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Background and motivations

» In practical storage systems, rarely are all messages available
at a single source.

» They are distributed at different sources across the network.

» Majority of recent works on distributed storage focus on
repair performance.

» We do not have a good understanding of how index coding
works in distributed storage systems.



Centralized index coding example and notation
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Distributed example
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Contributions

» This work looks at distributed index coding.

» And studies the impact of message distribution across the
network on index coding achievable rates (and not repair
properties).



Road map

v

Brief review of existing work.

» Base example of distributed index coding and establishing an
achievable rate region.

v

Different message distribution.

» Some messages repeated.

v

Optimal message distribution?

v

(only if time allows) A simple MDS code.



Centralized index coding solution

M, Notation:
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Index coding rate region

» It has been shown in [1]! that the following rate region is achievable
for this example:

Ri+ R <1,
Ri+R3 <1,
Ri+ Ry <1,
Ry + Ry < 1.

> Resulting in sum rate Ry + R, + R3 + Ry < 2.

» The method uses the concept of virtual composite message
encoders.

= o
1[1] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasoglu, and L. Wang, “On the capacity region for index J
coding,” in IEEE Int. Symp. on Information Theory (ISIT), July 2013, pp. 962-966.



Virtual composite message encoder

Original Messages: ( M, M4) Conpedie Were
Ml € [1,2737"'72an] . nS1 4
My € [1,2,3,---,2"] Wie € [1,2,3, -, 2]

Example: Arbitrary Mapping

(M17M4) E (1,1) — W174 = 3
(M17M4) = (1,2) — W174 =2

Example: Linear Mapping

(M, My) = (= yj — Wiy = 2n51e (M, My) = Wia = My + M,

(M17M4) = (2"R1,2"R4) — W1’4 =1




Virtual composite message encoder

Original Messages:
M, € [1,2,3,---,2"4

(Mh My, Ms, M4) ‘ Composite Message:

]
My € [1,2,3,--- 2] ‘ o
M; € [1727:;7.”’2”133} ‘ W11213,4 € [1727.37...72 1,2,;,4]
My € [1,2,'%,“',2"&‘]

Example: Linear Mapping
(Mq, My, M5, My) — Wigsa = My + My + Ms + oM,

where
My,---  Wigss,a € F,, q = 27




System block diagram
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Existing theory

> Let C; be index of messages receiver j decodes (j € K;) and
Aj be its side information. Then the index coding rates for j
R(Cj|.A)) follow

> Ri< > Sy

jeg T'CKjUA;:T'NT #0

for all 7 C K \ A;. Any composite message in K; U A;
common with ; \ A; is relevant.

» Achievable rate region is given by

(Ri,Re,--,Rw) € () U R4
JELN] K, C[L:N]:jeK;



Existing theory - 2

» Constraints on composite message rates Sz come from the
unit channel capacity (but are somewhat relaxed by receivers’
side information):

Z 5j§1

T TCA;
forall j € [1: N].

» Any composite message that is fully embedded in A; does not
constrain the composite rates.

-



Example

Ki={1}, A1 ={4} = R1 < Si4,

R> < 51234

Ko = {172}7“42 = {374} —
Ri+ R <S4+ 51234,

R3 < 51234

K3 = {3,4},./43 = {1,2} —
R34+ Ry < S14+ 51234

Ky ={1,4}, A4 ={2,3} = Ri+Ri<S14+ 51234,

S14+51234<1
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Extension to distributed index coding - base example

» The key difference is that only a subset of composite

messages may be computable in the network that are available

at distributed sources.
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Ms, M,

MAC

M,
—| Receiver 1

M,
—| Receiver 3

| v

Receiver 2

My, M,

1 My, M,

Receiver 4

My, My

M,y

M,



Characterizing the rate region for this example

» The set of computable composite indices is
P = {{1}7 {2}7 {17 2}7 {3}7 {4}7 {3a 4}}
K= {1},./41 = {4} — R <51,

R> <S>
Ko ={1,2}, A, = {3,4} — ’
2 =1 b Az { } {Rl +R <5 —|—5172

]C3 = {3},./43 = {1,2} — R3 < 53

Ry <S8
Ko =11,4}, A, = {2,3} —
2= {14 A2 = {2,3) {R1+R4 <S1+S12+ 8

s



Characterizing the rate region -2
> We consider a binary erasure MAC without noise

Y=X1+X

» Effective MAC constraints on composite rates:

S51+5,.,<1
S1+512+5<15

S3+5,<1
S1+S512+5 <15

ol




Achievable rate region

> Rate region is specified by
Ri+ R <1, R1+ R2+ R3 < 1.5,
R3 + Ry <1, Ri+ Ry + Ry < 1.5.

» The same sum rate of
Ri+R+ R+ Ry <2
with
RR=R,=R3=R;4=05
is achievable as shown in the next slide.

> Despite distributed storage constraints, MAC transmissions
helped to create key “channel” composite messages.

-



Achievable Scheme

Yl - Ml + M4
Y, = (M1 & Ma) + Ms

Encoder {1 .
L T VR e R

.2y | e M0 [Encoderd JX, T

Binary
Erasure

MAC Yy = M, + M,

[V =X + X,

M,

My, My




Developed theory

> Let £; be index of messages receiver j decodes (j € ;) and
Aj be its side information. Then the index coding rates for j
R(ICj].A)) follow

2 Ri< 2. Sg

JeJ T'E€(P(K;UA)NP!):T'NT#0

forall 7 C K\ A;.

Composite messages in the power set of C; U A; that are
computable in the network (belong to P’) are relevant.



Developed theory 2

» As before achievable rate region is given by

(Rl,RQ,---,RN)G ﬂ U

JE[1:N] K;C[1:N]:jek;

R(K)|A4))



Developed theory - 3

» Constraints on composite message rates S;7 come from the
MAC capacity (but are somewhat relaxed by receivers' side
information):

» The rate of every selected composite message that is
overlapping with [C; and not fully embedded in 4; must
belong to MAC capacity region. More mathematically:

» Find a suitable subset of composite messages computable in
the network J* C P’

> such that for all j € [1: N] and for all
JCT* 3T €T :K;NT # 0 we have

d. Ss

TeT:TCA;

belong to the MAC capacity region M. 7 ’



Different message distribution.

» How does message distribution affect performance?

Source 1
My, My

Source 2
My, M;

MAC

— Receiver 1

— Receiver 2

| M, 0,

M., My

Receiver 3

Receiver 4

Ma, My

M,

M,

M,

M,




Achievable rate region
> Rate region is specified by more relaxed conditions

Ri+ Ry + Ry < 15,
Ri+R+ R <15
Ri+R <1
R<1
Ri< 1

> 25% higher same sum rate of
Ri+Ry+R3+ Ry <25

with
Ry =R, =0.25

and
RR=R;=1

is achievable as shown next.



Achievable Scheme

Y = LT(Ml) + (M2 D M3)
Y, = LT(M4) + (M2 D Mg)

Source 1
My, My

Source 2
My, My

Channel
Encoder 1

Encoder 2
{23} I

20r any suitable block erasure code.

Binary
Erasure

Yy =LT(My)+(Ms

MAC

¥V =X, + Xy

Y LT (M.

Ms)

M,

My, My



M, repeated.

» How does message repetition across the network affect performance?

» Sources can cooperate for transmission of M; to achieve higher
rates.

S 1 M
f[lllfcﬂ(i& —1 Receiver 1 !
M,
— Receiver 2
M3, My
MAC | ——
M, M,
M
— Receiver 3
Source 2 _ M,
My, My, M; —| Receiver 4

N My, M3 ( ,



Achievable rate region

Fix P(x1,x) = %

Ri+R <15 R, +R;<15,

Rz + Ry <15, Ri+R,<15
50% higher same sum rate of
Ri+Ry+Rs+ Ry <3

with
Ri=R;=05

and
Rr=R;,=1

is achievable as shown next.



Achievable scheme using non-unique decoding
Y =M ® M)+ (M @ My @ Ms)

Y =0/2— (Mi® M) = (M & M ® M) =0/1
Y=1XidXo=1—= (Mia&M)® (M &M M)=MdMSMy=1

My
Source 1 Encoder Wi =Mi& Vi [ Ghammel ] X1 =Wia | Y =020 M (R=09)
M, M, {14} Encoder 1 eceiver
X1 @ X, = My (R=1)
Receiver 2
Binary My, M,
Erasure y
MAC | B
v = X, + X, My, M,
Y =0/2 My (R=0
Receiver 3
Eicodeg) V12 = 10 O My ® M Channel | X2 = Wias - X, @ X, = M, (R=1)
Receiver 4
Encoder 2
My, M;




All messages repeated.

Source 1 A

M,

My, -, My

Receiver 2

Ms, M,
MAC  ——

[ 211, 01, )

M;
—1 Receiver 3

. M,
Receiver 4

L M,, M,

Source 2

My, -, My

R1+R2+R3+R4§2X|0g23

is achievable, which is only marginally better than previous case which
needed only 62.5% of storage.

-



Optimal (min storage - max rate) solution?

» How can we optimally use distributed storage and MAC capacity?

» All sources should be able to compute all composite messages

> Stripe each message in two parts and store each part on one source

My
M,
Receiver 1

Receiver 2

Source 1

(M, M}

Source 2

{My, -, My}po

MAC

Ms, My

\ My, My

) M,
Receiver 3

Ma, My



Achievable rate region-symmetric case

» Each half can achieve the rate as if it was centralized index
coding:
Ri, + R, <1, R, +R;, <1
Ri, +Ra, <1, R3, +Rs <1

for k=1,2.

» Moreover, due to MAC constraints, we can symmetrically
achieve

Ri+R <15, R +R3<15
Ri+ Ry <15, R3+R4<15

As shown next, Ry = R, = R3 = R, = 0.75 is achievable.



Achievable scheme

Source 1 Channel X11 =LT((M;y + My)p)
Encoder 1 | - T ‘ -
11,2
Channel X (M + My),)
Encoder2 | :

Binary
Erasure
MAC

Y=XtX

M,

Receiver 1
Receiver 2

My, My

My, My

Receiver 3

My, My

M; (R=10.75)

M (R =0.75

M; (R=0.75)

M, (R =0.75)



Take-home messages

» The distribution of messages across the network can greatly affect
index coding solutions and rates.

» Striping seems to be the optimal thing to do in symmetric
networks, but the effect of heterogeneous conditions is unknown.

» Research is needed to better understand the interactions between
storage, repair bandwidth, data availability, and index coding
transmission rates.

> Research is needed to develop practical scheduling and high rate
transmission schemes for distributed index coding.

-






Simple (3,2) MDS code

Source 1 Recei M,
{M,+, My} eceiver 1
. M,
Receiver 2
MDS coded source
Ms, M,
My, = af i Mipn + of poMipe +
afi.pl‘”' pl T Qipz—”\ p2
I — MAC —
c = 1,2
Mips, = 2}:1 B o1 Miipt + B85 pa M, o
My, M,
G 1,2
. My
Receiver 3
Source 2
{My, -+, Ma}po




Achievable rate region

Ri+R, <181, Ri+R3<1381
Ri+Ry, <181, R;3+R;<1381

» Symmetric rates
Ri =Ry=R; =R, =0.905

are achievable.



