization. Can we verify k RSA moduli more efficiently?

 $V(N_1, \dots, N_k)$ $\underline{P(p_1, q_1 \dots, p_k, q_k)}$ $\ll k \cdot m$ communication

Warmup: Batch Verification for UP

 $UP \subseteq NP$ are all relations with unique accepting witnesses. m = witness length

Theorem [RRR16] For $L \in UP$, has an interactive proof for verifying that $x_1, ..., x_k \in L$ with $m \cdot \operatorname{polylog}(k) + \tilde{O}(k)$ communication.

For batch verification of *interactive* proofs we introduce interactive analogs of **UP** and **PCP**.

Constant-Round Doubly Efficient Interactive Proofs

Theorem [RRR16]: $\exists \delta > 0$ s.t. every language computable in poly(*n*) time and n^{δ} space has an <u>unconditionally sound</u> interactive proof where:

- 1. Verifier is (almost) linear time.
- 2. Prover is polynomial-time.
- 3. Constant number of rounds.

Sublinear Time Verification

Motivation: statistical analysis of vast amounts

Sublinear Time Verification

Can we verify without even reading the input?

Yes! If we allow for *approximation*.

Following **Property Testing** [GGR98]: only required to reject inputs that are <u>far</u> from the language.

Sublinear Time Verification

Revisiting classical notions of proof-systems:

NP	Gur-R13, Fischer-Goldhirsh-Lachish13, Goldreich-Gur-R15
Interactive Proof	Rothblum-Vadhan-Wigderson13, Kalai-R15, Goldreich-Gur-R15, Goldreich-Gur16, Reingold-Rothblum-R16, Gur-R17
Zero-Knowledge	Berman-R-Vaikuntanathan17
PCP/MIP	Ergun-Kumar-Rubinfeld04, Dinur-Reingold06, BenSasson-Goldreich-Harsha-Sudan-Vadhan06, Gur-Ramnarayan-R17

Open Problems

- Research directions:
 - Bridge theory and practice.
 - Sublinear time verification.
- <u>Concrete questions:</u>
 - IP=PSPACE with "efficient" prover.
 - Batch verification for all of NP.
 - [GR17]: Simpler and more efficient protocols (even for smaller classes).
 - Improve [RRR16] round complexity: even exponentially.