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Coding advantage
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Connection to the Integrality Gap

We show that for undirected networks, the maximum coding
advantage is equal to the integrality gap of the bi-directed cut
relaxation for the undirected Steiner tree problem.
We show results by Agarwal and Charikar’04
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Integrality gap

Many problems can be formulated as integer problems
However, many such problems are NP-hard
Let OPT be the optimal solution to the integer program P

I We refer to is as an optimal integer solution.
Let OPT ∗ be the optimal solution to the linear relaxation of P.

I We refer to is as an optimal linear solution.

Then, the integrality gap is equal to the ratio OPT
OPT∗ .
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The minimum weight Steiner Tree problem

Given:
I Undirected graph G = (V ,E), w : E → R+ be an assignment of

non-negative weights to the edges, a source node, a set of
destination nodes

Find: A minimum weight tree that connects s to T . We denote the
weight of this tree by OPT (G,w)
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Uni-directed cut relaxation

We say that a set C ⊆ V that contains the source node s and
V \ C contains at least one terminal t ∈ T is a valid set.
Denote δ(C) = {(u, v) ∈ E | u ∈ C, v /∈ C}

Linear Program
Minimize

∑
e∈E wece

Subject to ∑
e∈δ(C)

ce ≥ 1, ∀ valid sets C

ce ≥ 0, ∀e ∈ E
(1)
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Bi-directed Cut Relaxation

For each edge e ∈ E we introduce two directed arcs e1 and e2,
which represent the two orientations of e
Edges e1 and e2 have the same weight as e
We denote by D = {e1,e2, ∀e ∈ E}
Same definition of a valid set C.
We denote

δ(C) = {(u, v) ∈ D | u ∈ C, v /∈ C}

de de de
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Bi-directed Cut Relaxation (cont.)

Integer Program
Minimize

∑
a∈D waca

Subject to ∑
a∈δ(C)

ca ≥ 1, ∀ valid sets C

ca ∈ {0,1}, ∀a ∈ D
(2)
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Linear Relaxation

Replace (relax) The last constant.
Denote by B(G,w) the cost of the resulting problem
Linearity gap is equal to

max
G,w

OPT (G,w)

B(G,w)

Linear Program
Minimize

∑
a∈D waca

Subject to ∑
a∈δ(C)

ca ≥ 1, ∀ Valid sets C

ca ≥ 0, ∀a ∈ D
(3)

T. Ho and A. Sprintson (Caltech-TAMU) Network coding DIMACS 10 / 92



Coding advantage Undirected networks Encoding complexity Instantaneous Recovery Practical Implementation Conclusion

Example
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Finding network code through Integer Program (cFlow)

Given: An Undirected graph G = (V ,E).
Let c : E → R+ be an assignment of non-negative capacities to
the edges
Denote by ce the capacity of edge e ∈ E
For given edge capacities, we need to find a maximum throughput
between s and t1, · · · , tk
Denote the set of directed arcs D = {e1,e2 | ∀e ∈ E}.
The value of the optimal solution is denoted by χ(G, c)
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Linear Program
Maximize f ∗

Subject to
ca > 0 for each a ∈ D
ce1 + ce2 = ce for each e ∈ E
f n(a) ≤ ca for each a ∈ D and n,1 ≤ n ≤ k
for each n,1 ≤ n ≤ k and for each v ∈ V \ {s, tn}∑

vj :(vi ,vj )∈D

f n
(vi ,vj )

−
∑

vj :(vj ,vi )∈D

f n
(vj ,vi )

= 0

∑
vj :(vj ,s)∈D f n

(vj ,vs)
= 0 for n,1 ≤ n ≤ k∑

vj :(tn,vj )∈D f n
(tn,vj )

= 0 for n,1 ≤ n ≤ k∑
vj :(vj ,tn)∈D f n

(vj ,tn)
≥ f for n,1 ≤ n ≤ k
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Example

Observation: Linear relaxation of bidirectional formulation is
similar to the network coding problem

s

t1

t2

t3
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Steiner Tree packing

Let τ be a set of all possible Steiner trees that connect s and T
We define a variable xt for any possible Steiner tree t ∈ τ

I xt captures the amount of information transmitted by t .

We denote by Π(G, c) the optimal solution for the problem
The related linear program is:

Linear Program
Maximize

∑
t∈τ xt

Subject to ∑
t∈τ :e∈t

xt ≤ ce, ∀e ∈ E

xt ≥ 0, ∀t ∈ τ
(4)
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The Dual for Steiner Tree Packing

Introduce a local variable ye for each arc e ∈ E
The dual program can be formulated as follows:

Linear Program
Minimize

∑
e∈E ceye

Subject to ∑
e∈t

ye ≥ 1, ∀t ∈ τ

ye ≥ 0, ∀e ∈ E
(5)
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Linear Program
Maximize

∑
t∈τ xt

Subject to ∑
t∈τ :e∈t

xt ≤ ce, ∀e ∈ E

xt ≥ 0, ∀t ∈ τ
(6)

Linear Program
Minimize

∑
e∈E ceye

Subject to ∑
e∈t

ye ≥ 1, ∀t ∈ τ

ye ≥ 0, ∀e ∈ E
(7)
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Theorem

χ(G, c) - the maximum throughput with network coding
Π(G, c) - the maximum throughput with Steiner tree packing
OPT (G,w) - minimum weight of a Steiner tree
B(G,w) - the optimal value for the bi-directed cut relaxation.

Theorem

max
c

χ(G, c)

Π(G, c)
≤ max

w

OPT (G,w)

B(G,w)
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Proof

Note that the coding advantage is invariant under multiplicative
scaling of capacities.
Scale the capacities so that the value of the objective function for
the cFlow LP is equal to 1, i.e., χ(G, c) = 1
Consider the dual to the Steiner packing LP - this program gives
an example of the integrality gap

Linear Program
Minimize

∑
e∈E ceye

Subject to ∑
e∈t

ye ≥ 1, ∀t ∈ τ

ye ≥ 0, ∀e ∈ E
(8)
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Proof (cont.)

By strong duality, the optimal value of the dual LP is equal to
Π(G, c).
We can view the ye’s as edge costs
The constraint implies that the cost of every integer Steiner tree is
at least one.
We claim that

∑
e∈E ceye is an upper bound on the value of

B(G, y)
I The graph with capacities ce has a cFlow value of at least 1.
I These capacities give a valid solution to the bi-directed graph

relaxation problem.
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Proof (cont.)

We conclude that there exists a setting of weights w such that:
I OPT (G,w) ≥ 1
I B(G,w) ≤ Π(G, c)

Weights w are assigned according to the solution to the dual
problem of Steiner tree packing
We conclude that

max
c

χ(G, c)

Π(G, c)
≤ max

e

OPT (G,w)

B(G,w)
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Example
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Conclusion

We proved that:

Theorem
(Agarwal and Charikar’04)

max
c

χ(G, c)

π(G, c)
= max

w

OPT (G,w)

B(G,w)

The theorem shows that
I The coding advantage is equal to the integrality gap of the

bi-directional relaxation
I The throughput advantage is equal to the cost advantage
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Undirected networks
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Coding advantage in undirected networks

Introduce new notation - λ(N)
λ(N)- the minimum edge connectivity between a pair of nodes in
S

I For two nodes v ∈ V ,u ∈ V , the minimum edge connectivity is the
minimum size of a cut that separates v and u

I Maximum number of disjoint paths that separate v and u.
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Strength of the network

Definition
Define η(N) to be the minimum ratio of Ec

p−1 , where
I p is the number of components the communication group is

separated into
I Ec is the set of the inter-component links
I Each partition is required to have at least one source or destination

node

η(N) is referred to as the strength of the network.
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Example
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Example (cont.)

η(N) ≤ 11
6

1
2

3

4

5

6

7

8

9
10

11

7 components

11 edges
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Tutte-Nash-Williams Theorem

Theorem
A graph G has x pairwise edge-disjoint spanning trees if and only if,

For every vertex partition
I There are at least (p − 1) · x edges with endpoints in different

components
I where p is the number of components in the partition

The theorem characterizes the the maximum throughput with
spanning tree packing
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Corollary

In the broadcast setting a Steiner tree is a spanning tree.
We denote by π(N) the packing number of the coding network

I Equal to the performance we can achieve without coding0

Corollary
For integral spanning tree packing problem it holds that

π(N) = bη(N)c

For fractional spanning tree packing problem it holds that

π(N) = η(N)
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Nash-Williams’ Weak Graph Orientation Theorem

Theorem
A graph G has an x-connected orientation if and only if it is 2x-edge
connected.
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Example 1

t1 t2

s

The network is two-

connected

t1 t2

1-edge connected 

directed orientation

s
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Example 2

Two-connected graph One-connected orientation 
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Example 3

Four-connected graph Two-connected orientation
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Theorem 19-1

χ(N) - the maximum throughput with network coding
π(N) - the maximum throughput with Steiner tree packing
λ(N) - the minimum edge connect. between a pair of nodes in S
η(N) - the strength of the network

Theorem (19-1)
For a broadcast transmission (S = V) in an undirected network N it
holds that

1
2
λ(N) ≤ π(N) = χ(N) = η(N) ≤ λ(N)

The theorem shows that there is no coding advantage for
broadcast connections (one-to-all)
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Proof

Proof.
Tutte-Nash-Williams Theorem implies that

π(N) = η(N)

The definition of χ(N) implies that

π(N) ≤ χ(N)

Each component not including the source node needs a total edge
capacity of x in order to achieve throughput x , hence

χ(N) ≤ η(N)

Hence
π(N) = χ(N) = η(N)
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Example

s

t1

t2

t3

4 components – number of arcs at least 6
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Proof (cont)

Proof.
From the definition of η(N) it holds that

η(N) ≤ λ(N)

The Nash-Williams’ weak orientation theorem implies that a
network N always has a 1

2λ(N)-directed orientation

I orientation in which we can send 1
2λ(N) units of flow between any

pair of terminals
I assuming the fractional setting

Combining with the result from network coding in directed
networks we conclude that

1
2
λ(N) ≤ χ(N)
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Theorem 19-2

χ(N) - the maximum throughput with network coding
π(N) - the maximum throughput with Steiner tree packing
λ(N) - the minimum edge connect. between a pair of nodes in S
η(N) - the strength of the network

Theorem
For a multicast transmission in an undirected network N it holds that

1
2
λ(N) ≤ π(N) ≤ χ(N) ≤ η(N) ≤ λ(N)

The theorem implies that the coding advantage is bounded by 2
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Example

s

t1

t2

t3

t4

(a)Local connetivity -3 

s

t1

t2

t3

t4

(b) After splitting 

first two edges

s

t1

t2

t3

t4

(c) After splitting off 

a node 

t1

t2

t3

t4

(d) After splitting off 

all non-terminal 

nodes

s
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Example

s

t1
t2

t2t1

s s

Network coding 2 Half-integer routing 1.5

Fractional routing 1.875

Thin trees -capacity 0.125

Thick trees – capacity 0.25
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Encoding Complexity of Network Coding
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Encoding Complexity of Network Coding

Traditional approach - nodes only forward or duplicate information
Network coding - requires encoding capability at certain nodes
Network coding are more expensive - need additional functionality
Important question- how many encoding nodes are needed to
achieve capacity?

m1
m1

m2 m2 m2

F(m1,m2)

m1

Forwarding Encoding
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Bounds - Directed Acyclic Graphs

Theorem
An acyclic coding network with h packets and k destinations requires
at most O(h3k2) encoding nodes

Theorem
There exists an acyclic coding network with h packets and k
destinations that requires at least Ω(h2k) encoding nodes.
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Bounds - Directed Acyclic Graphs

A h2

2 bound

s

t1
t2
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Bounds - Directed Acyclic Graphs

A h2 bound

s

t1
t2
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Bounds - Directed Acyclic Graphs

A h2k bound

s

t1
t3t2 ... tk
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Bounds - Networks with Cycles

Number of encoding nodes does not depend on h and k
Can be bounded by the size of Minimum feedback set

s

t2t1
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Summary

Directed 

Acyclic  

Undirected Directed

Cyclic

Upper bound h3k2 O(h3k2) (2B+1) h3k2

Lower bound Ω(h2k) Ω(h2k) (h-1)B
|V|/2
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Instantaneous Recovery from Link Failures
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Network Model
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Figure: Example of a multicast network.

Network represented by a
directed graph G(V ,E)

Capacity function
c(e) : E → N
Source s needs to send h
packets x1, . . . , xh

I to a single destination node
t (unicast)

I to a set of destination nodes
t1, . . . , tk (multicast)

Edges are susceptible to
failures
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Failure model
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Figure: Failed edge in a network

A failed edge is deleted from the
network

Goal
Find a communication scheme that
will guarantee the delivery of all the
packets to the destination(s) in the
case of any single edge failure.
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Standard Approach

Rerouting upon a failure

4

32

5

2 2

1

s

t1

a

4

32

5

2 2

1

s

t1

b
b

a

Figure: A feasible unicast network.
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Restoration with Network Coding
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a and b are bits
"+" is the bitwise XOR operation
the packet carried by a failed
edge is always zero
v4 is an encoding node
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Restoration with Network Coding
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Single edge failure
The destination will always be
able to decode the original
packets a and b

failure of m25 m45 m35

φ a a + b b
(v1, v2) 0 a b
(v1, v3) a b 0
(v2, v4) a a b
(v3, v4) a b b
(v2, v5) 0 a + b b
(v3, v5) a 0 b
(v4, v5) a a + b 0

Instantaneous recovery!
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Restoration with Network Coding
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Restoration with Network Coding
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Single edge failure
The destination will always be
able to decode the original
packets a and b
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(v3, v4) a b b
(v2, v5) 0 a + b b
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Robust Network Codes
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Figure: Example of a robust network
code

Definition
A robust network code, for a
multicast network, is a linear
network code that, in the case of a
single edge failure will guaranty

the delivery of all the packets
to all the destinations
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Coding Advantage

How many packets can be sent reliably from s1 to s5?
I With instantaneous recovery
I Without rerouting

Only one with the traditional approach
Two with the network coding approach

4

32

5

2 2

1

s

t1

a, b
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Resilient Capacity

Definition
Resilient capacity C of a unicast network G(V ,E) is the maximum
number of packets that can be sent reliably from s to t .

Necessary condition:
I For every e ∈ E , G \ {e} must have C paths between s and t

Cut condition:
I For every cut (S,V \ S) that separates s and t it must hold that

C ≤
∑

e∈E(S,V\S)

c(e)− max
e∈E(S,V\S)

c(e)
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Example
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Achieving Capacity

Resilient capacity can be achieved by using linear network codes
I [Koetter and Medard’03]

Robust network codes can be found in polynomial time, for both
unicast and multicast

I [Jaggi et al.03]
I Require large field size O(k |E |), where k is the number of terminals
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Our goal

For h = 2
I Design robust codes of GF (2)
I Design an efficient algorithm for computing efficient network codes
I Introduce the concept of simple network
I Show that simple networks have certain structure
I Show that for multicast networks with k terminals, a field size ≥ 5k

is sufficient.
For h > 2

I Show that it is possible to design a network code over a field size
which is independent on the size of the network

I Depends only on h
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Minimal Networks

1

Figure: A non minimal unicast
network

Definition
A multicast network is minimal if all its
subnetworks , obtained by deleting an
edge or reducing its capacity, are not
feasible.

Definition
A unicast network (h = 2) is a simple
network iff it is

feasible
minimal
All of its nodes are of degree 3
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Reduction to Simple Networks
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Figure: (a) unicast net. (b)
corresponding simple net.

Theorem
Let N be a feasible unicast
network (h = 2). Then, there
exists a simple network N′
such that if N′ has a robust
network code over GF (q),
then N has also one over the
same field.
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Structure of Simple Networks

Theorem
All simple networks N can be decomposed into the blocks A,B and C
depicted below.
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Example
�

�
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Figure: A simple network

T. Ho and A. Sprintson (Caltech-TAMU) Network coding DIMACS 65 / 92



Coding advantage Undirected networks Encoding complexity Instantaneous Recovery Practical Implementation Conclusion

Example
�
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Figure: Block decomposition of a simple network
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Sketch of Proof
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The proof of the block decomposition
theorem of simple networks is based on

I Residual networks
I The augmenting cycle theorem

Any configuration, other than blocks A, B
and C

I will result in a flow with some edge
carrying a zero flow.

I contradicts the minimality of the simple
network
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Proof: Example
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Proof: Example
�

�

Figure: A network containing block A∗
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Proof: Example

�

�

This network has a flow of value 3
where some edges carry a flow zero
⇒ The original network is not
minimal
One can show that all network
containing bloc A∗ are not minimal
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Robust Network Code
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Robust Network Code
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Robust Network Code
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Proof of Robustness

A simple network always ends by a block B
The proof of the robustness of the network code is done by
induction on the number of blocks B in the network

I we show that the output of any block B is always a subset of at
least two elements of the set {a,b,a + b}
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Beyond Unicast

Theorem
Consider a multicast network N with h = 2 packets and k destinations.
Then, there exists a robust network code for N over GF (q) for all
q ≥ 5k.

Lemma (Jaggi et al. 04)
If m flows are needed to protect against all single edge failures in N,
then there exists a robust network code N over GF (q) for all q ≥ m
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Practical Implementation
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Practical Implementation

Need to address many practical issues:
I Delays, packet losses
I Unknown link capacities
I No centralized knowledge of network topology
I Frequent network changes, e.g., due to link failures
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Practical Implementation

Chou et. al. 2004
I Content distribution network, |E | ≤ 256
I Field size 216

I Use random network coding
I Each matrix has full rank with probability at least 0.996
I Maximum packet size in the Internet 1400 bytes
I Each IP packet can carry about 700 symbols
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Practical Implementation

Idea: packetize the source symbols xi flowing into the sender into
vectors

xi = [xi,1, xi,2, . . . , xi,N ]

……x1,1 x2,2 …

…x1 x2 x3 …
N N

x1,2 x1,3 x1,N x2,1 x2,3 x2,N
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Practical Implementation

Similarly, the symbols flowing on each link are also packetized.

zi = [zi,1, zi,2, . . . , zi,N ]

……z1,1 z1,2 z1,3 z1,N z2,1 z2,2 z2,3 … z2,N

…z1 z2 z3 …
N N
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Practical Implementation

The same code is applied to all symbols in the packet
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z82
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…

…

…

…

…

…

…

…
…

…

…

…

…

…
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…
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Practical Implementation

Include within each packet the corresponding global encoding
vector

y(e) =
h∑

i=1

gi(e)xi

Implementation: Can be accomplished by prefixing a unit vector to
each source vector xi , i = 1, . . . ,h.
The global encoding vector required for decoding can be found in
the received packets
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Practical Implementation

Global encoding vectors are attached to each packet

…

x2,2x2,1 …

…

Global Encoding Vectors

x1,1

Original 

Vectors

Global Encoding Vectors

1

1

1

208

49

34 54129

67169

82 227

x2,3 x2,N

x1,2 x1,Nx1,3

x3,1 x3,2 x3,N

…

y2,2y2,1 …

…

y1,1

y2,3 y2,N

y1,2 y1,Ny1,3

y3,1 y3,2 y3,N

Intermediate 

vectors

…
z1,2 z2,2 z3,2 zN,2

…

z1,2 z2,2 z3,2 zN,2
…

z1,2 z2,2 z3,2 zN,2
…

1 1 1 1

2 2 2 2

3 3 3 3

29

209

172 1083

189211

79 71

Global Encoding Vectors

Vectors at 

terminals
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Practical Implementation

Decoding is possible even if
I Network topology & encoding functions unknown
I Topology dynamically changes
I Packets lost, link failures in unknown locations
I Local encoding vectors are time-varying

Cost: (small) overhead
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Encoding overhead

Example 1
I h = 50, filed size 216

I Overhead 50
700 ≈ 6%

Example 2
I h = 50, field size 28 (sufficient for most practical applications)
I Overhead 50

1400 ≈ 3%
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Generations

Introduced to improve robustness, eliminate redundancy, and deal
with synchronization issues
All packets related to same source vectors x1, . . . , xh are in the
same generation
All packets in same generation are tagged with same generation
number; one byte (mod 256) is sufficient for practical purposes
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Generations

Each generation has exactly h packets

1
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1
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x3,1 x3,2 x3,N
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x3,1 x3,2
x3,N

1 1 1
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1

1
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Dealing with Redundant Packets

Packets received by a buffer are classified into two categories:
I Innovative packets- lie outside the subspace spanned by vectors

already in the buffer
I Non-innovative packets - lie inside the subspace

F Do not introduce new information, hence they are discarded
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Router implementation

Picture courtesy Chou et al. ’04
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Decoding

Block decoding
I Collect h or more packets, try to invert Gt

Earliest decoding
I Perform Gaussian elimination at after each packet
I Gi tends to be lower triangular, so can decode x1, . . . , xk with k

packets
I Lower decoding delay than the block decoding
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Flashing

Simple policy: flush when first packet of next generation arrives on
any edge
May result in a small loss of throughput
Picture courtesy Chou et al. ’04
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Conclusion

New research area
I Requires tools from different disciplines:

F Algebra, graph theory, combinatorics.

Rich in challenging problems, many of them open
I Multicast problems are well-understood
I Beyond multicast -problems are very hard, very little is known.

Both theoretical and practical interest
I Many applications are yet to be discovered
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