Doubly Efficient Interactive Proofs

Ron Rothblum

H B Massachusetts
I I Institute of
Technology

Outsourcing Computation

Weak client outsources computation to the cloud.

Outsourcing Computation

We do not want to blindly trust the cloud.

Key security concern:

¢ Correctness: why should we trust the server’s
~4% answer?

Interactive Proofs to the Rescue?

Interactive Proof [GIMR85]: prover P tries to interactively
convince a polynomial-time verifier VV that f(x) = y.

f(x) =y = P convincesV.
f(x) #y = no P* canconvinceV wp > 1/2.

Key Problem: in classical results complexity of proving is
actually exponential:

IP=PSPACE [LFKN90,Shamir90]: Interactive Proofs for
space S computations with 2P°Y() prover, poly(n, S)
verification, poly(S) rounds.

Doubly Efficient Interactive Proof
[GKRO8]

Interactive proof for f(x) = y where the prover
is efficient, and the verifier is super efficient.

Proportional to Much faster than

complexity of f complexity of f

Soundness holds against any (computationally
unbounded) cheating prover.

Why Proof and not Arguments™?

1. Security against unbounded adversary.

= Post-quantum secure, post post quantum secure...

2. No reliance on unproven crypto assumptions

3. Do not use any expensive crypto operations

— Even if not currently practical, no clear bottleneck
(e.g., [GKRO8])...

* Disclaimer: arguments are GREAT! (e.g., [KRR14])

Doubly Efficient Interactive Proofs:
The State of the A
Logspace uniform

1) [GKRO8]: Bounded Depth NC
* Any bounded-depth circuit:

e (Almost) linear time verifier, poly-time prover.

 Number of rounds proportional to circuit depth.

Constant-Round Doubly Efficient
Interactive Proofs

Theorem [RRR16]: 36 > 0 s.t. every language

computable in poly(n) time and n° space has an
unconditionally sound interactive proof where:

1. Verifier is (almost) linear time.
2. Prover is polynomial-time.
3. Constant number of rounds.

Tightness

Define IPp as class of languages having doubly
efficient interactive proofs.

TISP(poly(n), n®)

Roadmap: A Taste of the Proof

lterative construction:

1. Start with interactive proof for short
computations.

2. Build interactive proof for slightly longer
computations.

3. Repeat.

Ilterative Construction

Suppose we have interactive proofs for time T’/ k
and space S computations.

Consider a time T and space S computation.

Divide & Conquer

Divide: Prover sends Turing machine configuration
in k < T intermediate steps.

trik laT/k - Lk—1)T /K

Conquer? recurse on all subcomputations.

Problem: verification blows up, no savings.

Divide & Conquer

Divide: Prover sends Turing machine configuration
in k < T intermediate steps.

tryk Cloryk - Lk—1)T /K

Conquer? Choose a few at random and recurse.

Problem: huge soundness error.

Best of Both Worlds?

Can we batch verify k instances much more
efficiently than k independent executions.

Goal:
e Suppose x € L can be verified in time t.

* Want to verify x4, ...,x; € Lin <K< k -t time.

Concrete Example: Batch Verification
of RSA moduli

Def: integer N is an RSA modulos if it is the product of
two m-bit primes N =p - q.

The proof that N is an RSA modulos is its factorization.
Can we verify k RSA moduli more efficiently?

P(p1.qyDy. qx) V(Ny,...Ny)

LKk-m

communication

Warmup: Batch Verification for UP

UP < NP are all relations with uniaue accepting
withesses.

m = witness length

Theorem [RRR16 L L € UP, has an
interactivee#@oft for verifying that x, ..., x; €L
with m - polylog(k) + O(k) communication.

For batch verification of interactive proofs we
introduce interactive analogs of UP and PCP.

Constant-Round Doubly Efficient
Interactive Proofs

Theorem [RRR16]: 36 > 0 s.t. every language

computable in poly(n) time and n° space has an
unconditionally sound interactive proof where:

1. Verifier is (almost) linear time.
2. Prover is polynomial-time.
3. Constant number of rounds.

Sublinear Time Verification

Motivation: statistical analysis of vast amounts
of data.

Huge Database

Sublinear Time Verification

Can we verify without even reading the input?
Yes! If we allow for approximation.

Following Property Testing |GGR98]: only required
to reject inputs that are far from the language.

Sublinear Time Verification

Revisiting classical notions of proof-systems:

NP

Gur-R13,
Fischer-Goldhirsh-Lachish13,
Goldreich-Gur-R15

Interactive Proof

Rothblum-Vadhan-Wigderson13,
Kalai-R15,

Goldreich-Gur-R15,
Goldreich-Gurls6,
Reingold-Rothblum-R16,
Gur-R17

Zero-Knowledge

Berman-R-Vaikuntanathanl17

PCP/MIP

Ergun-Kumar-Rubinfeld04, Dinur-Reingold06,
BenSasson-Goldreich-Harsha-Sudan-VadhanO06,
Gur-Ramnarayan-R17

Open Problems

e Research directions:

— Bridge theory and practice.
— Sublinear time verification.

e Concrete questions:
— |[P=PSPACE with “efficient” prover.
— Batch verification for all of NP.

— [GR17]: Simpler and more efficient protocols (even
for smaller classes).

— Improve [RRR16] round complexity: even
exponentially.

