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Modern Optical Networks

Signals/data transmitted as light on optical fiber
o Very high capacity

2 Based on DWDM technology

o Ultra long haul

o Mesh based (as opposed to older ring based networks
such as SONET)

Pros: capacity and speed required for modern networks

Challenges: recent and sophisticated technology (brittle),
high cost, optimization/verification



Three Key Optical Technologies

1. Wavelength Division Multiplexing

Dense Wavelength Division Multiplexing (DWDM)
100+ wavelengths per fiber; 10Gbps/\; 1 Tbps per fiber

What is a terabit?
60,000,000 text page; 200,000 photographs, 40,000 music files; 25 movie videos

4960 hours at 56 kilobits/second (telephone modem)
278 hours at 1 megabit/second (cable modem)
17 minutes at 1 gigabit/second (gigabit ethernet)



Three Key Optical Technologies

2. Optical (Raman) Amplification
Signals travel long distance (>1000 km) within optical domain
Wavelengths simultaneously amplified (non-linear problem)

Raman amplification
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Three Key Optical Technologies

3. Wavelength granular optical switching

Allows single-wavelength light path travel in network without
O-E-O at any intermediate network element.

Accomplished by Reconfigurable Optical Add/drop multiplexer
(ROADM)




Optical Components
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OA: optical amplification.
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Design Problem

Goal: build an optical backbone network
Traffic: estimates of demands between major metros

Dark fiber: network where fiber is in the ground



Design Problem

Goal: install equipment on network (light up some fibers
in dark network) to satisfy (route) traffic

Objectives: minimize cost, maximize fault tolerance and
expandability, and ...



Input in more detalil

o Dark fiber network: graph G=(V,E)

o Traffic: granularity of a single wavelength
source-destination pairs: s;t,, s,t,, ..., S.t;,
for each pair st. a protection requirement (more later)

o Equipment information
ROADM types, OT types, ...
Constraints on equipment (usually messy)

o Cost for various equipment:
ROADM, OT, OA, fiber, circuit packs, ...

a2 Reach and regeneration constraints (physics)
upper bound on distance before need for OA
number of optical devices before regeneration (OT)



What is a feasible solution?

o For each edge e, k. the number of fibers on e
o For each node v, k, the number of ROADMS at v

o If e = (u, v) which fiber on e is connected to which
ROADM at u and which ROADM at v

fiber

fiber



What is a feasible solution?

For each demand s,
o a sequence of ROADMs (at nodes) and fibers (on edges)
o on each fiber the wavelength

o OT locations for wavelength conversion and
regeneration

Very complicated and difficult to optimize



Break Problem into Tractable Pieces

o Buy-at-Bulk Network Design
Choose # of fibers per edge and routing for each demand

o Assign fibers and wavelengths to each demand (note
that route is already fixed)

Alternative: combine above two steps into one step
o ROADM assignment at nodes and connection of fibers

2 OT assignment for reach and wavelength conversion
o Check physical level constraints and iterate



Protection Constraints

Fault-tolerance very important in high-capacity networks

Potential failures:
fiber cut
equipment failure (OA, OT, ROADM)
power failure at a node location etc
Remedy: 1+1 protection
For each demand st choose two paths P, (primary) and Q; (backup)
P and Q are internally node/link/fiber disjoint
route data along both paths simultaneously

Ring networks (SONET) provided protection implicitly/automatically.
For new mesh networks, part of optimization



Outline for rest of the talk

o Approximation algorithms for buy-at-bulk network
design - a survey [Chandra]

o Experience with some heuristics on buy-at-bulk for
optical network design [Lisa]

a2 Wavelength assignment problems/issues [Lisa]



Buy-at-Bulk Network Design

Undirected graph G=(V,E)

for each E, edge cost function f;: R* — R*
Demand pairs: s,t,, s,t, ..., Sty

Demands: sit; has a positive demand d.

Feasible solution: for each pair sit;, a path P, connecting s,
and t, along which d, flow is routed

Cost of flow: > f.(x.) where x_ is the cumulative flow on e
Goal: minimize cost of flow



Special case: Single-source BatB

source s, terminals t,, t,, ..., t,
demand d, from s to t,

general case: multi-commodity



What is the cost function?

Optical networks:
each fiber carries same # of wavelenghts

A
single-cable model cost
c |
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f(x) = minimum # of fibers required for bandwidth of x



Economies of scale: f,
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Sub-additive costs
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Fixed costs

f.(x) =c.forx >0
= 0 for x =0 cost
Expresses connectivity s S

bandwidth
BatB equivalent to Steiner forest problem:

Given G(V,E), c: E— R* and pairs st,, ..., 5.t,
Find E' C Es.tfor 1< i <Kk, st are connected in G[E]

minimize ), _ . c(e)
NP-hard and APX-hard (best known approx is 2)



Uniform versus Non-uniform

Uniform: f_ = c fwherec: E — R*
(wlog, c. =1foralle, thenf, =)

Non-uniform: f_ different for each edge

Practice:
usually uniform but occasionally non-uniform

Non-uniform problem led to new algorithms and ideas



Heuristic approaches for NP-hard probs

o Integer programming methods
branch and bound
branch and cut

o approximation algorithms: heuristics guided by analysis
and provable guaranteed

o meta-heuristics and ad-hoc methods



Approximation algorithm/ratio

Approximation algorithm A :
polynomial time algorithm

for each instance I,

A(T) is cost of solution for I given by A
OPT(I) is cost of an optimum solution for I

approximation ratio of A : sup; A(I)/OPT(I)



Approximability of Buy at Bulk

Single-cable | Uniform Non-Uniform
Single Source | O(1) 0(1) O(log k)
[SCRS97] [GMM'01] [MMP’00]
(hardness) Q(1) Q(1) Q(log log n)
folklore folklore [CGNS'05]
Multicommodity | O(log n) O(log n) O(log* n)
[AA'97] [AA'97] [CHKS'06]

(hardness)

Q(logl/4 -z n)
[A'04]

Q(logl/4 -z n)
[A'04]

Q(logl/2 -2 n)
[A'04]

Special mention: 2(lcg n'loglog "% for non-uniform [CK'05]




Three algorithms for multi-commodity

o Using tree embeddings of graphs for uniform case.
[Awerbuch-Azar'97]

o Greedy routing with randomization and inflation
[Charikar-Karagiazova'05]

2 Junction based approach
[ C-Hajiaghayi-Kortsarz-Salavatipour'06]



Algl: Using tree embeddings

Suppose Gisatree T
Routing is unique/trivial in T
For each e € T, routing induces flow of x_ units

Cost = > .. +C. f(X)

Essentially an optimum solution modulo computing f



Algl: Using tree embeddings

[Bartal’96,98, FRT'03]

Given G=(V, E) there is a random tree T=(V, E;) such that
o d(uv) > ds(uv) for each pair uv

o d(uv) < O(log n) ds(uv) in expectation

(Note: E; is not related to E)

[AA97]
Run buy-at-bulk algorithm on T
Claim: Approximation is O(log n) for uniform case



Why only uniform case?

Uniform case: f, = c. - f for each e
Tree approximation of G with edge lengths given by c,

In the non-uniform case, f, is different for each e, no
notion of a metric on V

Open Problems:

Close gap between O(log n) upper bound and Q(log'/4< n)
hardness [ Andrews’04]

Obtain an O(log h) upper bound where h is the number of pairs



Alg2: Greedy using random
permutation

[CK'05]
Assume d. = 1 for all i // (unit-demand assumption)
Pick a random permutation of demands
// (wlog assume 1,2,...,k is random permutation)
fori=1tokdo
set d’. = k/i /] (pretend demand is larger)
route d’, for sit; greedily along shortest path on cur soln

end for



Details

“route d’; for st. along shortest path on cur soln”

xi(e) : flow on e after j demands have been routed

compute edge costs c(e) = f.(x_,(e)+1) - f.(x_,(e)) // additional
cost of routing sit; on e

compute shortest path according to c



Alg2: Theorems

[CK'05]

Theorem: Algorithm is 2(log klog log )% apnrox for non-
uniform cost functions

Theorem: Algorithm is O(log? k) approx for uniform cost
functions in the single-sink case

Justifies simple greedy algorithm
Key: randomization and inflation
Some empirical evidence of goodness



Alg2: Open Problems

Conjecture: For uniform multi-commodity case, algorithm
is polylog(k) approx.

Question: What is the performance of the algorithm in the
non-uniform case? polylog(k) ?

Question: Does the natural generalization of the algorithm
work (provably) “well” even in the protected case? Not
known even for simple connectivity.



Alg3: Junction routing

[HKS'05, CHKS'06]
Junction tree routing:



Alg3: Junction routing

[HKS'05, CHKS'06]
Junction tree routing:

junction

=l



Alg3: Junction routing

density of junction tree: cost of tree/# of pairs

Algorithm:

Find a low density junction tree T
Remove pairs connected by T
Repeat until no pairs left



Analysis Overview

OPT: cost of optimum solution

Theorem: In any given instance, there is a junction tree of
density O(log k) OPT/k

Theorem: There is an O(log? k) approximation for a
minimum density junction tree

Theorem: Algorithm yields O(log* k) approximation for
buy-at-bulk network design



Existence of low-density junction trees

Three proofs:

Based on

1. Sparse covers: O(log D) OPT/k where D = 3, d.

2. Spanning tree embeddings: O(log? k log log k) OPT/k

3. Probabilistic and recursive partitioning of metric spaces:
O(log k) OPT/k



Existence of low-density junction trees

A (weaker) bound of O(log? k log log k) OPT/k

1. Prove that there exists an approximate optimum
solution that is a forest

2. Use forest structure to show junction tree of good
density



Spanning tree embeddings

[ EIkin-Emek-Spielman-Teng '05]

Given G=(V, E) there is a probability distribution over
spanning trees of G such that for a T picked from the
distribution, for each pair uv

a dy(uv) > dg(uv)
o E[d{(uv)] < O(log? n log log n) dg(uv)

Improves previous bound of 2(1og n log log n)*/2
[Alon-Karp-Peleg-West'95]



Forest Solution

Claim: Spanning tree solution implies that there exists an
approximate solution to the buy-at-bulk problem s.t

o the edges of the solution induce a forest

o the cost of the solution is oo OPT where « is the
expected distortion bound guaranteed by spanning tree
embedding



Reformulation as a two-cost network
design problem

Different f_ difficult to deal with.
Simplify problem

each edge e has two costs
C.: fixed cost, need to pay this to use e
l.: incremental cost, to route flow of x, pay |, x

f.(x) =c, +1.X

Above model approximates original costs within factor of 2
[AZ'98, MMP'00]



Objective function

With reformulation, objective function is:

find E' C E to minimize
Yecr C(€) + Xi-id (s )

|-+ shortest path distances in G[E']



Existence of forest solution

E*C E an optimum soln, G* = G[E"]

Apply [EEST'05] to G* with edge lengths |
There exists spanning tree T of G" s.t
I:(uv) = O(log? n log log n) Iz+(uv) in expectation

therefore
C(E(T))+2; lgm(st) < c(E”) + O(log? n log log n) ¥ lex(sit;)



Forest solution to junction tree

centroid v

If k/log k terminals have Ica = v, done



Forest solution to junction tree

centroid v
O

T3

T,




Forest solution to junction tree

centroid v
O

T, IE
T2

aa [yaat

Claim: one of these junction trees has density O(log k) den(T)




Finding low-density junction trees

Closely related to single-source buy-at-bulk prob.

Single source problem:

source s, terminals t,, t,, ..., t,
demand d, from s to t,

Goal: route all pairs to minimize cost

Min-density problem for single source:

Goal: connect subset of pairs to minimize
density = cost/# of pairs connected



Single-source BatB

Single source problem:

source s, terminals t;, t, ..., t,
demand d, from s to t,

Goal: route all pairs to minimize cost

[Meyerson-Munagala-Plotkin’00] An O(log k) randomized
combinatorial approx.

[C-Khanna-Naor’01] A deterministic O(log k) approx and
integrality gap for natural LP



Min-density junction tree

junction

Similar to single-source? Assume we know junction r.

Two issues:
which pairs to connect via r?
how do we ensure that both s, and t, are connected to r?



Min-density junction tree

[CHKS'06]
Theorem: o approx for single-source via natural LP implies
an O(«a log k) approx for min-density junction tree

Using [CKN'01], O(log? k) approx for min-density junction
tree

Approach is generic and applies to other problems as well



Alg3: Open Problems

o Close gap for non-uniform: Q(log¥?= n) vs O(log* n)
« [Kortsarz-Nutov'07] improve to O(log? n) for polynomial
demands
= LP integrality gap?

o Tight bounds for embedding into spanning trees.
'[EEST'05] show O(log? n log log n) and lower bound is
Q(log n). Planar graphs?



Buy-at-Bulk with Protection

For each pair sit; send data simultaneously on two node
disjoint paths P, (primary) and Q, (backup)

Protection against equipment failures

Easier case: P, and Q, are edge disjoint

Related to Steiner network problem (survivable network
design problem)

[Jain’00, Fleischer-Jain-Williamson’04]



Buy-at-Bulk with Protection

Junction scheme?
Edge disjoint case easier

2-edge-disj paths from s, to junction and 2-edge-disj-paths from t, to
junction

junction



Buy-at-Bulk with Protection

Node disjoint case:
[ Antonakopoulos-C-Shepherd-Zhang'07]
2-junction scheme:




Buy-at-Bulk with Protection

[ACSZ'07]
2-junction-Theorem: a-approx for single-source problem
via natural LP implies O(a log? h) for multi-commodity

problem

Technical challenges

junction density proof (only one of the proofs in three can be
generalized with some work)

single-source problem not easy! O(1) for single-cable [ACSZ'07]

Open Problems: Single-source for uniform and non-uniform



Conclusion

o Buy-at-bulk network design useful in practice and led to several
new theoretical ideas

o Algorithmic ideas:
application of Bartal’s tree embedding
derandomization and alternative proof of tree embeddings

hierarchical clustering for single-source problems

cost sharing, boosted sampling

junction scheme
o Hardness of approximation:

canonical paths/girth ideas for routing problems
o Several open problems



Routing in Practice

Joint with S. Antonakopoulos and S. Fortune



Simple, flexible and scalable heuristics

o Accommodate messy and ever changing requirements
Some links may have hard capacity
Some nodes may have degree bound
Some demands may have forbidden links/nodes
Different fiber types, different protection specification
Dual homing, multicast...

o Accommodate problem instances of varying sizes

o Close to optimality
Typical network costs hundreds of million dollars
Small percentage error desired
Optimal solution for small/test instances

o Cannot rely on commercial solvers/tools



Modeling cost
Cost £, (w) of a WDM fiber on edge e

a f(wy=c* [wu] + c,*1*[wiu] +c;*1*w
o w: current load, ! : length of e, u: fiber capacity
0 ¢qs €y €5 parameters defined by equipment properties

cost

| | >
u 2u load



Optical Components
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Modeling cost
f(wy=c* [whu] +c,*1*[wiu] +c3*1*w
o [w/u] fibers over e
o One arm of ROADM connects to one end of a fiber :
¢, = 2 * cost(1-arm ROADM)
o Each OA amplifiers signals (per fiber basis), over
distance reach(OA) :
¢, = Cost(OA) / reach(OA)
o Each OT converts signal O-E or E-O (per wavelength
basis), over distance reach(OT):

¢, = cost(OT) / reach(OT)




Basic greedy algorithm

Process each demand in turn

o For each edge, calculate the marginal cost of routing
the demand through the edge

Jw +d) - f,(w)

o Calculate shortest disjoint paths using marginal costs
as weights.

o Route the demand via these paths.

Theoretical link: [Charikar-Karagiazova'05]



Improvements

Ordering of processing is critical

o No simple a priori criterion that defines an “optimal”
order.

o Best solution usually obtained by trying several
random orderings.

Iterative refinement: Process each demand again to find
shortest paths in then-current network

o Converges monotonically to a local optimum, typically
in less than 10 passes.

o Very large and/or heavily loaded instances may
require more passes.



Improvements (cont)

Calculate marginal costs using a piecewise strongly
concave pseudocost function.

0 u 2u 3u



Example

Advantage: free lightly loaded fibers for cost reduction

demands A and B

\//'
N
/ S




Handling extra constraints

Example: capacitated edges
o Primary obj: route as many demands as possible
o Secondary obj: cost minimization



Penalty heuristic

“Penalize” demands that use almost-full edges.

2 In subsequent iterations, some capacity in highly
loaded edges freed up. More demands may be routed.

COSt &




Penalty heuristiC (contd.)

o Harshness of the penalty is adaptive, depending on
the percentage of unroutable demands.

o Converges monotonically w.r.t. the number of
unroutable demands (but not cost).

o If all demands are successfully routed, may switch to
reducing cost, by additional iterative refinement and
pseudocost.



Example

o Without penalty function, many demands cannot be
routed.

o Fewer unrouted demands when red link removed,
somewhat unexpectedly.

S




Example (cont)

With penalty function, all demands routed.

Higher probability that a random demand ordering will
yield a good solution when edge is missing!

Optimal solution noticeably worse with red edge
missing, as expected.

Best solutions found by the heuristic within 1% of
respective optima.



Performance

Heuristic Optimum
Instance | Cost Unrouted | Cost Unrouted
A 5220172 0 5167850 0
B 5371217 0 5362191 0
C 10831734 0| 10133087 0
Heuristic Optimum

Instance Cost Fibers Cost Fibers

D 103525 25 102592 24
E 131237 26 131237 26
F 89623 25 89565 26
G 113759 25 113697 25
H 135871 27 135863 27




Wavelength Assignment




Design Problem

Input
2 A network
2 Demands

Output for each demand
o> Routing
o Wavelength assignment




Wavelength assignment

Demand paths sharing same fiber have distinct
wavelengths

Deploy no extra fibers
Use convertors (OT) if necessary
Min number of convertors

B | /
Fiber capacity u =2

A o Demand routes: T
AOB, BOC, COA




Heuristics

o Limited theoretical results

o Practical heuristics
Dynamic programming:
= Routing path for demand d: ¢, ¢,, ...

= C(e, A, f) : min number of conversions needed for subpath ¢,, ...
e, if e.is assigned wavelength A on fiber f

= Cle, A, f) = min{ min, Cle,,, &, g) , min .., ,Cle., A, g)+1}

Greedy approach
= On link ¢, continue with same wavelength A if possible or switch
to A’ that is feasible on the most number of subsequent links

Trade off in performance and running time



Heuristics

o Trade off in performance and running time
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Wavelength assignment

Model 1: min conversion

o Demand paths sharing same fiber have distinct
wavelengths

o Deploy no extra fibers
o Use convertors (OT) if necessary
o Min number of convertors

B | /
Fiber capacity u =2

A o Demand routes: T
AOB, BOC, COA




Wavelength assignment

Model 2: min fiber without conversion

o Each demand path assigned one wavelength from src
to dest — no conversion

o Demand paths sharing common fiber have distinct
wavelengths

o Deploy extra fibers if necessary
o Min total fibers

B /
Fiber capacity u =2

A O Demand routes:
AOB, BOC, COA




Results

Network is a line (WinklerZ)

o Optimally solvable

o f(e) fibers necessary and sufficient on every link e
a U fiber capacity

o w(e) :load on link e

a f(e)=[w(e)/ u]

Tree (ChekuriMydlarzShepherd)
2 NP hard
a4 approx for trees: 4 f(e) fibers sufficient on e



Results (cont)

Hard to approx for arbitrary topologies (AndrewsZ)

Inapprox ratio Total fiber Max fiber per edge
Routing + WA (log M )V4-e (log log M )*%e
WA (given routing) Any constant (log u )% e




Results (cont)

Hard to approx for arbitrary topologies (AndrewsZ)

Inapprox ratio Total fiber Max fiber per edge
Buy-at-bulk
ROUtIng + WA ( |Og M )1/4_8 ( |Og |Og M )1/2_8—- Congestion
WA (given routing) | Any constant (logu )*e minimization
|— Chromatic number

3SAT(5), Raz verifier



Results (cont)

Hard to approx for arbitrary topologies (AndrewsZ)

Inapprox ratio Total fiber Max fiber per edge
Routing + WA (log M )V4-e (log log M )*%e
WA (given routing) Any constant (log u )% e

Logarithmic approx for arbitrary topologies

Approx ratio Total fiber Max fiber per edge
Routing + WA O(log M) O(log M)
WA (given routing) O(logu) O(logu)




Heuristics

Greedy approach: For each demand choose a wavelength
that increases fiber count least
1. Basic greedy: demands handled in a fixed given order
2. Longest first: demands with more hops first
3. Most congested first: demands with congested routes first

Randomized assignment
o Choose a wavelength [1, u ] uniformly at random for each
demand;
a2 O(log u ) approx

Optimal solution via integer programming



Performance on 3 US backhaul networks

1 Greedy 240 =1 Greedy ]
110 1 LongestFirst ' LongestFirst
"1 MostCongestedFirst } 1 MostCongestedFirst
B Random 200 B Random .
HE [owerBound B [owerBound
80 |- } 160+ .

120+ i

200 ] | il . o mie Wl

Network A: S-year traffic

Greedy

1 . .
240-== LongestFirst : Why not randomization?
1 MostCongestedFirst
200- M Random .
B [owerBound .
160} | o Birthday paradox:
20 If load >V u, some wavelength
chosen twice with prob > >
80L i
o mh me N M UM 2 If load = u, some wavelength

chosen log u time whp.



Open issue: Model 1 vs model 2

o Two models studied in isolation
2 Which is more cost effective?

B

A O

Fiber capacity u =2j, jroutes aqong AOB, BOC, COA

/ ¢

oT

\ \

| conversions Model 2: 1 extra fiber

Model 1:




Conclusion

o Optical network design extremely complex

o Smaller pieces hard to optimize
Routing: buy-at-bulk network design
Wavelength assignment
Physical layer optimization
o Gap between theoretical knowledge and
practical implementability



