Network Equivalence in the Presence of Active Adversaries

Oliver Kosut

joint work with Jörg Kliewer

December 17, 2015

Networks with Active Adversaries

Networks with Active Adversaries

Two kinds of unknowns:

- Adversary's location changes slowly
- Adversary's transmission changes quickly

Joint Compound Channel / Arbitrarily Varying Channel

Network modeled by:

$$p(y_1, y_2, \ldots, y_m \mid x_1, x_2, \ldots, x_m, s_{\text{CC}}, s_{\text{AVC}})$$

- s_{CC} is a compound channel-type state
 fixed across coding block
- s_{AVC} is an arbitrarily varying channel-type state
 arbitrary across coding block

Joint Compound Channel / Arbitrarily Varying Channel

Network modeled by:

$$p(y_1, y_2, \ldots, y_m \mid x_1, x_2, \ldots, x_m, s_{\text{CC}}, s_{\text{AVC}})$$

s_{CC} is a compound channel-type state
 fixed across coding block

s_{AVC} is an arbitrarily varying channel-type state
 arbitrary across coding block

Difficulties:

- Multiple sources
- Complex noisy network
- Adversarial choices

Joint Compound Channel / Arbitrarily Varying Channel

Network modeled by:

$$p(y_1, y_2, \ldots, y_m \mid x_1, x_2, \ldots, x_m, s_{\text{CC}}, s_{\text{AVC}})$$

s_{CC} is a compound channel-type state
 fixed across coding block

s_{AVC} is an arbitrarily varying channel-type state
 arbitrary across coding block

Difficulties:

- Multiple sources
- Complex noisy network

Network Equivalence

Koetter-Effros-Médard (2011):

Each channel replaced by a bit-pipe with the same capacity

- Networks are equivalent in that the capacity regions are the same, for arbitrary multicast requirements
- Separation between channel coding and network coding

Most related work on network equivalence

Koetter-Effros-Médard part II — multiterminal channels

- Dikaliotis-Yao-Ho-Effros-Kliewer (2012) eavesdropper
- Bakshi-Effros-Ho (2011) active adversary replaces the output of an unknown subset of channels

Outline

Network equivalence results for compound channels

 Network equivalence results for arbitrarily varying channels

Network equivalence results for joint CC/AVC model

Compound Channel Model

Point-to-point compound channel, independent of the rest of the network, with independent state

Compound Channel Model

Point-to-point compound channel, independent of the rest of the network, with independent state

Point-to-Point Compound Channel

$$S^{n} = (s, s, \dots, s)$$
Encoder X^{n} $p(y|x, s)$ Y^{n} Decoder

Point-to-Point Compound Channel

$$S^{n} = (s, s, \dots, s)$$

$$\downarrow$$
Encoder
$$X^{n} \rightarrow p(y|x, s) \xrightarrow{Y^{n}} Decoder$$

Capacity = $\max_{p(x)} \min_{s} I(X; Y|S = s)$

Point-to-Point Compound Channel

Capacity = $\max_{p(x)} \min_{s} I(X; Y|S = s)$ Feedback capacity = $\min_{s} \max_{p(x)} I(X; Y|S = s)$

Equivalence for Compound Channels

Theorem (KK-15)

Point-to-point compound channel between node 1 and 2 is equivalent to bit-pipe of capacity

 $\begin{array}{l} \min_{s} \max_{p(x)} I(X;Y|S=s) & \textit{if the network allows feedback,} \\ \max_{p(x)} \min_{s} I(X;Y|S=s) & \textit{otherwise.} \end{array}$

Equivalence for Compound Channels

Theorem (KK-15)

Point-to-point compound channel between node 1 and 2 is equivalent to bit-pipe of capacity

 $\begin{array}{ll} \min_{s} \max_{p(x)} I(X;Y|S=s) & \textit{if the network allows feedback,} \\ \max_{p(x)} \min_{s} I(X;Y|S=s) & \textit{otherwise.} \end{array}$

Arbitrarily Varying Channel Model

Point-to-point AVC, independent of the rest of the network, with independent state

Arbitrarily Varying Channel Model

Point-to-point AVC, independent of the rest of the network, with independent state

$$S^{n} = (s_{1}, s_{2}, \dots, s_{n})$$

$$\downarrow$$
Encoder
$$X^{n} \rightarrow p(y|x, s) \xrightarrow{Y^{n}} \text{Decoder}$$

$$S^{n} = (s_{1}, s_{2}, \dots, s_{n})$$
Encoder X^{n} $p(y|x,s)$ Y^{n} Decoder

Random code capacity C_r is the capacity when the encoder/decoder have access to shared randomness

 $\overline{C_r} = \max_{p(x)} \min_{p(s)} I(X; Y)$

$$S^{n} = (s_{1}, s_{2}, \dots, s_{n})$$
Encoder X^{n} $p(y|x,s)$ Y^{n} Decoder

Random code capacity C_r is the capacity when the encoder/decoder have access to shared randomness

$$C_r = \max_{p(x)} \min_{p(s)} I(X;Y)$$

• An AVC is symmetrizable if there exists p(s|x) such that

$$\sum_{s} p(y|x,s)p(s|x')$$
 is symmetric in x, x

$$S^{n} = (s_{1}, s_{2}, \dots, s_{n})$$
Encoder X^{n} $p(y|x,s)$ Y^{n} Decoder

Random code capacity C_r is the capacity when the encoder/decoder have access to shared randomness

$$C_r = \max_{p(x)} \min_{p(s)} I(X;Y)$$

■ An AVC is symmetrizable if there exists p(s|x) such that $\sum_{s} p(y|x,s)p(s|x')$ is symmetric in x, x'

Csiszár-Narayan (1988):

AVC capacity = $\begin{cases} 0 & \text{if channel is symmetrizable} \\ C_r & \text{otherwise} \end{cases}$

Towards Network Equivalence for AVC

Towards Network Equivalence for AVC

Easy to show bit-pipe C_r is an outer bounding model

Towards Network Equivalence for AVC

Easy to show bit-pipe C_r is an outer bounding model

Bit-pipe C_r is an inner bounding model if common randomness can be established between transmitter and receiver at any positive rate

When can common randomness be established?

parallel path from transmitter to receiver of any positive rate

When can common randomness be established?

parallel path from transmitter to receiver of any positive rate
 reverse path from receiver to transmitter of any positive rate

When can common randomness be established?

- parallel path from transmitter to receiver of any positive rate
- reverse path from receiver to transmitter of any positive rate
- paths of any positive rate from a node u to both transmitter and receiver

Equivalence for Arbitrary Varying Channels

Theorem (KK-15)

AVC from node 1 to 2 is equivalent to bit-pipe of capacity C_r if (i) the channel is non-symmetrizable, or

(ii) there exists a node u that can send information at any positive rate to both nodes 1 and 2.

Equivalence for Arbitrary Varying Channels

Theorem (KK-15)

AVC from node 1 to 2 is equivalent to bit-pipe of capacity C_r if

- (i) the channel is non-symmetrizable, or
- (ii) there exists a node u that can send information at any positive rate to both nodes 1 and 2.

Joint AVC/CC Model

- Each channel given by p(y|x,s)
- Adversary chooses k channels (CC-type state), and controls state s for each of those channels (AVC-type state)
- If channel is untouched by adversary, assume null state s_0

Simple Outer Bound

For each channel, two capacities:

Ordinary capacity, with null state:

 $\overline{C} = \max_{p(x)} I(X; Y|S = s_0)$

AVC random coding capacity:

 $C_r = \max_{p(x)} \min_{p(s)} I(X;Y)$

Simple Outer Bound

For each channel, two capacities:

Ordinary capacity, with null state:

$$C = \max_{p(x)} I(X; Y|S = s_0)$$

AVC random coding capacity:

$$C_r = \max_{p(x)} \min_{p(s)} I(X;Y)$$

Given a set of channels \mathcal{Z} , let $\mathcal{N}_{\mathcal{Z}}$ be the noiseless network where:

- **all** channels in \mathcal{Z}^c are replaced by bit-pipe of capacity *C*
- all channels in Z are replaced by bit-pipe of capacity C_r

Simple Outer Bound

For each channel, two capacities:

Ordinary capacity, with null state:

$$C = \max_{p(x)} I(X; Y|S = s_0)$$

AVC random coding capacity:

$$C_r = \max_{p(x)} \min_{p(s)} I(X;Y)$$

Given a set of channels \mathcal{Z} , let $\mathcal{N}_{\mathcal{Z}}$ be the noiseless network where:

- **all channels in** Z^c are replaced by bit-pipe of capacity *C*
- all channels in Z are replaced by bit-pipe of capacity C_r

Theorem

For all \mathcal{Z} with $|\mathcal{Z}| \leq k$, $\mathscr{R}(\mathcal{N}) \subseteq \mathscr{R}(\mathcal{N}_{\mathcal{Z}})$

Full Connectivitiy

Assume any pair of nodes can communicate at some positive rate

Full Connectivitiy

Assume any pair of nodes can communicate at some positive rate

Theorem

Assuming full connectivity,

$$\mathscr{R}(\mathcal{N}) = \bigcap_{\mathcal{Z}: \ |\mathcal{Z}| \leq k} \mathscr{R}(\mathcal{N}_{\mathcal{Z}})$$

Maintain global list \mathcal{Z} of suspected adversarial channels

Maintain global list \mathcal{Z} of suspected adversarial channels

- Maintain global list \mathcal{Z} of suspected adversarial channels
- If M sent in noiseless network, encode M on noisy channel, assuming null state

- Maintain global list Z of suspected adversarial channels
- If M sent in noiseless network, encode M on noisy channel, assuming null state
- Transmit hash $\psi(M)$ on parallel, low-rate path

- Maintain global list \mathcal{Z} of suspected adversarial channels
- If M sent in noiseless network, encode M on noisy channel, assuming null state
- Transmit hash $\psi(M)$ on parallel, low-rate path
- If mismatch, drop to AVC code at rate C_r, and add channel (*i*, *j*) to global list Z

Edge Removal

The edge removal property does **NOT** hold with adversarial channels:

Deleting bit-pipe δ significantly effects capacity region

Example Network Without Full Connectivity

Conclusions

Network equivalence results for:

- Compound channels
- Arbitrarily varying channels
- Joint CC/AVC model

All results become simpler under full connectivity assumption

Conclusions

Network equivalence results for:

- Compound channels
- Arbitrarily varying channels
- Joint CC/AVC model

All results become simpler under full connectivity assumption

Open problems:

What if full connectivity assumption does not hold?

Joint CC/AVC model beyond network of point-to-point links