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Modern Optical Networks

Signals/data transmitted as light on optical fiber
 Very high capacity
 Based on DWDM technology
 Ultra long haul
 Mesh based (as opposed to older ring based networks

such as SONET)

Pros: capacity and speed required for modern networks
Challenges: recent and sophisticated technology (brittle),

       high cost, optimization/verification



Three Key Optical Technologies

1. Wavelength Division Multiplexing

Dense Wavelength Division Multiplexing (DWDM)
100+ wavelengths per fiber; 10Gbps/λ; 1 Tbps per fiber

What is a terabit?
   60,000,000 text page; 200,000 photographs,  40,000 music files;  25 movie videos

       4960 hours at 56 kilobits/second (telephone modem)
       278 hours at 1 megabit/second (cable modem)
       17 minutes at 1 gigabit/second (gigabit ethernet)



Three Key Optical Technologies

2. Optical (Raman) Amplification
Signals travel long distance (>1000 km) within optical domain
Wavelengths simultaneously amplified (non-linear problem)
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Three Key Optical Technologies

3. Wavelength granular optical switching

Allows single-wavelength light path travel in network without
O-E-O at any intermediate network element.

Accomplished by Reconfigurable Optical Add/drop multiplexer
(ROADM)

•ROADM



Optical Components
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ROADM: Routes each wavelength
individually

OT: optical transponder. Performs
O-E, E-O, translates to particular
wavelength

OA: optical amplification.
Strengthens OSNR, offsets
dispersion, etc.

Costs:
ROADM : OT: OA  ~ 10: 1: 5

fiber



Design Problem
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Goal: build an optical backbone network

Traffic: estimates of demands between major metros

Dark fiber: network where fiber is in the ground



Design Problem

Goal: install equipment on network (light up some fibers
in dark network) to satisfy (route) traffic

Objectives: minimize cost, maximize fault tolerance and
       expandability, and ...



Input in more detail

 Dark fiber network: graph G=(V,E)
 Traffic: granularity of a single wavelength

 source-destination pairs: s1t1, s2t2, ..., shth

 for each pair siti a protection requirement (more later)

 Equipment information
 ROADM types, OT types, ...
 Constraints on equipment (usually messy)

 Cost for various equipment:
 ROADM, OT, OA, fiber, circuit packs, ...

 Reach and regeneration constraints (physics)
 upper bound on distance before need for OA
 number of optical devices before regeneration (OT)



What is a feasible solution?

 For each edge e, ke the number of fibers on e
 For each node v, kv the number of ROADMS at v
 If e = (u, v) which fiber on e is connected to which

ROADM at u and which ROADM at v

u v
fiber

fiber



What is a feasible solution?

For each demand siti
 a sequence of ROADMs (at nodes) and fibers (on edges)
 on each fiber the wavelength
 OT locations for wavelength conversion and

regeneration

Very complicated and difficult to optimize



Break Problem into Tractable Pieces

 Buy-at-Bulk Network Design
 Choose # of fibers per edge and routing for each demand

 Assign fibers and wavelengths to each demand (note
that route is already fixed)

Alternative: combine above two steps into one step

 ROADM assignment at nodes and connection of fibers
 OT assignment for reach and wavelength conversion
 Check physical level constraints and iterate



Protection Constraints

Fault-tolerance very important in high-capacity networks
Potential failures:

 fiber cut
 equipment failure (OA, OT, ROADM)
 power failure at a node location etc

Remedy: 1+1 protection
For each demand siti choose two paths Pi (primary) and Qi (backup)

 P and Q are internally node/link/fiber disjoint
 route data along both paths simultaneously

Ring networks (SONET) provided protection implicitly/automatically.
For new mesh networks, part of optimization



Outline for rest of the talk

 Approximation algorithms for buy-at-bulk network
design - a survey [Chandra]

 Experience with some heuristics on buy-at-bulk for
optical network design [Lisa]

 Wavelength assignment problems/issues [Lisa]



Buy-at-Bulk Network Design

Undirected graph G=(V,E)
for each E,  edge cost function fe: R+ ! R+

Demand pairs: s1t1, s2t2, ..., sktk
Demands: siti has a positive demand di

Feasible solution: for each pair siti, a path Pi connecting si
and ti along which di flow is routed

Cost of flow: ∑e fe(xe) where xe is the cumulative flow on e
Goal: minimize cost of flow



Special case: Single-source BatB

source s, terminals t1, t2, ..., tk
demand di from s to ti

general case: multi-commodity



What is the cost function?

Optical networks:
each fiber carries same # of wavelenghts

single-cable model

f(x) = minimum # of fibers required for bandwidth of x

bandwidth

cost

c

u



Economies of scale: fe

bandwidth

cost

bandwidth

cost

bandwidth

cost

bandwidth

cost



Sub-additive costs

fe(x) + fe(y) ¸ fe(x+y)
cost

bandwidth



Fixed costs

fe(x) = ce for x > 0
   = 0 for x =0

Expresses connectivity

BatB equivalent to Steiner forest problem:

Given G(V,E), c: E! R+ and pairs s1t1, ..., sktk

Find E’ µ E s.t for 1· i · k, siti are connected in G[E’]
minimize ∑e 2 E’ c(e)
NP-hard and APX-hard (best known approx is 2)

bandwidth

cost



Uniform versus Non-uniform

Uniform:  fe = ce f where c : E ! R+

( wlog, ce = 1 for all e, then fe = f )

Non-uniform: fe different for each edge

Practice:
usually uniform but occasionally non-uniform

Non-uniform problem led to new algorithms and ideas



Heuristic approaches for NP-hard probs

 Integer programming methods
 branch and bound
 branch and cut

 approximation algorithms: heuristics guided by analysis
and provable guaranteed

 meta-heuristics and ad-hoc methods



Approximation algorithm/ratio

Approximation algorithm A :
polynomial time algorithm

for each instance I,
A(I) is cost of solution for I given by A
OPT(I) is cost of an optimum solution for I

approximation ratio of A : supI A(I)/OPT(I)



Approximability of Buy at Bulk

O(log n)
[AA’97]
Ω(log1/4 -ε n)
[A’04]

O(1)
[SCRS’97]
Ω(1)
folklore

Single-cable

O(log4 n)
[CHKS’06]
Ω(log1/2 -ε n)
[A’04]

O(log n)
[AA’97]
Ω(log1/4 -ε n)
[A’04]

Multicommodity

(hardness)

O(log k)
[MMP’00]
Ω(log log n)
[CGNS’05]

O(1)
[GMM’01]
Ω(1)
folklore

Single Source

(hardness)

Non-UniformUniform

Special mention: 2(log n log log k)1/2 for non-uniform [CK’05]



Three algorithms for multi-commodity

 Using tree embeddings of graphs for uniform case.
[Awerbuch-Azar’97]

 Greedy routing with randomization and inflation
[Charikar-Karagiazova’05]

 Junction based approach
[C-Hajiaghayi-Kortsarz-Salavatipour’06]



Alg1: Using tree embeddings

Suppose G is a tree T

Routing is unique/trivial in T
For each e 2 T, routing induces flow of xe units
Cost = ∑ e 2 T ce f(xe)

Essentially an optimum solution modulo computing f



Alg1: Using tree embeddings

[Bartal’96,’98, FRT’03]
Given G=(V, E) there is a random tree T=(V, ET) such that
 dT(uv) ¸ dG(uv) for each pair uv
 dT(uv) · O(log n) dG(uv) in expectation

(Note: ET is not related to E)

[AA’97]
Run buy-at-bulk algorithm on T
Claim: Approximation is O(log n) for uniform case



Why only uniform case?

Uniform case: fe = ce · f for each e
Tree approximation of G with edge lengths given by ce

In the non-uniform case, fe is different for each e, no
notion of a metric on V

Open Problems:
 Close gap between O(log n) upper bound and Ω(log1/4-² n)

hardness [Andrews’04]
 Obtain an O(log h) upper bound where h is the number of pairs



Alg2: Greedy using random
permutation

[CK’05]
Assume di = 1 for all i // (unit-demand assumption)
Pick a random permutation of demands
// (wlog assume 1,2,...,k is random permutation)
for i = 1 to k do
   set d’i = k/i   // (pretend demand is larger)
   route d’i for siti greedily along shortest path on cur soln
end for



Details

“route d’i for siti along shortest path on cur soln”

xj(e) : flow on e after j demands have been routed

 compute edge costs c(e) = fe(xi-1(e)+1) - fe(xi-1(e)) // additional
cost of routing siti on e

 compute shortest path according to c



Alg2: Theorems

[CK’05]
Theorem: Algorithm is 2(log k log log k)1/2 approx for non-

uniform cost functions

Theorem: Algorithm is O(log2 k) approx for uniform cost
functions in the single-sink case

Justifies simple greedy algorithm
Key: randomization and inflation
Some empirical evidence of goodness



Alg2: Open Problems

Conjecture: For uniform multi-commodity case, algorithm
is polylog(k) approx.

Question: What is the performance of the algorithm in the
non-uniform case? polylog(k) ?

Question: Does the natural generalization of the algorithm
work (provably) “well” even in the protected case? Not
known even for simple connectivity.



Alg3: Junction routing

[HKS’05, CHKS’06]
Junction tree routing:



Alg3: Junction routing

[HKS’05, CHKS’06]
Junction tree routing:

junction



Alg3: Junction routing

density of junction tree: cost of tree/# of pairs

Algorithm:

Find a low density junction tree T
Remove pairs connected by T

Repeat until no pairs left



Analysis Overview

OPT: cost of optimum solution

Theorem: In any given instance, there is a junction tree of
density O(log k) OPT/k

Theorem: There is an O(log2 k) approximation for a
minimum density junction tree

Theorem: Algorithm yields O(log4 k) approximation for
buy-at-bulk network design



Existence of low-density junction trees

Three proofs:

Based on

1. Sparse covers: O(log D) OPT/k where D = ∑i di

2. Spanning tree embeddings: O(log2 k log log k) OPT/k

3. Probabilistic and recursive partitioning of metric spaces:
O(log k) OPT/k



Existence of low-density junction trees

A (weaker) bound of O(log2 k log log k) OPT/k

1. Prove that there exists an approximate optimum
solution that is a forest

2. Use forest structure to show junction tree of good
density



Spanning tree embeddings

[Elkin-Emek-Spielman-Teng ‘05]

Given G=(V, E) there is a probability distribution over
spanning trees of G such that for a T picked from the
distribution, for each pair uv

 dT(uv) ¸ dG(uv)
 E[dT(uv)] · O(log2 n log log n) dG(uv)

Improves previous bound of 2(log n log log n)1/2

[Alon-Karp-Peleg-West’95]



Forest Solution

Claim: Spanning tree solution implies that there exists an
approximate solution to the buy-at-bulk problem s.t

 the edges of the solution induce a forest
 the cost of the solution is ® OPT where ® is the

expected distortion bound guaranteed by spanning tree
embedding



Reformulation as a two-cost network
design problem

Different fe difficult to deal with.
Simplify problem

each edge e has two costs
ce: fixed cost, need to pay this to use e
le: incremental cost, to route flow of x, pay  le x

fe(x) = ce + le x

Above model approximates original costs within factor of 2
[AZ’98,MMP’00]



Objective function

With reformulation, objective function is:

find E’ µ E to minimize
∑e 2 E’ c(e)  + ∑i=1

k di lE’(si , ti)

lE’ : shortest path distances in G[E’]



Existence of forest solution

E*µ E an optimum soln, G* = G[E*]

Apply [EEST’05] to G* with edge lengths l
There exists spanning tree T of G* s.t
lT(uv) = O(log2 n log log n) lE*(uv) in expectation

therefore
c(E(T))+∑i lE(T)(siti) · c(E*) + O(log2 n log log n) ∑i lE*(siti)



Forest solution to junction tree

centroid vT

If k/log k terminals have lca = v, done



Forest solution to junction tree

centroid vT

T1 T2

T3



Forest solution to junction tree

centroid vT

T1 T2

T3

Claim: one of these junction trees has density O(log k) den(T)



Finding low-density junction trees

Closely related to single-source buy-at-bulk prob.

Single source problem:
source s, terminals t1, t2, ..., tk
demand di from s to ti
Goal: route all pairs to minimize cost

Min-density problem for single source:
Goal: connect subset of pairs to minimize

density = cost/# of pairs connected



Single-source BatB

Single source problem:
source s, terminals t1, t2, ..., tk
demand di from s to ti
Goal: route all pairs to minimize cost

[Meyerson-Munagala-Plotkin’00] An O(log k) randomized
combinatorial approx.

[C-Khanna-Naor’01] A deterministic O(log k) approx and
integrality gap for natural LP



Min-density junction tree

Similar to single-source? Assume we know junction r.
Two issues:

 which pairs to connect via r?
 how do we ensure that both si and ti are connected to r?

junction



Min-density junction tree

[CHKS’06]
Theorem: ® approx for single-source via natural LP implies

an O(® log k) approx for min-density junction tree

Using [CKN’01], O(log2 k) approx for min-density junction
tree

Approach is generic and applies to other problems as well



Alg3: Open Problems

 Close gap for non-uniform: Ω(log1/2-ε n) vs O(log4 n)
 [Kortsarz-Nutov’07] improve to O(log3 n) for polynomial

demands
 LP integrality gap?

 Tight bounds for embedding into spanning trees.
[EEST’05] show O(log2 n log log n) and lower bound is
Ω(log n). Planar graphs?



Buy-at-Bulk with Protection

For each pair siti send data simultaneously on two node
disjoint paths Pi (primary) and Qi (backup)

Protection against equipment failures

Easier case: Pi and Qi are edge disjoint

Related to Steiner network problem (survivable network
design problem)

[Jain’00, Fleischer-Jain-Williamson’04]



Buy-at-Bulk with Protection

Junction scheme?
Edge disjoint case easier

2-edge-disj paths from si to junction and 2-edge-disj-paths from ti to
junction

junction



Buy-at-Bulk with Protection

Node disjoint case:
[Antonakopoulos-C-Shepherd-Zhang’07]
2-junction scheme:

u

v



Buy-at-Bulk with Protection

[ACSZ’07]
2-junction-Theorem: α-approx for single-source problem

via natural LP implies O(α log3 h) for multi-commodity
problem

Technical challenges
 junction density proof (only one of the proofs in three can be

generalized with some work)
 single-source problem not easy! O(1) for single-cable  [ACSZ’07]

Open Problems: Single-source for uniform and non-uniform



Conclusion

 Buy-at-bulk network design useful in practice and led to several
new theoretical ideas

 Algorithmic ideas:
 application of Bartal’s tree embedding [AA’97]
 derandomization and alternative proof of tree embeddings

[CCGG’98,CCGGP’98]
 hierarchical clustering for single-source problems

[GMM’00,MMP’00,GMM’01]
 cost sharing, boosted sampling [GKRP’03]
 junction scheme [CHKS’06]

 Hardness of approximation:
 canonical paths/girth ideas for routing problems [A’04]

 Several open problems



Routing in Practice

Joint with S. Antonakopoulos and S. Fortune



Simple, flexible and scalable heuristics

 Accommodate messy and ever changing requirements
 Some links may have hard capacity
 Some nodes may have degree bound
 Some demands may have forbidden links/nodes
 Different fiber types, different protection specification
 Dual homing, multicast…

 Accommodate problem instances of varying sizes
 Close to optimality

 Typical network costs hundreds of million dollars
 Small percentage error desired
 Optimal solution for small/test instances

 Cannot rely on commercial solvers/tools



Modeling cost
Cost fe(w) of a WDM fiber on edge e
  fe(w) = c1* w/u  +  c2* l * w/u  + c3 * l * w
 w: current load, l : length of e, u: fiber capacity
 c1, c2, c3: parameters defined by equipment properties

u            2u               load

cost



Optical Components

OT

wavelength
demand

•ROADM

•ROADM

fiber

•lightpath

•ROADM•ROADM

•ROADM

•ROADM•ROADM

OT OT OT

OT

OT

•lightpath

•lightpath

fiber

OA OA

OA

OA

ROADM: Routes each wavelength
individually

OT: optical transponder. Performs
O-E, E-O, translates to particular
wavelength

OA: optical amplification.
Strengthens OSNR, offsets
dispersion, etc.

Costs:
ROADM : OT: OA  ~ 10: 1: 5

fiber



Modeling cost
 fe(w) = c1* w/u  + c2* l * w/u  + c3 * l * w
 w/u fibers over e
 One arm of ROADM connects to one end of a fiber :

 c1 = 2 * cost(1-arm ROADM)
 Each OA amplifiers signals (per fiber basis), over

distance reach(OA) :
 c2 = cost(OA) / reach(OA)

 Each OT converts signal O-E or E-O (per wavelength
basis), over distance reach(OT): 

c3 = cost(OT) / reach(OT)



Basic greedy algorithm

Process each demand in turn
 For each edge, calculate the marginal cost of routing

the demand through the edge
fe(w + d) - fe(w)

 Calculate shortest disjoint paths using marginal costs
as weights.

 Route the demand via these paths.

Theoretical link: [Charikar-Karagiazova’05]



Improvements

Ordering of processing is critical
 No simple a priori criterion that defines an “optimal”

order.
 Best solution usually obtained by trying several

random orderings.
Iterative refinement: Process each demand again to find

shortest paths in then-current network
 Converges monotonically to a local optimum, typically

in less than 10 passes.
 Very large and/or heavily loaded instances may

require more passes.



Improvements (cont)
Calculate marginal costs using a piecewise strongly

concave pseudocost function.

u                  2u              3u



Example

demands A and B

other demands

Advantage: free lightly loaded fibers for cost reduction



Handling extra constraints

Example: capacitated edges
 Primary obj: route as many demands as possible
 Secondary obj: cost minimization



Penalty heuristic

wu

cost

“Penalize” demands that use almost-full edges.
 In subsequent iterations, some capacity in highly

loaded edges freed up. More demands may be routed.



Penalty heuristic  (contd.)

 Harshness of the penalty is adaptive, depending on
the percentage of unroutable demands.

 Converges monotonically w.r.t. the number of
unroutable demands (but not cost).

 If all demands are successfully routed, may switch to
reducing cost, by additional iterative refinement and
pseudocost.



Example

 Without penalty function, many demands cannot be
routed.

 Fewer unrouted demands when red link removed,
somewhat unexpectedly.



Example (cont)
 With penalty function, all demands routed.

 Higher probability that a random demand ordering will
yield a good solution when edge is missing!

 Optimal solution noticeably worse with red edge
missing, as expected.

 Best solutions found by the heuristic within 1% of
respective optima.



Performance
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Wavelength Assignment



Design Problem
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Input
 A network
 Demands

Output for each demand
 Routing
 Wavelength assignment



Wavelength assignment

 Demand paths sharing same fiber have distinct
wavelengths

 Deploy no extra fibers
 Use convertors (OT) if necessary
 Min number of convertors

A

B

C

O
Fiber capacity  u = 2
Demand routes:

AOB, BOC, COA •ROADM

OT



Heuristics

 Limited theoretical results
 Practical heuristics

 Dynamic programming:
 Routing path for demand d : e1, e2, …
 C(ei, λ,  f) : min number of conversions needed for subpath e1, …

ei if ei is assigned wavelength λ on fiber f
 C(ei, λ,  f) = min{ ming C(ei-1, λ, g) , min λ’≠ λ, g C(ei-1, λ’, g) + 1 }

 Greedy approach
 On link ei, continue with same wavelength λ if possible or switch

to λ’ that is feasible on the most number of subsequent links

 Trade off in performance and running time



Heuristics

 Trade off in performance and running time



Wavelength assignment

Model 1: min conversion
 Demand paths sharing same fiber have distinct

wavelengths
 Deploy no extra fibers
 Use convertors (OT) if necessary
 Min number of convertors

A

B

C

O
Fiber capacity  u = 2
Demand routes:

AOB, BOC, COA •ROADM

OT



Wavelength assignment

Model 2: min fiber without conversion
 Each demand path assigned one wavelength from src

to dest – no conversion
 Demand paths sharing common fiber have distinct

wavelengths
 Deploy extra fibers if necessary
 Min total fibers

Fiber capacity  u = 2
Demand routes:

AOB, BOC, COA
A

B

C

O
•ROADM



Results

Network is a line (WinklerZ)
 Optimally solvable
 f (e ) fibers necessary and sufficient on every link e
 u : fiber capacity
 w (e ) : load on link e
 f (e ) =  w (e ) / u 

Tree (ChekuriMydlarzShepherd)
 NP hard
 4 approx for trees: 4 f (e ) fibers sufficient on e



Results (cont)

Hard to approx for arbitrary topologies  (AndrewsZ)

( log u )½- εAny constantWA (given routing)
( log log M )½- εRouting + WA

Max fiber per edgeTotal fiberInapprox ratio
( log M )1/4 - ε



Results (cont)

Hard to approx for arbitrary topologies  (AndrewsZ)

( log u )½- εAny constantWA (given routing)
( log log M )½- εRouting + WA

Max fiber per edgeTotal fiberInapprox ratio
( log M )1/4 - ε

            Buy-at-bulk
            Congestion
            minimization

Chromatic number
3SAT(5), Raz verifier



Results (cont)

Hard to approx for arbitrary topologies  (AndrewsZ)

Logarithmic approx for arbitrary topologies

( log u )½- εAny constantWA (given routing)
( log log M )½- εRouting + WA

Max fiber per edgeTotal fiberInapprox ratio
( log M )1/4 - ε

O( log u )WA (given routing)
O( log M )Routing + WA

Max fiber per edgeTotal fiberApprox ratio
O( log M )
O( log u )



Heuristics

Greedy approach: For each demand choose a wavelength
that increases fiber count least
1. Basic greedy: demands handled in a fixed given order
2. Longest first:  demands with more hops first
3. Most congested first: demands with congested routes first

Randomized assignment
 Choose a wavelength [1, u ] uniformly at random for each

demand;
 O(log u ) approx

Optimal solution via integer programming
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Network A: 5-year traffic
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Why not randomization?

 Birthday paradox:
If load >√ u, some wavelength
chosen twice with prob > ½

 If load = u, some wavelength
chosen log u time whp.

Performance on 3 US backhaul networks



Open issue: Model 1 vs model 2

 Two models studied in isolation
 Which is more cost effective?

A

B

C

O

Fiber capacity  u = 2j,   j routes along AOB, BOC, COA

Model 1: j conversions Model 2: 1 extra fiber

•ROADM•ROADM

OT



Conclusion

 Optical network design extremely complex
 Smaller pieces hard to optimize

 Routing: buy-at-bulk network design
 Wavelength assignment
 Physical layer optimization

 Gap between theoretical knowledge and
practical implementability


