
Abstractions For

Software-De!ned Networks

Nate Foster

Cornell

Jen Rexford & David Walker

Princeton

Software-De!ned Networking

The Good

• Logically-centralized architecture

• Direct control over the network

Images by Billy Perkins

Software-De!ned Networking

The Good

• Logically-centralized architecture

• Direct control over the network

Images by Billy Perkins

The Bad

• Low-level programming interfaces

• Functionality derived from hardware

Software-De!ned Networking

The Good

• Logically-centralized architecture

• Direct control over the network

Images by Billy Perkins

The Bad

• Low-level programming interfaces

• Functionality derived from hardware

The Ugly

• Program pieces don’t compose

• Many distributed systems challenges

SDN Basics

• Architecture

• Programming model

Network-Wide Abstractions

• Global network view

• Network updates

Modularity

• Composing programs

• Declarative policies and queries

Vision

• Challenges

• Opportunities

This talk: Outline

SDN Basics

Network-Wide
Abstractions

Global
Con!g

Packet
Queue

Update

〈C,Q〉
u

−→ 〈C ′, Q′〉

Network Updates, Formally

Global
Con!g

Packet
Queue

Update

〈C,Q〉
u

−→ 〈C ′, Q′〉

Theorem

An update u from C1 to C2 is per-packet consistent if and

only if it preserves all properties satis!ed by C1 and C2.

Network Updates, Formally

Global
Con!g

Packet
Queue

Update

〈C,Q〉
u

−→ 〈C ′, Q′〉

Theorem

An update u from C1 to C2 is per-packet consistent if and

only if it preserves all properties satis!ed by C1 and C2.

Network Updates, Formally

Modularity

Frenetic

Network Programming Language
• Streaming functional language—no events!

• Declarative semantics

• Separates reads (queries) from writes (policy)

Compiler and Run-time System
• Translates high-level programs to switches
• Automatically manages low-level resources

[ICFP ’11, POPL ’12]

Frenetic: A Network Programming Language

Nate Foster

Cornell University

Rob Harrison

Princeton University

Michael J. Freedman

Princeton University

Christopher Monsanto

Princeton University

Jennifer Rexford

Princeton University

Alec Story

Cornell University

David Walker

Princeton University

Abstract

Modern networks provide a variety of interrelated services includ-
ing routing, traffic monitoring, load balancing, and access control.
Unfortunately, the languages used to program today’s networks
lack modern features—they are usually defined at the low level of
abstraction supplied by the underlying hardware and they fail to
provide even rudimentary support for modular programming. As a
result, network programs tend to be complicated, error-prone, and
difficult to maintain.

This paper presents Frenetic, a high-level language for program-
ming distributed collections of network switches. Frenetic provides
a declarative query language for classifying and aggregating net-
work traffic as well as a functional reactive combinator library
for describing high-level packet-forwarding policies. Unlike prior
work in this domain, these constructs are—by design—fully com-
positional, which facilitates modular reasoning and enables code
reuse. This important property is enabled by Frenetic’s novel run-
time system which manages all of the details related to installing,
uninstalling, and querying low-level packet-processing rules on
physical switches.

Overall, this paper makes three main contributions: (1) We an-
alyze the state-of-the art in languages for programming networks
and identify the key limitations; (2) We present a language design
that addresses these limitations, using a series of examples to moti-
vate and validate our choices; (3) We describe an implementation of
the language and evaluate its performance on several benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design

Keywords Network programming languages, domain-specific
languages, functional reactive programming, OpenFlow

1. Introduction

Today’s networks consist of hardware and software components
that are closed and proprietary. The difficulty of changing these
components has had a chilling effect on innovation, and forced
network administrators to express policies through complicated and
frustratingly brittle interfaces. As discussed in recent a New York

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

Times article [30], the rise of data centers and cloud computing
have brought these problems into sharp relief and led a number
of networks researchers to reconsider the fundamental assumptions
that underpin today’s network architectures.

In particular, significant momentum has gathered behind Open-
Flow, a new platform that opens up the software that controls the
network while also allowing packets to be processed using fast,
commodity switching hardware [31]. OpenFlow defines a standard
interface for installing flexible packet-forwarding rules on physical
network switches using a programmable controller that runs sep-
arately on a stock machine. The most well-known controller plat-
form is NOX [20], though there are several others [1, 8, 25, 39].
OpenFlow is supported by a number of commercial Ethernet switch
vendors, and has been deployed in several campus and backbone
networks. Using OpenFlow, researchers have already created a va-
riety of controller applications that introduce new network func-
tionality, like flexible access control [9, 33], Web server load bal-
ancing [21, 40], energy-efficient networking [22], and seamless
virtual-machine migration [18].

Unfortunately, while OpenFlow and NOX now make it possible
to implement exciting new network services, they do not make it
easy. OpenFlow programmers must constantly grapple with several
difficult challenges.

First, networks often perform multiple tasks, like routing, access
control, and traffic monitoring. Unfortunately, decoupling these
tasks from each other and implementing them independently in
separate modules is effectively impossible, since packet-handling
rules (un)installed by one module often interfere with overlapping
rules (un)installed by other modules.

Second, the OpenFlow/NOX interface is defined at a very low
level of abstraction. For example, the OpenFlow rule algebra di-
rectly reflects the capabilities of the switch hardware (e.g., bit pat-
terns and integer priorities). Simple high-level concepts such as set
difference require multiple rules and priorities to implement cor-
rectly and more powerful “wildcard” rules are a limited hardware
resource that programmers must manage by hand.

Third, controller programs only receive events for packets the
switches do not know how to handle. Code that installs a forward-
ing rule might prevent another, different event-driven call-back
from being triggered. As a result, writing programs for Open-
Flow/NOX quickly becomes a difficult exercise in two-tiered
programming—programmers must simultaneously reason about
the packets that will processed on switches and those that will be
processed on the controller.

Fourth, because a network of switches is a distributed system,
it is susceptible to various kinds of race conditions. For example, a
common NOX programming idiom is to handle the first packet of
each network flow on the controller and install switch-level rules
to handle the remaining packets. However, such programs can be
susceptible to errors if the second, third, or fourth packets in a

A Compiler and Run-time System for
Network Programming Languages

Christopher Monsanto
Princeton University

Nate Foster
Cornell University

Rob Harrison ∗

US Military Academy
David Walker

Princeton University

Abstract
Software-defined networks (SDNs) are a new kind of network
architecture in which a controller machine manages a distributed
collection of switches by instructing them to install or uninstall
packet-forwarding rules and report traffic statistics. The recently
formed Open Networking Consortium, whose members include
Google, Facebook, Microsoft, Verizon, and others, hopes to use
this architecture to transform the way that enterprise and data center
networks are implemented.
In this paper, we define a high-level, declarative language, called

NetCore, for expressing packet-forwarding policies on SDNs. Net-
Core is expressive, compositional, and has a formal semantics.
To ensure that a majority of packets are processed efficiently on
switches—instead of on the controller—we present new compila-
tion algorithms for NetCore and couple them with a new run-time
system that issues rule installation commands and traffic-statistics
queries to switches. Together, the compiler and run-time system
generate efficient rules whenever possible and outperform the sim-
ple, manual techniques commonly used to program SDNs today. In
addition, the algorithms we develop are generic, assuming only that
the packet-matching capabilities available on switches satisfy some
basic algebraic laws.
Overall, this paper delivers a new design for a high-level net-

work programming language; an improved set of compiler algo-
rithms; a new run-time system for SDN architectures; the first for-
mal semantics and proofs of correctness in this domain; and an
implementation and evaluation that demonstrates the performance
benefits over traditional manual techniques.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design

Keywords Software-defined Networking, OpenFlow, Frenetic,
Network programming languages, Domain specific languages

∗ The views expressed in this paper are those of the authors and do not
reflect the official policy or position of the US Military Academy, the De-
partment of the Army, the Department of Defense, or the US Government.

Copyright 2012 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright © 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

1. Introduction
A network is a collection of connected devices that route traf-
fic from one place to another. Networks are pervasive: they con-
nect students and faculty on university campuses, they send pack-
ets between a variety of mobile devices in modern households,
they route search requests and shopping orders through data cen-
ters, they tunnel between corporate networks in San Francisco
and Helsinki, and they connect the steering wheel to the drive
train in your car. Naturally, these networks have different pur-
poses, properties, and requirements. To service these requirements,
companies like Cisco, Juniper, and others manufacture a variety
of devices including routers (which forward packets based on IP
addresses), switches (which forward packets based on MAC ad-
dresses), NAT boxes (which translate addresses within a network),
firewalls (which squelch forbidden or unwanted traffic), and load
balancers (which distribute work among servers), to name a few.
While each of these devices behaves differently, internally they

are all built on top of a data plane that buffers, forwards, drops,
tags, rate limits, and collects statistics about packets at high speed.
More complicated devices like routers also have a control plane
that run algorithms for tracking the topology of the network and
computing routes through it. Using statistics gathered from the
data plane and the results computed using the device’s specialized
algorithms, the control plane installs or uninstalls forwarding rules
in the data plane. The data plane is built out of fast, special-purpose
hardware, capable of forwarding packets at the rate at which they
arrive, while the control plane is typically implemented in software.
Remarkably, however, traditional networks appear to be on

the verge of a major upheaval. On March 11th, 2011, Deutsche
Telekom, Facebook, Google, Microsoft, Verizon, and Yahoo!, own-
ers of some of the largest networks in the world, announced the for-
mation of the Open Networking Foundation [19]. The foundation’s
proposal is extraordinarily simple: eliminate the control plane from
network devices. Instead of baking specific control software into
each device, the foundation proposes a standard protocol that a
separate, general-purpose machine called a controller can use to
program and query the data planes of many cooperating devices.
By moving the control plane from special-purpose devices onto
stock machines, companies like Google will be able to buy cheap,
commodity switches, and write controller programs to customize
and optimize their networks however they choose.
Networks built on this new architecture, which arose from ear-

lier work on Ethane [4] and 4D [10], are now commonly referred to
as Software-Defined Networks (SDNs). Already, several commer-
cial switch vendors support OpenFlow [17], a concrete realization
of the switch-controller protocol required for implementing SDNs,
and researchers have used OpenFlow to develop new network-wide
algorithms for server load-balancing, data center routing, energy-
efficient network management, virtualization, fine-grained access

Vision
(and Challenges)

Tony Hoare’s “Mistake”

I call it my billion-dollar mistake.

It was the invention of the null reference in 1965.

My goal was to ensure that all use of references should
be absolutely safe, with checking performed

automatically by the compiler. But I couldn't resist the
temptation to put in a null reference, simply because it

was so easy to implement.

This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion

dollars of pain and damage in the last forty years.

Programming Language Abstractions

Many high-pro!le mistakes!

• Polymorphism + references

• Bounded quanti!cation

• Pretty much every C compiler :-)

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c© ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front

1

Programming Language Abstractions

So language researchers have developed a body of
techniques for modeling and reasoning precisely
about language abstractions

• Operational semantics

• Denotational semantics

• Axiomatic semantics

• Bisimulations

Many high-pro!le mistakes!

• Polymorphism + references

• Bounded quanti!cation

• Pretty much every C compiler :-)

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c© ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front

1

P ∼ P
′

e ⇓ ve → e
′

[[e]]

Γ ! e : τ

〈σ, c〉 |= φ

Programming Language Abstractions

So language researchers have developed a body of
techniques for modeling and reasoning precisely
about language abstractions

• Operational semantics

• Denotational semantics

• Axiomatic semantics

• Bisimulations

Many high-pro!le mistakes!

• Polymorphism + references

• Bounded quanti!cation

• Pretty much every C compiler :-)

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c© ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front

1

P ∼ P
′

e ⇓ ve → e
′

[[e]]

Γ ! e : τ

〈σ, c〉 |= φ

Proving “obvious” theorems often reveals bugs

Writing down a semantics is an e"cient way to communicate ideas

A lot of e#ort has gone into making these techniques scalable!

Opportunities and Challenges

Opportunities and Challenges

SDNs o!er a unique opportunity to

• De!ne new abstractions for networks
• Develop their mathematical properties
• Design e"cient implementations
• Deploy veri!cation tools that provide assurance

and avoid (the analogues of) Hoare’s mistake!

Opportunities and Challenges

SDNs o!er a unique opportunity to

• De!ne new abstractions for networks
• Develop their mathematical properties
• Design e"cient implementations
• Deploy veri!cation tools that provide assurance

and avoid (the analogues of) Hoare’s mistake!

Challenge #2

• Want to program virtual networks
• Slices? Logical forwarding plane?
• Want to validate implementations,

prove isolation properties

Opportunities and Challenges

SDNs o!er a unique opportunity to

• De!ne new abstractions for networks
• Develop their mathematical properties
• Design e"cient implementations
• Deploy veri!cation tools that provide assurance

and avoid (the analogues of) Hoare’s mistake!

Challenge #2

• Want to program virtual networks
• Slices? Logical forwarding plane?
• Want to validate implementations,

prove isolation properties

Challenge #1

• Combining con#icting policies
• Constraint-based policies?
• FML [Hinrichs+ ’09] and

Cologne [Liu+ ’12]

Thank You!

Collaborators

Shrutarshi Basu (Cornell)

Mike Freedman (Princeton)
Stephen Gutz (Cornell)
Rob Harrison (West Point)
Chris Monsanto (Princeton)
Joshua Reich (Princeton)
Mark Reitblatt (Cornell)

Emin Gün Sirer (Cornell)
Cole Schlesinger (Princeton)

Alec Story (Cornell)
Jen Rexford (Princeton)

David Walker (Princeton)

Funding

http://frenetic-lang.org

