Algorithmic Challenges in Optical Network Design

Chandra Chekuri Univ. of Illinois (UIUC) Lisa Zhang

Bell Labs

Modern Optical Networks

Signals/data transmitted as light on optical fiber

- Very high capacity
- Based on DWDM technology
- Ultra long haul
- Mesh based (as opposed to older ring based networks such as SONET)

Pros: capacity and speed required for modern networks Challenges: recent and sophisticated technology (brittle), high cost, *optimization/verification*

Three Key Optical Technologies

1. Wavelength Division Multiplexing

Dense Wavelength Division Multiplexing (DWDM) 100+ wavelengths per fiber; 10Gbps/ λ ; 1 Tbps per fiber

What is a terabit?

60,000,000 text page; 200,000 photographs, 40,000 music files; 25 movie videos

4960 hours at 56 kilobits/second (telephone modem)278 hours at 1 megabit/second (cable modem)17 minutes at 1 gigabit/second (gigabit ethernet)

Three Key Optical Technologies

2. Optical (Raman) Amplification

Signals travel long distance (>1000 km) within optical domain Wavelengths simultaneously amplified (non-linear problem)

Three Key Optical Technologies

3. Wavelength granular optical switching

Allows single-wavelength light path travel in network without O-E-O at any intermediate network element.

Accomplished by Reconfigurable Optical Add/drop multiplexer (ROADM)

Optical Components

Design Problem

Goal: build an optical backbone network

Traffic: estimates of demands between major metros Dark fiber: network where fiber is in the ground

Design Problem

Goal: install equipment on network (light up some fibers in dark network) to satisfy (route) traffic

Objectives: minimize cost, maximize fault tolerance and expandability, and ...

Input in more detail

- Dark fiber network: graph G=(V,E)
- Traffic: granularity of a single wavelength
 - source-destination pairs: s₁t₁, s₂t₂, ..., s_ht_h
 - for each pair s_it_i a *protection requirement* (more later)
- Equipment information
 - ROADM types, OT types, ...
 - Constraints on equipment (usually messy)
- Cost for various equipment:
 - ROADM, OT, OA, fiber, circuit packs, ...
- Reach and regeneration constraints (physics)
 - upper bound on distance before need for OA
 - number of optical devices before regeneration (OT)

What is a feasible solution?

- For each edge e, k_e the number of fibers on e
- For each node v, k_v the number of ROADMS at v
- If e = (u, v) which fiber on e is connected to which ROADM at u and which ROADM at v

What is a feasible solution?

For each demand s_it_i

- a sequence of ROADMs (at nodes) and fibers (on edges)
- on each fiber the wavelength
- OT locations for wavelength conversion and regeneration

Very complicated and difficult to optimize

Break Problem into Tractable Pieces

Buy-at-Bulk Network Design

- Choose # of fibers per edge and routing for each demand
- Assign fibers and wavelengths to each demand (note that route is already fixed)

Alternative: combine above two steps into one step

- ROADM assignment at nodes and connection of fibers
- OT assignment for reach and wavelength conversion
- Check physical level constraints and iterate

Protection Constraints

Fault-tolerance very important in high-capacity networks Potential failures:

- fiber cut
- equipment failure (OA, OT, ROADM)
- power failure at a node location etc

Remedy: 1+1 protection

For each demand s_it_i choose two paths P_i (primary) and Q_i (backup)

- P and Q are internally node/link/fiber disjoint
- route data along both paths *simultaneously*

Ring networks (SONET) provided protection implicitly/automatically. For new mesh networks, part of optimization

Outline for rest of the talk

- Approximation algorithms for buy-at-bulk network design - a survey [Chandra]
- Experience with some heuristics on buy-at-bulk for optical network design [Lisa]
- Wavelength assignment problems/issues [Lisa]

Buy-at-Bulk Network Design

Undirected graph G=(V,E)for each E, edge cost function $f_e: \mathcal{R}^+ \to \mathcal{R}^+$ Demand pairs: $s_1t_1, s_2t_2, ..., s_kt_k$ Demands: s_it_i has a positive demand d_i

Feasible solution: for each pair $s_i t_i$, a path P_i connecting s_i and t_i along which d_i flow is routedCost of flow: $\sum_e f_e(x_e)$ where x_e is the cumulative flow on eGoal: minimize cost of flow

Special case: Single-source BatB

source s, terminals t_1 , t_2 , ..., t_k demand d_i from s to t_i

general case: multi-commodity

What is the cost function?

Optical networks: each fiber carries same # of wavelenghts

f(x) = minimum # of fibers required for bandwidth of x

Economies of scale: f_e

Sub-additive costs

 $f_e(x) + f_e(y) \geq f_e(x+y)$

bandwidth

Fixed costs

 $f_e(x) = c_e \text{ for } x > 0$ = 0 for x = 0

Expresses connectivity

BatB equivalent to Steiner forest problem:

Given G(V,E), c: $E \rightarrow \mathcal{R}^+$ and pairs $s_1 t_1, ..., s_k t_k$

Find $E' \subseteq E$ s.t for $1 \le i \le k$, $s_i t_i$ are connected in G[E']minimize $\sum_{e \in E'} c(e)$ NP-hard and APX-hard (best known approx is 2)

Uniform versus Non-uniform

Uniform: $f_e = c_e f$ where $c : E \rightarrow R^+$ (wlog, $c_e = 1$ for all e, then $f_e = f$)

Non-uniform: f_e different for each edge

Practice: usually uniform but occasionally non-uniform

Non-uniform problem led to new algorithms and ideas

Heuristic approaches for NP-hard probs

Integer programming methods

- branch and bound
- branch and cut
- approximation algorithms: heuristics guided by analysis and provable guaranteed
- meta-heuristics and ad-hoc methods

Approximation algorithm/ratio

Approximation algorithm \mathcal{A} : polynomial time algorithm

for each instance I, $\mathcal{A}(I)$ is cost of solution for I given by \mathcal{A} OPT(I) is cost of an optimum solution for I

approximation ratio of A : sup_I A(I)/OPT(I)

Approximability of Buy at Bulk

	Single-cable	Uniform	Non-Uniform
Single Source	<mark>O(1)</mark>	<mark>O(1)</mark>	O(log k)
	[SCRS'97]	[GMM′01]	[MMP'00]
(hardness)	Ω(1)	Ω(1)	Ω(log log n)
	folklore	folklore	[CGNS'05]
Multicommodity	O(log n)	O(log n)	O(log ⁴ n) [CHKS′06]
(hardness)	Ω(log ^{1/4 -ε} n)	$\Omega(\log^{1/4} - \varepsilon n)$	$\Omega(\log^{1/2} - \varepsilon n)$
	[A′04]	[A'04]	[A'04]

Special mention: 2^{(log n log log k)^{1/2} for non-uniform [CK'05]}

Three algorithms for multi-commodity

- Using tree embeddings of graphs for *uniform case*.
 [Awerbuch-Azar'97]
- Greedy routing with randomization and inflation [Charikar-Karagiazova'05]
- Junction based approach
 [C-Hajiaghayi-Kortsarz-Salavatipour'06]

Alg1: Using tree embeddings

```
Suppose G is a tree T
```

Routing is unique/trivial in T For each $e \in T$, routing induces flow of x_e units Cost = $\sum_{e \in T} c_e f(x_e)$

Essentially an optimum solution modulo computing f

Alg1: Using tree embeddings

[Bartal'96,'98, FRT'03] Given G=(V, E) there is a random tree T=(V, E_T) such that $d_T(uv) \ge d_G(uv)$ for each pair uv $d_T(uv) \le O(\log n) d_G(uv)$ in expectation

(Note: E_T is not related to E)

[AA′97]

Run buy-at-bulk algorithm on T Claim: Approximation is O(log n) for *uniform case*

Why only uniform case?

Uniform case: $f_e = c_e \cdot f$ for each e Tree approximation of G with edge lengths given by c_e

In the non-uniform case, ${\sf f}_{\sf e}$ is different for each ${\sf e},$ no notion of a metric on V

Open Problems:

- Close gap between O(log n) upper bound and Ω(log^{1/4-ε} n) hardness [Andrews'04]
- Obtain an O(log h) upper bound where h is the number of pairs

Alg2: Greedy using random permutation

[CK'05]

Assume d_i = 1 for all i // (unit-demand assumption)

Pick a random permutation of demands

// (wlog assume 1, 2, ..., k is random permutation) for i = 1 to k do

set d'_i = k/i // (pretend demand is larger)

route d^{\prime}_{i} for $s_{i}t_{i}$ greedily along shortest path on cur soln end for

Details

"route d'_i for s_it_i along *shortest path* on cur soln"

x_i(e) : flow on e after j demands have been routed

- compute edge costs c(e) = f_e(x_{i-1}(e)+1) f_e(x_{i-1}(e)) // additional cost of routing s_it_i on e
- compute shortest path according to c

Alg2: Theorems

[CK'05] Theorem: Algorithm is 2^{(log k log log k)^{1/2} approx for nonuniform cost functions}

Theorem: Algorithm is O(log² k) approx for uniform cost functions in the single-sink case

Justifies simple greedy algorithm Key: randomization and inflation Some empirical evidence of goodness

Alg2: Open Problems

Conjecture: For uniform multi-commodity case, algorithm is polylog(k) approx.

Question: What is the performance of the algorithm in the non-uniform case? polylog(k) ?

Question: Does the natural generalization of the algorithm work (provably) "well" even in the protected case? Not known even for simple connectivity.

Alg3: Junction routing

[HKS'05, CHKS'06] Junction tree routing:

Alg3: Junction routing

[HKS'05, CHKS'06] Junction tree routing:

Alg3: Junction routing

density of junction tree: cost of tree/# of pairs

Algorithm:

Find a *low density* junction tree T Remove pairs connected by T Repeat until no pairs left

Analysis Overview

OPT: cost of optimum solution

Theorem: In any given instance, there is a junction tree of density O(log k) OPT/k

Theorem: There is an O(log² k) approximation for a *minimum* density junction tree

Theorem: Algorithm yields O(log⁴ k) approximation for buy-at-bulk network design
Existence of low-density junction trees

Three proofs:

Based on

- 1. Sparse covers: O(log D) OPT/k where $D = \sum_{i} d_{i}$
- 2. Spanning tree embeddings: O(log² k log log k) OPT/k
- 3. Probabilistic and recursive partitioning of metric spaces: O(log k) OPT/k

Existence of low-density junction trees

A (weaker) bound of O(log² k log log k) OPT/k

- 1. Prove that there exists an approximate optimum solution that is a *forest*
- 2. Use forest structure to show junction tree of good density

Spanning tree embeddings

[Elkin-Emek-Spielman-Teng '05]

- Given G=(V, E) there is a probability distribution over <u>spanning trees</u> of G such that for a T picked from the distribution, for each pair uv
- $\Box \ d_{T}(uv) \geq d_{G}(uv)$
- $\ \ \, \square \ \, \mathsf{E}[\mathsf{d}_\mathsf{T}(\mathsf{u}\mathsf{v})] \leq \mathsf{O}(\mathsf{log}^2 \ \mathsf{n} \ \mathsf{log} \ \mathsf{log} \ \mathsf{n}) \ \mathsf{d}_\mathsf{G}(\mathsf{u}\mathsf{v})$

Improves previous bound of 2^{(log n log log n)^{1/2} [Alon-Karp-Peleg-West'95]}

Forest Solution

Claim: Spanning tree solution implies that there exists an approximate solution to the buy-at-bulk problem s.t

- the edges of the solution induce a *forest*
- the cost of the solution is α OPT where α is the expected distortion bound guaranteed by spanning tree embedding

Reformulation as a two-cost network design problem

Different f_e difficult to deal with. Simplify problem

each edge e has *two* costs C_e : fixed cost, need to pay this to use e I_e : incremental cost, to route flow of x, pay $I_e x$

 $f_e(x) = c_e + l_e x$

Above model approximates original costs within factor of 2 [AZ'98,MMP'00] **Objective function**

With reformulation, objective function is:

find $E' \subseteq E$ to *minimize* $\sum_{e \in E'} c(e) + \sum_{i=1}^{k} d_i l_{E'}(s_{i,j}, t_i)$

 $I_{E'}$: shortest path distances in G[E']

Existence of forest solution

 $E^* \subseteq E$ an optimum soln, $G^* = G[E^*]$

Apply [EEST'05] to G^* with edge lengths I There exists spanning tree T of G^* s.t $I_T(uv) = O(\log^2 n \log \log n) I_{E^*}(uv)$ in expectation

therefore $c(E(T))+\sum_{i} I_{E(T)}(s_{i}t_{i}) \leq c(E^{*}) + O(\log^{2} n \log \log n) \sum_{i} I_{E^{*}}(s_{i}t_{i})$

Forest solution to junction tree

If k/log k terminals have lca = v, done

Forest solution to junction tree

Forest solution to junction tree

Claim: one of these junction trees has density O(log k) den(T)

Finding low-density junction trees

Closely related to single-source buy-at-bulk prob.

Single source problem: source s, terminals $t_1, t_2, ..., t_k$ demand d_i from s to t_i Goal: route all pairs to minimize cost

Single-source BatB

```
Single source problem:
source s, terminals t_1, t_2, ..., t_k
demand d_i from s to t_i
Goal: route all pairs to minimize cost
```

[Meyerson-Munagala-Plotkin'00] An O(log k) randomized combinatorial approx.

[C-Khanna-Naor'01] A deterministic O(log k) approx and integrality gap for natural LP

Min-density junction tree

Similar to single-source? Assume we know junction r. Two issues:

- which pairs to connect via r?
- how do we ensure that both s_i and t_i are connected to r?

Min-density junction tree

[CHKS'06] Theorem: α approx for single-source via natural LP implies an O(α log k) approx for min-density junction tree

Using [CKN'01], O(log² k) approx for min-density junction tree

Approach is generic and applies to other problems as well

Alg3: Open Problems

- Close gap for non-uniform: $\Omega(\log^{1/2-\epsilon} n)$ vs $O(\log^4 n)$
 - [Kortsarz-Nutov'07] improve to O(log³ n) for polynomial demands
 - LP integrality gap?
- Tight bounds for embedding into spanning trees.
 [EEST'05] show O(log² n log log n) and lower bound is Ω(log n). Planar graphs?

For each pair s_it_i send data simultaneously on two *node disjoint paths* P_i (primary) and Q_i (backup)
 Protection against equipment failures

Easier case: P_i and Q_i are edge disjoint

Related to Steiner network problem (survivable network design problem) [Jain'00, Fleischer-Jain-Williamson'04]

Junction scheme? Edge disjoint case easier

2-edge-disj paths from \boldsymbol{s}_i to junction and 2-edge-disj-paths from \boldsymbol{t}_i to junction

Node disjoint case: [Antonakopoulos-C-Shepherd-Zhang'07] 2-junction scheme:

[ACSZ'07]

2-junction-Theorem: α -approx for single-source problem via natural LP implies O($\alpha \log^3 h$) for multi-commodity problem

Technical challenges

- junction density proof (only one of the proofs in three can be generalized with some work)
- single-source problem not easy! O(1) for single-cable [ACSZ'07]

Open Problems: Single-source for uniform and non-uniform

Conclusion

- Buy-at-bulk network design useful in practice and led to several new theoretical ideas
- Algorithmic ideas:
 - application of Bartal's tree embedding [AA'97]
 - derandomization and alternative proof of tree embeddings [CCGG'98,CCGGP'98]
 - hierarchical clustering for single-source problems [GMM'00,MMP'00,GMM'01]
 - cost sharing, boosted sampling [GKRP'03]
 - junction scheme [CHKS'06]
- Hardness of approximation:
 - canonical paths/girth ideas for routing problems [A'04]
- Several open problems

Routing in Practice

Joint with S. Antonakopoulos and S. Fortune

Simple, flexible and scalable heuristics

- Accommodate messy and ever changing requirements
 - Some links may have hard capacity
 - Some nodes may have degree bound
 - Some demands may have forbidden links/nodes
 - Different fiber types, different protection specification
 - Dual homing, multicast...
- Accommodate problem instances of varying sizes
- Close to optimality
 - Typical network costs hundreds of million dollars
 - Small percentage error desired
 - Optimal solution for small/test instances
- Cannot rely on commercial solvers/tools

Modeling cost

 $\operatorname{Cost} f_e(w)$ of a WDM fiber on edge e

- $\Box \quad f_e(w) = c_1^* [w/u] + c_2^* l^* [w/u] + c_3^* l^* w$
- □ w: current load, *l* : length of e, *u*: fiber capacity
- c_1, c_2, c_3 : parameters defined by equipment properties

Optical Components

Modeling cost

 $f_e(w) = c_1^* [w/u] + c_2^* l^* [w/u] + c_3^* l^* w$

- [w/u] fibers over e
- One arm of ROADM connects to one end of a fiber : $a_{1} = 2 * cost(1 - arm POADM)$

 $c_1 = 2 * \text{cost}(1 - \text{arm ROADM})$

 Each OA amplifiers signals (per fiber basis), over distance reach(OA) :

 $c_2 = \text{cost(OA)} / \text{reach(OA)}$

 Each OT converts signal O-E or E-O (per wavelength basis), over distance reach(OT):

 $c_3 = \text{cost(OT)} / \text{reach(OT)}$

Basic greedy algorithm

Process each demand in turn

 For each edge, calculate the marginal cost of routing the demand through the edge

 $f_e(w+d) - f_e(w)$

- Calculate shortest disjoint paths using marginal costs as weights.
- Route the demand via these paths.

Theoretical link: [Charikar-Karagiazova'05]

Improvements

Ordering of processing is critical

- No simple a priori criterion that defines an "optimal" order.
- Best solution usually obtained by trying several random orderings.
- Iterative refinement: Process each demand again to find shortest paths in then-current network
- Converges monotonically to a local optimum, typically in less than 10 passes.
- Very large and/or heavily loaded instances may require more passes.

Improvements (cont)

Calculate marginal costs using a piecewise strongly concave pseudocost function.

Example

Advantage: free lightly loaded fibers for cost reduction

Handling extra constraints

Example: capacitated edges

- Primary obj: route as many demands as possible
- Secondary obj: cost minimization

Penalty heuristic

"Penalize" demands that use almost-full edges.

 In subsequent iterations, some capacity in highly loaded edges freed up. More demands may be routed.

Penalty heuristic (contd.)

- Harshness of the penalty is adaptive, depending on the percentage of unroutable demands.
- Converges monotonically w.r.t. the number of unroutable demands (but not cost).
- If all demands are successfully routed, may switch to reducing cost, by additional iterative refinement and pseudocost.

Example

- Without penalty function, many demands cannot be routed.
- Fewer unrouted demands when red link removed, somewhat unexpectedly.

Example (cont)

- With penalty function, all demands routed.
- Higher probability that a random demand ordering will yield a good solution when edge is missing!
- Optimal solution noticeably worse with red edge missing, as expected.
- Best solutions found by the heuristic within 1% of respective optima.

Performance

	Heuristic		Optimum	
Instance	Cost	Unrouted	Cost	Unrouted
A	5220172	0	5167850	0
В	5371217	0	5362191	0
С	10831734	0	10133087	0

	Heuristic		Optimum	
Instance	Cost	Fibers	Cost	Fibers
D	103525	25	102592	24
E	131237	26	131237	26
F	89623	25	89565	26
G	113759	25	113697	25
Н	135871	27	135863	27

Wavelength Assignment
Design Problem

Input

- A network
- Demands

Output for each demand

- Routing
- Wavelength assignment

Wavelength assignment

- Demand paths sharing same fiber have distinct wavelengths
- Deploy no extra fibers
- Use convertors (OT) if necessary
- Min number of convertors

Heuristics

- Limited theoretical results
- Practical heuristics
 - Dynamic programming:
 - Routing path for demand d : e_1 , e_2 , ...
 - C(e_i, λ, f) : min number of conversions needed for subpath e_i, ...
 e_i if e_i is assigned wavelength λ on fiber f
 - $C(e_i, \lambda, f) = \min\{\min_g C(e_{i-1}, \lambda, g), \min_{\lambda' \neq \lambda, g} C(e_{i-1}, \lambda', g) + 1\}$
 - Greedy approach
 - On link e_i, continue with same wavelength λ if possible or switch to λ' that is feasible on the most number of subsequent links
 - Trade off in performance and running time

Heuristics

Trade off in performance and running time

Wavelength assignment

Model 1: min conversion

- Demand paths sharing same fiber have distinct wavelengths
- Deploy no extra fibers
- Use convertors (OT) if necessary
- Min number of convertors

Wavelength assignment

Model 2: min fiber without conversion

- Each demand path assigned one wavelength from src to dest – no conversion
- Demand paths sharing common fiber have distinct wavelengths
- Deploy extra fibers if necessary
- Min total fibers

Results

Network is a line (WinklerZ)

- Optimally solvable
- f(e) fibers necessary and sufficient on every link e
- *u* : fiber capacity
- w(e): load on link e
- $\Box f(e) = [w(e) / u]$

Tree (ChekuriMydlarzShepherd)

- NP hard
- 4 approx for trees: 4 f(e) fibers sufficient on e

Results (cont)

Hard to approx for arbitrary topologies (AndrewsZ)

Inapprox ratio	Total fiber	Max fiber per edge
Routing + WA	(log M) ^{1/4 - ε}	(log log M) ^{1/2-ε}
WA (given routing)	Any constant	(log u) ^{1/2-ε}

Results (cont)

Hard to approx for arbitrary topologies (AndrewsZ)

Inapprox ratio	-	Total fiber	Max fiber per edge		Ruv_at_bulk
Routing + WA		(log M) ^{1/4 - ε}	(log log M) ^{½-} ε		- Congestion
WA (given routing)	A	ny constant	(log u) ^{1/2-ε}		minimization
				Chro 3SA	omatic number T(5), Raz verifier

Results (cont)

Hard to approx for arbitrary topologies (AndrewsZ)

Inapprox ratio	Total fiber	Max fiber per edge
Routing + WA	(log M) ^{1/4 - ε}	(log log M) ^{1/2-ε}
WA (given routing)	Any constant	(log u) ^{1/2-ε}

Logarithmic approx for arbitrary topologies

Approx ratio	Total fiber	Max fiber per edge
Routing + WA	O(log M)	O(log M)
WA (given routing)	O(log u)	O(log u)

Heuristics

Greedy approach: For each demand choose a wavelength that increases fiber count least

- 1. Basic greedy: demands handled in a fixed given order
- 2. Longest first: demands with more hops first
- 3. Most congested first: demands with congested routes first

Randomized assignment

- Choose a wavelength [1, u] uniformly at random for each demand;
- O(log u) approx

Optimal solution via integer programming

Performance on 3 US backhaul networks

Why not randomization?

- Birthday paradox: If load > $\sqrt{}$ u, some wavelength chosen twice with prob > $\frac{1}{2}$
- If load = u, some wavelength chosen log u time whp.

Open issue: Model 1 vs model 2

Two models studied in isolation
Which is more cost effective?

Conclusion

- Optical network design extremely complex
- Smaller pieces hard to optimize
 - Routing: buy-at-bulk network design
 - Wavelength assignment
 - Physical layer optimization
- Gap between theoretical knowledge and practical implementability