Accessing Data while Preserving Privacy

Kobbi Nissim

Georgetown University and CRCS@Harvard

Based on joint work with Georgios Kellaris (Harvard and Boston University), George Kollios (Boston University) and Adam O’Neill (Georgetown University)

DIMACS Workshop on Outsourcing Computation Securely
July 6 – 7, 2017
Outsourced database systems

I need all records of clients named “Gina”
(Point query)

... clients whose age is between 32 and 52
(Range query)

... clients with Sex = M
(1-way attribute query)

... clients with Sex = M and Married = F
(2-way attribute query)

<table>
<thead>
<tr>
<th>Name</th>
<th>ZIP</th>
<th>Sex</th>
<th>Age</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>52525</td>
<td>M</td>
<td>32</td>
<td>20,012</td>
</tr>
<tr>
<td>Gina</td>
<td>02138</td>
<td>F</td>
<td>30</td>
<td>80,003</td>
</tr>
<tr>
<td>Greg</td>
<td>02246</td>
<td>F</td>
<td>28</td>
<td>20,500</td>
</tr>
</tbody>
</table>

Search keys
Outsourced database systems

Dealing with this database myself is so tiring!

Delegate your data to me!
Outsourced database systems

But, I can’t trust you with my customers’ personal information!

Delegate your data to me!

We will use crypto!

* In this talk we only consider privacy (not correctness)
We have the power

Great! Can we use SFE [Yao ’82, GMW ‘84], ORAM [Gol ’87, GO ‘96], FHE [Gen 09], computational PIR [KO 97], searchable encryption [Song, Wagner, Perrig ‘01], ...
This is the real world

Kobbi’s plea: Let’s call these *encodings* instead of encryptions

Great! We can use SFE [Yao ’82, GMW ’84], ORAM [Gol ’87, GO ‘96], FHE [Gen 09], computational PIR [KO 97], searchable encryption [Song, Wagner, Perrig ’01], ...

I’m convinced

We should use a system that is secure and practical!

I will use order preserving and deterministic encryption* schemes

* Hell, no!
This is the real world

• Implemented systems use relaxed notions of encryption
 • Allows use of existing database indexing mechanisms \rightarrow efficient querying
• Examples: CryptDB [PRZB’11], Cipherbase [ABEKKRV’13], ...
• Security/privacy not well understood

• Attacks exist:
 • Utilizing leaked access pattern and auxiliary info about data: [Hore, Mehrotra, Canim, Kantarcioglu ’12] [Islam, Kuzu, and Kantarcioglu ’12], [Islam, Kuzu, Kantarcioglu ’14], [Naveed, Kamara, Wright ’15]
 • Utilizing leaked access pattern: [Dautrich, Ravishankar ’13], [KKNO ‘16]
Is this just fantasy?

Great! We can use SFE [Yao ‘82, GMW ‘84], ORAM [Gol ‘87, GO ‘96], FHE [Gen 09], computational PIR [KO 97], searchable encryption [Song, Wagner, Perrig ‘01], ...

We will protect not only the access pattern, but all aspects of the computation!
Leaked communication volume

I’m making uniformly random range queries

Oh! This shouldn’t be a problem!

2 records
1 record
An exact reconstruction attack based on communication volume

Recovering positions:

- Find # queries (out of $\binom{T}{2} + T$) that return i records
 - Can be well estimated given $O(T^4)$ queries
An exact reconstruction attack based on communication volume

Recovering positions:

• Find # queries (out of $\binom{T}{2} + T$) that return i records
 • Can be well estimated given $O(T^4)$ queries
An exact reconstruction attack based on communication volume

Recovering positions:

• Find # queries (out of $\binom{T}{2} + T$) that return i records
 • Can be well estimated given $O(T^4)$ queries
An exact reconstruction attack based on communication volume

Recovering positions:

• Find # queries (out of $\binom{T}{2} + T$) that return i records
 • Can be well estimated given $O(T^4)$ queries
An exact reconstruction attack based on communication volume

Recovering positions:

• Find # queries (out of $\binom{T}{2} + T$) that return i records
 • Can be well estimated given $O(T^4)$ queries
An exact reconstruction attack based on communication volume

Recovering positions:

• Find # queries (out of \(\binom{T}{2} + T \)) that return \(i \) records
 • Can be well estimated given \(O(T^4) \) queries
An exact reconstruction attack based on communication volume

Recovering positions:

<table>
<thead>
<tr>
<th># records</th>
<th># queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
An exact reconstruction attack based on communication volume

Recovering positions:

• We get:
 \[r_0 \cdot r_4 = f_4 \]
 \[r_0 \cdot r_3 + r_1 \cdot r_4 = f_3 \]
 \[r_0 \cdot r_2 + r_1 \cdot r_3 + r_2 \cdot r_4 = f_2 \]
 \[r_0 \cdot r_1 + r_1 \cdot r_2 + r_2 \cdot r_3 + r_3 \cdot r_4 = f_1 \]

• Let
 \[r_0^2 + r_1^2 + r_2^2 + r_3^2 + r_4^2 = 2c_0 + T + 1 = f_0 \]

• Define:
 \[r(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3 + r_4 x^4 \]
 \[r^R(x) = r_4 + r_3 x + r_2 x^2 + r_1 x^3 + r_0 x^4 \]

• Note:
 \[r(x) \cdot r^R(x) = f_4 + f_3 x + f_2 x^2 + f_1 x^3 + f_0 x^4 + f_1 x^5 + f_2 x^6 + f_3 x^7 + f_4 x^8 = F(X) \]

<table>
<thead>
<tr>
<th># records</th>
<th># queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

\(f_0 \) \(f_4 \) \(f_3 \) \(f_2 \) \(f_1 \) \(c_0 \)
An exact reconstruction attack based on communication volume

Recovering positions:

- We defined:
 \[r(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3 + r_4 x^4 \]
 \[r^R(x) = r_4 + r_3 x + r_2 x^2 + r_1 x^3 + r_0 x^4 \]

 and
 \[r(x) r^R(x) = f_4 + f_3 x + f_2 x^2 + f_1 x^3 + f_0 x^4 + f_1 x^5 + f_2 x^6 + f_3 x^7 + f_4 x^8 = F_X \]

- Factoring \(F(x) \) (over integers) can be done in polynomial time [Berlekamp 67]
 - If the factors are two irreducible polynomials, we found \(r(x), \ r^R(x) \)

<table>
<thead>
<tr>
<th># records</th>
<th># queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
A more efficient heuristic

• Factorization may be slow for a large number of records

• Equations:
 \[r_0 \cdot r_4 = f_4 \]
 \[r_0 \cdot r_3 + r_1 \cdot r_4 = f_3 \]
 \[r_0 \cdot r_2 + r_1 \cdot r_3 + r_2 \cdot r_4 = f_2 \]
 \[r_0 \cdot r_1 + r_1 \cdot r_2 + r_2 \cdot r_3 + r_3 \cdot r_4 = f_1 \]

• Heuristic algorithm: DFS search for a solution
 • For \(m < n/2 \):
 • For all integers \(r_m \) and \(r_{n-m} \) that satisfy the equation, find all feasible \(r_{m+1} \) and \(r_{n-m-1} \)
 • Otherwise:
 • Prune the combinations that do not satisfy the equation
Is the reconstruction unique? Factors of $F(x)$

• Not necessarily!
 • $r(x)=(x+2)(x+3) = x^2+5x+6$; $r^R(x)=(2x+1)(3x+1) = 6x^2+5x+1$
 • $F(x)=(x+2)(x+3)(2x+1)(3x+1) = 6x^4+35x^3+62x^2+35x+6$
 • $F(x)$ can also be factored as
 $r(x)=(x+2)(3x+1) = 3x^2+7x+2$; $r^R(x)=(2x+1)(x+3) = 2x^2+7x+3$
Experiments

• 2 HCUP Nationwide Inpatient Sample datasets
• ~1,500 Hospitals, each having ~6,000 patient records
• Indexed attributes: length of stay (T=365) and age (T=27)

Simulation
 • Reconstruction always successful (up to mirroring)
 • Speed after retrieving T^4 queries: 40ms on average (max: 3.5 sec)

Real system
 • CryptDB
 • mySQL server
 • Client
 • Packet sniffer
 • Total attack time for age attribute: 15 hours
• Demonstrates an overlooked weakness that needs to be investigated
What went wrong?

• Observation: “It is clear that if the computed function leaks information on the parties’ private inputs, any protocol realizing it, no matter how secure, will also leak this information.” [BMNW ‘07]
 • In our case: Exact #records leaks significant information

• Sounds familiar?
 • Observation partly motivated research into (differential) privacy

• Can differential privacy help?
DP Storage

• General construction:
 • Use ORAM, inflate communication to preserve privacy
 • DP storage given a DP-sanitized version of the data
 • Can do updates

• Atomic model:
 • Multiple copies of same encrypted record
 • Only require semantic security
 • DP storage for point queries, range queries

• In both no/limited protection for queries

Access pattern leakage is not always a problem!
Differential privacy [Dwork McSherry N Smith 06]

Real world:

My ideal world:
Differential privacy [Dwork McSherry N Smith 06]

A (randomized) algorithm \(M: X^n \rightarrow T \) satisfies \((\epsilon, \delta)\)-differential privacy if \(\forall x, x' \in X^n \) that differ on one entry, \(\forall S \) subset of the outcome space \(T \),

\[
\Pr_{M}[M(x) \in S] \leq e^{\epsilon} \Pr_{M}[M(x') \in S] + \delta
\]

Prevents reconstruction (and more)
Data sanitization [BLR’08]

• **Q**: A collection of statistical queries

• **Sanitization**:

 For all $q \in Q$:

 $q(x) \approx_{\alpha} q(DS)$

 $q(DS) - q(x) \in [0, \alpha]$

• [BLR 08]: $\alpha \approx (VC(Q) \log |X|)^{1/3} n^{2/3}$
Data sanitization of specific query classes

• **Point queries:**
 - **Index:** element of \([1, T]\)
 - **Query:** \(a \in [1, T]\); **answer:** \# records with index = a

• **Range queries:**
 - **Index:** element of \([1, T]\)
 - **Query:** \([a, b] \subseteq [1, T]\); **answer:** \# records with index \(\in [a, b]\)

• **1-way attribute queries:**
 - **Index:** element of \([0, 1]^k\)
 - **Query:** \(i \in [1, k]\); **answer:** \# records with \(i^{th}\) bit of index = 1
 - **Complexity:**
 - Pure DP: \(O(\log T)\)
 - Approx. DP: \(O(1)\)
 - \([BNS’13]\)
 - \(O(2^{\log^* T})\)
 - \([BNS’13, BNSV’15]\)

- Pure DP: \(O(k)\)
- Approx. DP: \(O(k^{1/2})\)
DP Storage: a generic construction

- **Idea:** combination of a DP sanitizer for the query class and ORAM
- **Setup:**
 - Sanitizer is applied to the data to create a data structure DS, to be stored on the server
 - ORAM used to store all records (+indexing information as needed)
- **Answering a query q:**
 - $q(\text{DS})$ computed to get a number t of records to retrieve
 - t surpasses the real record number for q by at most α
 - ORAM used to retrieve t records
 - Including the real number of records + fake records
- **Efficiency:**
 - Optimally efficient for storage
 - Communication overhead = α
Summary

• Need a rigorous analysis of inherent security/privacy – efficiency tradeoffs for outsourced database systems
 • Optimal efficiency \rightarrow reconstruction attacks (access pattern and/or communication volume) even with very limited adversaries
 • Can be mitigated by combining ORAM with differential privacy

• Question:
 • What is/are the right notion(s) of privacy we should pursue in this context?
 • Things to consider: privacy of data, privacy for inquirer