
Doubly Efficient Interactive Proofs

Ron Rothblum

Outsourcing Computation

Weak client outsources computation to the cloud.

𝑥

𝑦 = 𝑓(𝑥)

Outsourcing Computation

We do not want to blindly trust the cloud.

𝑥

𝑦 = 𝑓(𝑥)

Correctness: why should we trust the server’s
answer?

Key security concern:

Interactive Proofs to the Rescue?

Interactive Proof [GMR85]: prover 𝑃 tries to interactively
convince a polynomial-time verifier 𝑉 that 𝑓 𝑥 = 𝑦.

𝑓 𝑥 = 𝑦 ⇒ 𝑃 convinces 𝑉.

𝑓 𝑥 ≠ 𝑦 ⇒ no 𝑃∗ can convince 𝑉 wp ≥ 1/2.

Key Problem: in classical results complexity of proving is
actually exponential:

IP=PSPACE [LFKN90,Shamir90]: Interactive Proofs for
space 𝑆 computations with 2poly 𝑆 prover, poly(𝑛, 𝑆)
verification, poly(𝑆) rounds.

Doubly Efficient Interactive Proof
[GKR08]

Interactive proof for 𝑓 𝑥 = 𝑦 where the prover
is efficient, and the verifier is super efficient.

Proportional to
complexity of 𝑓

Much faster than
complexity of 𝑓

Soundness holds against any (computationally
unbounded) cheating prover.

Why Proof and not Arguments*?

1. Security against unbounded adversary.

 Post-quantum secure, post post quantum secure…

2. No reliance on unproven crypto assumptions

3. Do not use any expensive crypto operations

– Even if not currently practical, no clear bottleneck
(e.g., [GKR08])…

* Disclaimer: arguments are GREAT! (e.g., [KRR14])

Doubly Efficient Interactive Proofs:
The State of the Art

1) [GKR08]: Bounded Depth

• Any bounded-depth circuit.

• (Almost) linear time verifier, poly-time prover.

• Number of rounds proportional to circuit depth.

2) [RRR16]: Bounded Space

• Any bounded-space computation.

• (Almost) linear time verifier, poly-time prover.

• 𝑶 𝟏 rounds.

Logspace uniform
𝑁𝐶

Constant-Round Doubly Efficient
Interactive Proofs

Theorem [RRR16]: ∃𝛿 > 0 s.t. every language

computable in poly(𝑛) time and 𝑛𝛿 space has an
unconditionally sound interactive proof where:

1. Verifier is (almost) linear time.

2. Prover is polynomial-time.

3. Constant number of rounds.

Tightness

Define IPDE as class of languages having doubly
efficient interactive proofs.

IPDE

TISP(poly 𝑛 , 𝑛𝛿)

Roadmap: A Taste of the Proof

Iterative construction:

1. Start with interactive proof for short
computations.

2. Build interactive proof for slightly longer
computations.

3. Repeat.

Iterative Construction

Suppose we have interactive proofs for time 𝑇/𝑘
and space 𝑆 computations.

Consider a time 𝑇 and space 𝑆 computation.

𝑆

𝑇

𝑥 𝑦

Divide & Conquer

𝑡𝑇/𝑘 𝑡2𝑇/𝑘 𝑡(𝑘−1)𝑇/𝑘…

Divide: Prover sends Turing machine configuration
in 𝑘 ≪ 𝑇 intermediate steps.

Conquer? recurse on all subcomputations.

Problem: verification blows up, no savings.

𝑥 𝑦

Divide & Conquer

𝑡𝑇/𝑘 𝑡2𝑇/𝑘 𝑡(𝑘−1)𝑇/𝑘…

Divide: Prover sends Turing machine configuration
in 𝑘 ≪ 𝑇 intermediate steps.

Conquer? Choose a few at random and recurse.

Problem: huge soundness error.

𝑥 𝑦

Best of Both Worlds?

Can we batch verify 𝑘 instances much more
efficiently than 𝑘 independent executions.

Goal:

• Suppose 𝑥 ∈ 𝐿 can be verified in time 𝑡.

• Want to verify 𝑥1, … , 𝑥𝑘 ∈ 𝐿 in ≪ 𝑘 ⋅ 𝑡 time.

Concrete Example: Batch Verification
of 𝑅𝑆𝐴 moduli

Def: integer 𝑁 is an RSA modulos if it is the product of
two 𝑚-bit primes 𝑁 = 𝑝 ⋅ 𝑞.

The proof that 𝑁 is an RSA modulos is its factorization.
Can we verify 𝑘 RSA moduli more efficiently?

𝑷(𝒑𝟏, 𝒒𝟏… , 𝒑𝒌, 𝒒𝒌) 𝑽(𝑵𝟏, … , 𝑵𝒌)

≪ 𝑘 ⋅ 𝑚
communication

Warmup: Batch Verification for 𝐔𝐏

𝐔𝐏 ⊆ 𝐍𝐏 are all relations with unique accepting
witnesses.

Theorem [RRR16]: Every 𝐿 ∈ 𝐔𝐏, has an
interactive proof for verifying that 𝑥1, … , 𝑥𝑘 ∈ 𝐿
with 𝒎 ⋅ 𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝒌) + 𝑶(𝒌) communication.

For batch verification of interactive proofs we
introduce interactive analogs of 𝐔𝐏 and 𝐏𝐂𝐏.

𝑚 = witness length

Constant-Round Doubly Efficient
Interactive Proofs

Theorem [RRR16]: ∃𝛿 > 0 s.t. every language

computable in poly(𝑛) time and 𝑛𝛿 space has an
unconditionally sound interactive proof where:

1. Verifier is (almost) linear time.

2. Prover is polynomial-time.

3. Constant number of rounds.

Sublinear Time Verification

Huge Database

Motivation: statistical analysis of vast amounts
of data.

Huge Database

Sublinear Time Verification

Can we verify without even reading the input?

Yes! If we allow for approximation.

Following Property Testing [GGR98]: only required
to reject inputs that are far from the language.

Sublinear Time Verification
Revisiting classical notions of proof-systems:

NP
Gur-R13,
Fischer-Goldhirsh-Lachish13,
Goldreich-Gur-R15

Interactive Proof

Rothblum-Vadhan-Wigderson13,
Kalai-R15,
Goldreich-Gur-R15,
Goldreich-Gur16,
Reingold-Rothblum-R16,
Gur-R17

Zero-Knowledge Berman-R-Vaikuntanathan17

PCP/MIP
Ergun-Kumar-Rubinfeld04, Dinur-Reingold06,
BenSasson-Goldreich-Harsha-Sudan-Vadhan06,
Gur-Ramnarayan-R17

Open Problems

• Research directions:

– Bridge theory and practice.

– Sublinear time verification.

• Concrete questions:

– IP=PSPACE with “efficient” prover.

– Batch verification for all of NP.

– [GR17]: Simpler and more efficient protocols (even
for smaller classes).

– Improve [RRR16] round complexity: even
exponentially.

