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Intferactive Proofs for NP

Interactive Proof (GMR85, Babai85)
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Security Against Malicious Provers

Soundness
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Security Against Malicious Verifiers

Shouldn't learn withess w

» /ero-Knowledge (GMR8)5)
» Distributional Zero-Knowledge (Goldreich%3)

» \Weak Zero-Knowledge (DNRS99)

» \Withess Hiding (FS?0)

» \Withess Indistinguishability (FS?0)

» Strong Withess Indistinguishability (Goldreich93)
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Distributional Zero-Knowledge

Can sample other x',w'

v efficiently sampleable (X, W) but must simulate proof for

(x, w) ~
(X, W)

external x without w

74 Sim |«

Over the randomness of x




Weak Zero-Knowledge

Gets to observe the
output of the distinguisher
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Pr[D = 1|real] — Pr[D = 1|Sim] < negl




Withess Hiding

Vv efficiently sampleable (X, W) with hard to find witnesses,




Withess Indistinguishabllity




Strong Withess Indistinguishabllity

Xl, W1

when x; = x,




Round Complexity Timeline

Impossibilities (GO9%4):
- 2 round weak ZK
- 2 round distributional ZK

Impossibilities: Impossibility: Can we do better than Wl in
- 2round ZK (GO9%4) - 3 round BB public-coin 2 roundse Or even 3 rounds®?
- 3round BB ZK (GK92) Witness Hiding (HRSO9)

Round complexity open

3 round Witness Indistinguishability I
(GMR85, Blum86, FS90), 5 round ZK 1 & 2 round WI (DNOQO,

4 round Witness Hiding (F$90) proofs (GK9¢) BOV03, GOS06, BP19)

/ -;-,L, Strong WI, witness hiding:

round ZK via non-standard
assumptions (HT98, LMOT,
BP0O4, CD08, GLR12, BP13,
BBKPV16, BKP17)

4 round ZK arguments
(FS90, BJY?7)




Overcoming Barriers




Distributional Protocols

®» Prover samples instance x from some distribution

P \

(x,w) ~
X, W) A

Why should we care?
» /K proofs used to prove correctness of cryptographic computation
» Almost always, instances are chosen from some distribution

» Sfrong WI, WH by definition are distributional notions




Distributional Protocols

®» Prover samples instance x from some distribution

P ) V / Useful in secure compu’ro’rion:\

[KOO0S5, GLOV 14, COSV16]

Our paper: extractable

(x,w) ~ X commitments, 3 round 2pc
X, W)

Specific 2 & 3 round protocols:

K [KS17, K17, ACJ17] /

In 2 round protocols, P sends x together with proof

Adaptive soundness: P* samples x after V's message
We will restrict to: delayed-input protocols
Cheating verifier cannot choose first message depending on x




Distributional Protocols, Delayed-Input

®» Prover samples instance x from some distribution

P \

(x,w) ~
X, W) A

» Simulate the view of malicious V*, when V* is committed to 1f message,
before P reveadls instance x¢

= Distributional privacy for delayed-input statements.

» Get around negative results!




Qur Results

Assuming quasi-polynomial DDH, QR or N™ residuosity, we get

=» 2 Round arguments in the delayed-input setti
= Distributional wea Sim depends on
distinguisher
= Witness Hiding

= Strong Witness Indistinguishability

» 2 Round WI arguments [concurrent work: BGISW17]
= Previously, trapdoor perm (DNOO), b-maps (GOS06), or iO (BP15)

®» 3 Round protocols from polynomial hardness + applications



New Technigue:
Black-box Simulation in 2 Rounds




Kalai-Raz (KRO?) Transform

PIR scheme
(1) Interactive Proof

KRO?: Assuming quasi-polynomially secure PIR, (2) is sound against adaptive PPT P*,
Our goal: 2 message arguments for NP with privacy.

Apply KRO? transform to three round proof of Bluma8é.



Blum Protocol tor Graph Hamiltonicity

Graph G,
Hamiltonian H

Com(m(G)), Com(m)

e=0ore=1

Decom(n(G)), Decom(m), OR )

Decom edges of H in (n(G))

- Honest verifier zero-knowledge: Sim that knows e can simulate.

- Repeat in parallel to amplify soundness. Preserves honest verifier ZK.



KRO? transform on Blum

Graph G,
Hamiltonian H

e
wt
e

=0Qore=1

Com(m(G)), Com(m)

’Becom(n(G)), Decom(m), OR
Decom edges of H in (n(G))

Remains honest verifier zero-knowledge.
What if malicious V* sends malformed query that doesn’'t encode any bit¢
Prevent this by using a special PIR scheme.



2-Message Oblivious Transfer

Messages (my, m,) Choice bit b

¢ = OT,(b)

S R Known constructions from

OT,(c, my,m,) DDH (NPOT),
> Quadratic Residuosity and

N Residuosity (HKO5)

- S cannot guess b
- R cannoft distinguish 0T, (m,, m,) from :
* OT,(m, m,) when b =0, OR
 0T,(m,,m;) when b =1.
- Every string ¢ corresponds to OT,(b) for some bif b



Kalal-Raz Transform on Blum using OT

Blum Proof (1) Argument (2)
{ai} i e R ) \'/’(ei) e N]
{e}ic = #

P N V P {ai} i€ [N]"/EZiO' Ziy) ie [N] . V
{Z, o} ic J V

- KRO9?: (2) remains sound against PPT provers, even if they choose x adaptively

- What about privacye




Kalal-Raz Transform on Blum

Real World
Q Q
-
/(ei) i€ [N] ) /(ei) i€ [N]
0 : 0
-
P {ai}ic [N]’ /(ZiO Ziy) ie IN] S I m {a}ic [N]'/Ezio_ Zy) ie IN]

- Every message sent byg™ ryption of some {ej} e
K).

crypftion to find e; [BGISW17]

Polynomial

- IFSimknew {ei} e . 1 Simulation2e

- Privacy via super-poly s




Rely on the Distinguisher to find e

Real World Ideal World
e Q
L /(ei) i€ [N] /(ei) e N]
o .
P {ai}ic [N]1'/EZio Zi1) ie N] S I m




Real World
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Simplity: single parallel exec

Ideal Wor
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Simplity: single parallel execution

Real World Ideal World
A~
- -
- € < .
o : C
P a = (2o, 2) Slm a, @ junk!
[ Can D tell the difference@ }
o
- Suppose NOT: eg, D doesn’t know randomness for~ e o

- a is dlready computationally hiding, Sim can easily sample a,‘) junk!




Simplity: Single parallel execution

Real World Ideal World

-
e
@

junk!

;

e

%

(Zo, Z1)

Sim

[ Can D tell the difference? }

4 N

Sim will use D
o extract e !

\ )

r

\
- Suppose YES: eg, D knows randomness for =
- Sim can't just sample a,") junk! . Will be distinguishablel!




Recall: Distributional Simulation
Ideal World

(:)

e
r“\
, >
X, a (2o, 21)

Sim

- Recall: want a simulator for x ~ X, which generates a proof without witness.
- However, Sim can sample other (x', w') ~ (X, W) from the same distribution.
- Sim can also sample proofs for these other (x', w') ~ (X, W).



Main Simulation Technigue
(0)
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Or, if (actual) = (1)
Use this to exiract e.

{Checks if (actual) ~ (0)}




Polynomial Simulation

Simulate proof for
external x without w
®

- Simulator rewinds the distinguisher to learn the OT challenge e.

- Technique extends o extracting {e;} ; ¢ (y; from parallel repetition.



Perspective: Extraction in Cryptography

- Black-box polynomial simulation strategy that requires only 2 messages.

- Previously, rewinding took more rounds

i ¢

—

- Towards resolving open problems on round complexity of WH, strong WI.

- Applications to multiple 2-round, 3-round protocols, beyond proofs.



Conclusion & Open Problems




Impossibilities (GO9%4):
- 2 round weak ZK

- 2 round distributional ZK

Impossibilities:
- 2round ZK (GO9%4)
- 3round BB ZK (GK92)

/e

Impossibility:
- 3round Witness
Hiding (HRSO9)

3 round Witness
Indistinguishability (FS?0),
4 round Witness Hiding (FS90)

5 round ZK
proofs (GK?96)

(FS90, BJY97)

4 round ZK arguments

Round Complexity Timeline

a

- Distributional

Delayed-input setting:

- Witness Hiding, Strong WI
2 rounds from quasi-poly &,
‘ 3 rounds from poly assumptions

weak ZK

;, >

1 & 2 round WI
From TDPs / iO
(DNOO, BOVO0S3, BP15)

\/
3 round ZK from non-std
assumptions (HT98, LMOT,
BP0O4, CDO08, GLR12, BP13,
BBKPV 16, BKP17)

——

—

2 round WI from
quasi-poly DDH,
QR, N residuosity




Open Questions

» ) round protocols from polynomial hardnesse

» |'ow round public-coin protocols with strong privacy?

» New applications of distinguisher-dependent simulation

» Other black-box/non-black-box techniques for 2 round protocols

» A 2-round rewinding technique from superpoly DDH in [KS17, BKS17]




Thank you!




