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Overview

e How distributed file systems work
® Three repair metrics
e Part 1: Regenerating Codes

e Part 2: Locally Repairable Codes

e Part 3: Availability of Codes
e Open problems
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Real systems that use distributed storage codes

e Windows Azure, (Cheng et al. USENIX 2012) (LRC Codes)
e Ships in Azure, Microsoft Server 2012 R2 and Windows 8.1
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Real systems that use distributed storage codes

e Windows Azure, (Cheng et al. USENIX 2012) (LRC Codes)
e Ships in Azure, Microsoft Server 2012 R2 and Windows 8.1
e CORE (PPC Li et al. MSST 2013) (Regenerating EMSR Code)

e NCCloud (Hu et al. USENIXFAST 2012) (Regenerating Functional
MSR)

e ClusterDFS (Pamies Juarez et al.) (SelfRepairing Codes)
e StorageCore (Esmaili et al.) (over Hadoop HDFS)
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Real systems that use distributed storage codes

e Windows Azure, (Cheng et al. USENIX 2012) (LRC Codes)
e Ships in Azure, Microsoft Server 2012 R2 and Windows 8.1
e CORE (PPC Li et al. MSST 2013) (Regenerating EMSR Code)

e NCCloud (Hu et al. USENIXFAST 2012) (Regenerating Functional
MSR)

e ClusterDFS (Pamies Juarez et al.) (SelfRepairing Codes)

e StorageCore (Esmaili et al.) (over Hadoop HDFS)
e HACFS (Xia, Saxena, Blaum) (IBM) FAST 2015

e HDFS Xorbas (Sathiamoorthy et al. VLDB 2013 ) (over Hadoop HDFS)
(LRC code on Facebook clusters)

e Facebook F4 uses local parities in production [OSDI 2014]
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Coded hadoop
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Coded hadoop
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Code repair
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Three repair metrics of interest

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

1. The number of bits read from disks during single node repairs
(Disk 10)

3. The number of nodes accessed to repair a single node failure
(Locality)
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Three repair metrics of interest

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk 1O)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known for seme-cases—Almost all cases

Generaleconstructionsopen—|Tamo-Barg!]
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Code repair bandwidth
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Functional repair: 1’ # 1
(but MDS distance maintained)

Exact repair: 1'=1



Repair Bandwidth Tradeoff Region
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Exact repair region?
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Statusin 2011

0.3

Storage per node ¢

=
[
o

0.2

n=10,k=5, d=n-1

i | i i

| i I
0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

bandwidth to repair one node 3 d

24



Status in 2012

n=10,k=5, d=n-1

0.3 Code constructions

by:
Rashmi,Shah,Kumar
Suh,Ramchandran
El Rouayheb, Shum,
Oggier,Datta
Silberstein, Viswanath
etal.
Cadambe,Maleki,
Jafar

Le Scouarnec et al.
Papailiopoulos, Wu,
Dimakis

Wang, Tamo, Bruck
Tamo, Barg
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Status in 2013

n=10,k=5, d=n-1
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Provable gap from CutSet Region.
(Chao Tian, ISIT 2013)

OP1:Exact Repair Region
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Status in 2014

n=10,k=5, d=n-1
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Storage per node o

Provable gap from CutSet Region.
(Chao Tian, ISIT 2013)

OP1:Exact Repair Region
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Taking a step back

e Finding exact regenerating codes is still an open
problem in coding theory

e \What can we do to make progress ?
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Taking a step back

e Finding exact regenerating codes is still an open
problem in coding theory

e \What can we do to make progress ?

or change the question
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Changing the question:
Locally Repairable Codes



Three repair metrics of interest

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was just disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk 1O)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known and used!
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Minimum Distance

*The distance of a code d is the minimum number of erasures after
which data is lost.

*Reed-Solomon (10,14) (n=14, k=10). d=5
*R. Singleton (1964) showed a bound on the best distance possible:

d<n-—k+1

*Reed-Solomon codes achieve the Singleton bound (hence called MDS)
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Locality of a code

« A code symbol has locality rif it is a function of r other codeword
symbols.

« A systematic code has message locality r if all its systematic symbols
have locality r

« A code has all-symbol locality r if all its symbols have localityr.
* In an MDS code, all symbols have locality at most r <= k

: Any MDS code must have trivial locality r=k for every
symbol.
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Example: code with message locality 5

x1

X2

All k=10 message blocks can be recovered by reading r=5 other

blocks.

A single parity block failure requires still 10 reads.

Best distance possible for a code with locality r?



Locality-distance tradeoft

Codes with all-symbol locality r can have distance at most:

k
d<n—k—[—]+2

r

*Shown by Gopalan et al. for scalar linear codes (Allerton 2012)
*Papailiopoulos et al. information theoretically (ISIT 2012)
r=k (trivial locality) gives Singleton Bound.

*Any non-trivial locality will hurt the fault tolerance of the storage
system

*Pyramid codes (Huang et al) achieve this bound for message-locality
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All-symbol locality

1 2 3|4 ) 6 V4 8 10
CIN\CO\ C3|C o
X1 X2

RS

X3

The coefficients need to make the local forks in general position compared to

the global parities.

Random works whp in exponentially large field. Checking requires exponential

time.

OP2: General Explicit LRCs that are maximally recoverable (MR) are open.
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Three repair metrics of interest

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was just disproved. [ISIT13]
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Three repair metrics of interest

1. Number of bits communicated in the network during single node

2. The number of bits read from disks during single node repairs
(D

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known and used!
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Three repair metrics of interest

. Number of bits communicated in the network during single node

2. The number of bits read from disks during single node repairs

(

3. The number of nodes accessed to repair a single node failure
(L




Dealing with Hot data

Codes used for cold data, i.e. data not read very frequently
(Data Analytics clusters, Huge text file logs, Offline queries).
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Dealing with Hot data

Codes used for cold data, i.e. data not read very frequently
(Data Analytics clusters, Huge text file logs, Offline queries).

Warm and Hot data (Haystack for photo storage, Video caching and

delivery, analytics in interactive time, adaptive training of big machine
learning models)
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Dealing with Hot data

Codes used for cold data, i.e. data not read very frequently
(Data Analytics clusters, Huge text file logs, Offline queries).

Warm and Hot data (Haystack for photo storage, Video caching and

delivery, analytics in interactive time, adaptive training of big machine
learning models)

Multiple jobs or threads concurrently reading the same data blocks.
Some disks or servers become hot- use coding to relieve this.

Provide similar performance as replication with smaller cost.
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Code Locality r, Code Availability t

« A symbol has locality r if it is a function of r other codeword
symbols.

« A code has all-symbol locality r if all its symbols have locality r.

« A symbol has availability t if it can be read in parallel by t+1 disjoint
groups of symbols.

« These t reads have locality r if they involve up to r symbols each.
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Example of Locality r and availability t for

symbol 1 [
1112 ([31(]41]|5]| |6|[|7]|8|9]||10|RS )|p1||p2||p3|]| ps
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Example of Locality r and availability t for

symbol 1 [
2113 (|4(|5] |6]||7]||8]||9]||10|RS >/pl||p2||p3]||ps

Want to read
Block 1
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Example of Locality r and availability t for

symbol 1
. 6 (|7 (|89 10 |RS p1 || p2 || p3 p4
“\’\ o t

el
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Want to read
Block 1 ’
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Example of Locality r and availability t for

symbol 1 [
. 6 (|7 (|89 10 |RS p1 || p2 || p3 p4

Want to read
Block 1
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message availability 2 (=2 parallel reads for a
block)

X2

« Therefore Block 1 can be read by 1 systematic read + 2 repair
reads simultaneously

« Block 1 has availability t=2 with groups of locality r1=5 and r2= 2
* Notice also that the group (2,3,4,5,6,7,8,9,10, p1) of locality r=10
can be used to recover 1 (but blocks all others, so not used)
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Example: 3 replication

2 (13 (|45 [6||7]8]]9]]10

2 (13 (|45 (6| 7]|8]9]|10

1112 ([3([|4]|5| |6]||7(8]9]]|10

« Each symbol can be read in parallel t+1 =3 times.

« Distance d=3. Rate= 1/3.

« Availability t=2. Locality of these reads r=1.

» |f you want to increase availability, rate goes to zero like 1/ (t+1)

« Can we get scaling availability with non-vanishing rate?



Our results

We construct codes with scaling availability and small locality.
For any high rate. With near-MDS distance.

« Polynomial Availability (using Combinatorial designs):
t= n1/3

r=n1/3 -&

« Fundamental Bounds: For a given locality r and availability t
requirements, what is the best distance possible?

* We obtain some bounds — Sometimes tight.



Related work

» Locally decodable codes
(LDCs imply linear availability, t =cn )

« Batch Codes [Ishai, Kushilevitz, Ostrovsky, Sahai STOC'04].
Very similar parallel reads requirement.

Not good distance.

In fact our results imply the first batch codes with near-MDS distance.



Conclusions and Open Problems
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Which repair metric to optimize?

e Repair BW, All-Symbol Locality, Message-Locality, Fault tolerance, A
combination of all?

e Depends on type of storage cluster
(Cloud, Analytics, Photo Storage, Archival, Hot vs Cold data)
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Seven open problems

Repair Bandwidth:

e 1. Exactrepair region ?

e 2. Practical E-MSR codes for high rates ?

e 3. Better Repair for existing codes (EvenOdd, RDP, Reed-Solomon) ?
Locality:

e 4 Explicit LRCs with Maximum recoverability?

Availability:

e 5 Distance —availability tradeoff ?

e 6. Practical explicit codes ?

e 7. Approximating GLRC/Index Coding sum rate in polylog factor ?



Coding for Storage wiki

[[wiki:definitions:repair_problem]]

Trace: » repair_problem

@ Show pagesource [_] Old revisions

Navigation

Homepage
Papers
Authors
Codes
Software
Definitions
Open Problems
Conferences
Guidelines
Playground
Syntax

@ itsociety

Search

DisTRIBUTED STORAGE Wik1

Recent changes @, Index §J Login

The Repair Problem

Consider the very simple (n=3,k=2) binary MDS code shown, which is very simply one disk storing the
parity of the others

Clearly, this code has the property it can tolerate any single node failure. This means that even after one
node fails, a data collector (shown as a laptop) can communicate the information from the remaining two
nodes and reconstruct the file. This is shown here:

1GB 1GB
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Distance vs. Locality-Availability trade-off

e For (r, t)-Information local codes*:

_k_




Distance vs. Locality-Availability trade-off

e For (r, t)-Information local codes*:

Kt

*The dirty details:

 We can only prove this for scalar linear codes.

* Only one parity symbol per repair group is assumed.

 For some cases we can achieve this using combinatorial designs.
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code we implemented in HDFS

1 2 3 || 4 8 10
CIN\CO\ C3|C o
X1 X2

RS

Single block failures can be repaired by accessing 5 blocks. (vs 10)

Stores 16 blocks

1.6x Storage overhead vs 1.4x in HDFS RAID.

Implemented this in Hadoop (system available on github/madiator)

X3

67




Java implementation

public void encode(int[] message, int[] parity) {
assert(message.length == stripeSize &% parity.length == paritySizeRS+paritySizeSR(C);

for (int 1 = @; 1 < paritySizeRS; i++) {
dataBuff[i] = 0;

}

for (int 1 = @; 1 < stripeSize; i++) {
dataBuff[i + paritySizeRS] = message[i];

}

GF.remainder(dataBuff, generatingPolynomial);

for (int 1 = @; 1 < paritySizeRS; i++) {
parity[paritySizeSRC+1i] = dataBuff[i];

for (int 1 = @; 1 < stripeSize; i++) {
dataBuff[i + paritySizeRS] = message[i];
}
for (int 1 = @; 1 < paritySizeSRC; i++) {
for (int f = @; f < simpleParityDegree; f++) {
parity[i] = GF.add(dataBuff[i*simpleParityDegree+f], parity[i]);
}
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Some experiments

mm——=NameNode 'ip-10-168-201-226.us-west-1l.compute.internal:54310'

Started:
Version:
Compiled:
Upgrades:

Wed Jan 11 23:49:49 UTC 2012
usc3xor, r

Wed Jan 11 20:12:05 UTC 2012 by root
There are no upgrades in progress.

Browse the filesystem

Namenode Logs

Cluster Summary

276 files and directories, 1621 blocks = 1897 total. Heap Size is 36.37 MB / 966.69 MB (3%). Commited Heap: 58.69 MB. Init Heap: 16 MB.

Non Heap Memory Size is 24.91 MB / 118 MB (21%). Commited Non Heap: 37.5 MB.

WARNING : There are 14 missing blocks. Please check the log or run fsck.

Configured Capacity 5.3TB
DFS Used 100.07 GB
Non DFS Used 284.13 GB
DFS Remaining 4937TB
DFS Used% 1.84 %
DFS Remaining% 92.93 %
DataNodes usages Min % Median % Max %  stdev %
1.5% 1.85% 215% 0.15%
Number of Under-Replicated Blocks 0
DataNode Health:
I
||| _Live Nodes 37 |
|| In Service 37
I Decommission: Completed 0
I Decommission: In Progress 0
||| Dead Nodes 13
I Excluded | o]
I Decommission: Completed | 0|
L Decommission: Not Completed | O |
Not Excluded 13
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Some experiments

*100 machines on Amazon ec?

50 machines running HDFS RAID (facebook version, (14,10) Reed
Solomon code)

*50 running our LRC code
*50 files uploaded on system, 640MB per file

*Killing nodes and measuring network traffic, disk 10, CPU, etc during
node repairs.
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Repair Network traffic

Networkln
18
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CPU

EPUUtiIization
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Disk IO

35
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15

HDFS Bytes Read in GB

10

HDFS Bytes Read during Recovery from datanode loss

m

Facebook HDFS RAID (RS code) \
3 (47)

Xorbas HDFS (LRC code)
Events - Falled Datanodes (Lost BIocks)
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what we observe

New storage code reduces bytes read by roughly 2.6x

Network bandwidth reduced by approximately 2x

We use 14% more storage. Similar CPU.

In several cases 30-40% faster repairs.

Provides four more zeros of data availability compared to replication

Gains can be much more significant if larger codes are used (i.e. for
archival storage systems).

In some cases might be better to save storage, reduce repair
bandwidth but lose in locality
(PiggyBack codes: Rashmi et al. USENIX HotStorage 2013) 74



