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Joint Compound Channel / Arbitrarily Varying Channel
Network modeled by:
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sCC is a compound channel-type state
— fixed across coding block
sAVC is an arbitrarily varying channel-type state
— arbitrary across coding block

Difficulties:
Multiple sources
Complex noisy network
Adversarial choices
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Joint Compound Channel / Arbitrarily Varying Channel
Network modeled by:

p

✓
�1,�2, . . . ,�m

����x1,x2, . . . ,xm , sCC, sAVC

◆

sCC is a compound channel-type state
— fixed across coding block
sAVC is an arbitrarily varying channel-type state
— arbitrary across coding block

Difficulties:
Multiple sources
Complex noisy network
Adversarial choices (= Eliminate this!



Network Equivalence

Koetter-Effros-Médard (2011):
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Each channel replaced by a bit-pipe with the same capacity
Networks are equivalent in that the capacity regions are
the same, for arbitrary multicast requirements
Separation between channel coding and network coding



Most related work on network equivalence

Koetter-Effros-Médard part II — multiterminal channels

Dikaliotis-Yao-Ho-Effros-Kliewer (2012) — eavesdropper

Bakshi-Effros-Ho (2011) — active adversary replaces the
output of an unknown subset of channels



Outline

Network equivalence results for compound channels

Network equivalence results for arbitrarily varying
channels

Network equivalence results for joint CC/AVC model



Compound Channel Model

1 2CC

Point-to-point compound channel, independent of the rest
of the network, with independent state
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Equivalence for Compound Channels

1 2CC () 1 2

No separation!

Theorem (KK-15)

Point-to-point compound channel between node 1 and 2 is

equivalent to bit-pipe of capacity
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Arbitrarily Varying Channel Model

1 2AVC

Point-to-point AVC, independent of the rest of the network,
with independent state
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Point-to-Point Arbitrarily Varying Channel

Random code capacity Cr is the capacity when the
encoder/decoder have access to shared randomness

Cr = max

p (x )
min

p (s )
I (X ;Y )

An AVC is symmetrizable if there exists p (s|x ) such that
X

s
p (�|x , s )p (s|x 0) is symmetric in x ,x 0

Csiszár-Narayan (1988):

AVC capacity =
8><>:
0 if channel is symmetrizable
Cr otherwise
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Towards Network Equivalence for AVC

1 2AVC 1 2

Easy to show bit-pipe Cr is an outer bounding model

Bit-pipe Cr is an inner bounding model if common
randomness can be established between transmitter and
receiver at any positive rate
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When can common randomness be established?

1 2AVC

parallel path from transmitter to receiver of any positive rate

reverse path from receiver to transmitter of any positive rate
paths of any positive rate from a node u to both transmitter
and receiver



When can common randomness be established?

1 2AVC

parallel path from transmitter to receiver of any positive rate
reverse path from receiver to transmitter of any positive rate

paths of any positive rate from a node u to both transmitter
and receiver



When can common randomness be established?
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u

parallel path from transmitter to receiver of any positive rate
reverse path from receiver to transmitter of any positive rate
paths of any positive rate from a node u to both transmitter
and receiver



Equivalence for Arbitrary Varying Channels

1 2AVC () 1 2

No separation!

Theorem (KK-15)

AVC from node 1 to 2 is equivalent to bit-pipe of capacity Cr if

(i) the channel is non-symmetrizable, or

(ii) there exists a node u that can send information at any

positive rate to both nodes 1 and 2.
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1 2AVC () 1 2

No separation!

Theorem (KK-15)
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Joint AVC/CC Model

Each channel given by p (�|x , s )
Adversary chooses k channels (CC-type state), and
controls state s for each of those channels (AVC-type state)
If channel is untouched by adversary, assume null state s0



Simple Outer Bound
For each channel, two capacities:

Ordinary capacity, with null state:

C = max

p (x )
I (X ;Y |S = s0)

AVC random coding capacity:

Cr = max

p (x )
min

p (s )
I (X ;Y )

Given a set of channels Z, let NZ be the noiseless network where:

all channels in Zc are replaced by bit-pipe of capacity C

all channels in Z are replaced by bit-pipe of capacity Cr

Theorem
For all Z with |Z|  k, R (N ) ✓ R (NZ )
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Full Connectivitiy
Assume any pair of nodes can communicate at some positive rate

Theorem
Assuming full connectivity,

R (N ) =
\

Z: |Z|k
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Achievability Proof

Maintain global list Z of suspected adversarial channels

If M sent in noiseless network, encode M on noisy
channel, assuming null state
Transmit hash � (M ) on parallel, low-rate path
If mismatch, drop to AVC code at rate Cr ,
and add channel (i, j ) to global list Z
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Achievability Proof

Maintain global list Z of suspected adversarial channels
If M sent in noiseless network, encode M on noisy
channel, assuming null state
Transmit hash � (M ) on parallel, low-rate path
If mismatch, drop to AVC code at rate Cr ,
and add channel (i, j ) to global list Z



Edge Removal

The edge removal property does NOT hold with adversarial channels:

1 2AVC

Deleting bit-pipe � significantly effects capacity region



Example Network Without Full Connectivity

Capacity region consists of pairs
(R1,R2) such that

R2  �

R1 � +min

(
Cr ,

� � R2

M + 1

)

This region cannot occur with
any fixed-capacity bit-pipe



Conclusions

Network equivalence results for:
Compound channels
Arbitrarily varying channels
Joint CC/AVC model

All results become simpler under full connectivity assumption

Open problems:
What if full connectivity assumption does not hold?

Joint CC/AVC model beyond network of point-to-point links
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