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Tng Project: Relevant Papers

Structured Stream Transport (SIGCOMM '07)

– http://bford.info/pub/net/sst-abs.html

Breaking Up the Transport Logjam (HotNets '08)

– http://bford.info/pub/net/logjam-abs.html

Efficient Cross-Layer Negotiation (HotNets '09)

– http://www.bford.info/pub/net/nego-abs

Square Pegs in Round Pipes (NSDI '12)

– http://dedis.cs.yale.edu/2009/tng/papers/nsdi12-abs

http://bford.info/pub/net/logjam-abs.html
http://www.bford.info/pub/net/nego-abs
http://dedis.cs.yale.edu/2009/tng/papers/nsdi12-abs


  

Evolutionary Pressures

● Applications need more flexible abstractions

– semantic variations [RDP, DCCP, SCTP, SST, ...]

● Networks need better congestion control

– high-speed [Floyd03], wireless links [Lochert07], ...

● Users need better use of available bandwidth

– dispersion [Gustafsson97], multihoming [SCTP],

logistics [Swany05], multipath [Iyengar06]…

● Operators need administrative control

– Performance Enhancing Proxies [RFC3135],

NATs and Firewalls [RFC3022], traffic shapers



  

The Transport Layer is (Still)

Stuck in an Evolutionary Logjam!
[HotNets '08 – w/ Janardhan Iyengar]



  

Many Solutions, None Deployable

● New transports undeployable

– NATs & firewalls

– chicken & egg: app demand vs kernel support

● New congestion control schemes undeployable

– impassable “TCP-friendliness” barrier

– must work E2E, on all network types in path

● Multipath/multiflow enhancements undeployable

– “You want how many flows?  Not on my network!”

– Fundamentally “TCP-unfriendly”?



  

Transport Abstractions

What “abstractions” do transports provide?

● Units of Data Movement (packets, streams)

● Units of Reliable Transmission (e2e principle)

● Units of Rate Control (flow, congestion)

● Units of Resource Sharing (inter-flow fairness)

● Units of Logical Endpoint Naming (ports)

● Units of Pluggability (narrow waist principle)



  

Analysis of Transport Functions

Current transports conflate application-oriented

and network-oriented functions...

where do security and location-independence go?
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“Transport Next Generation” (Tng)

Break up the Transport into further sub-layers 

according to these classes of functions:
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Application Layer
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“Cool Stuff You Can Do” in Tng

Can split E2E flow into separate CC segments

– Specialize CC scheme to network technology

– Specialize CC scheme within admin domain

without interfering with E2E transport semantics
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Random Annoying Questions

About Transport Abstractions

● Do abstractions matter fundamentally,

or only based on performance properties of 

their currently available implementations?

● Should we choose or design abstractions

for the network or for the application?

● What is the right granularity for abstractions,

or how do we handle granularity mismatches?



  

Data Movement Abstractions

Some data movement abstractions we've seen:

● Small Blobs (packets) [UDP, DCCP, SCTP]

● Byte-Stream [TCP]

● Packet-Stream [RDP, SCTP]

● Multi-Stream [SCTP, SST]

● Large Blobs [CDNs, DTN, DOT]

● ???



  

How Different Are They?

Application choices between TCP and UDP are 

mainly about the performance characteristics of 

their available implementations

● UDP datagrams: low-overhead and atomic,

but only work at all when “small” (~8K max)

● TCP streams: arbitrary-size and incremental,

but higher setup/shutdown/state overheads

In Structured Stream Transport [SIGCOMM '07],

one abstraction serves both roles efficiently...



  

Natural approach: streams as transactions or

application data units (ADUs) 
[Clark/Tennenhouse]

Example: HTTP/1.0
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Example Use of TCP Abstraction



  

Example Use of TCP Abstraction

Practical approach: streams as sessions
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Image
Image

Web Browser: Top-level Stream

Multimedia Plug-in: Control Stream

Video Codec Stream

Audio Codec Stream

Video Frames (Ephemeral Streams)

Audio Frames (Ephemeral Streams)

Web Page Download: HTML

Image
Image

But If Streams Were Cheap...

The Structured Stream 

“abstraction”:

● Like TCP, but cheap

● Stream per object

● Stream per datagram

● Stream per AV frame

Do we really need

new abstractions or just 

better implementation?



  

Network vs Application Abstractions

What's important in a transport “abstraction”:

what the application or the network sees?

● Apps can get abstractions from middleware

built in user space atop TCP, UDP, whatever

● Network abstractions matter for interoperability

and for long-term compatibility

So should abstractions be driven by applications 

or by the network?



  

The Minion Suite [NSDI '12]

Recognizing that:

● Apps no longer need TCP for convenience,
but as an efficient, compatible substrate

● But in-order delivery adds unrecoverable delay

Minion offers:

● Out-of-order delivery in TCP and SSL/TLS

● No change in network-visible TCP behavior

– Walks, squawks like a TCP stream!

● But application can receive data out-of-order



  

Delivery in Minion/uTCP
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Delivery in Minion/uTCP

301

CumAck = 201

(delivered)

read()

301

Out-of-Order
Queue

2.
Out-of-Order
Arrival

301

application fragment buffer (with hole)

out-of-order
delivery

sequence
number



  

Delivery in Minion/uTCP
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Is Minion a “New Abstraction”?

From “IETF philosophy” (wire format, not API)

● Same network behavior → same “abstraction”

– Stream of bytes with seqnos, all get ACKed, …

But looks pretty different to application!

● Unordered datagrams, fancy COBS encoding

– Or whatever application builds on top of it!

Consideration: do we need abstractions for

application convenience or for interoperability?



  

Rate Control and Fairness

Transport connections are the traditional units of 

rate control and fair-sharing

● Flow, congestion control supposed to happen 

end-to-end between end hosts

– Oops: Performance Enhancing Proxies (PEPs)

● Congestion control gives each competing TCP 

flow a “fair share” of bandwidth

– Oops, wrong granularity for most purposes



  

Stream as “Fairness Abstraction”:

Wrong on So Many Levels

Flow 1 Flow 2 Flow 3 Flow 25…Flow 4

Firefox BitTorrentSSH

Bob Alice Guest

Bob's Home Joe's Home

ISP



  

Tunnels within Tunnels, Layers upon Layers...

● Aggregation at “Flow Layer” [HotNets '08]

● Recursive Internet designs [Day, Zave]

What Might Work (but not sure...)
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“Fairness Enhancing Middleboxes”

Give customers equal shares of upstream BW

independent of # connections per customer

ISP

Network

Home

Network

Host

Flow Aggregation

Middlebox

Upstream Providers
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Host
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Home

Network

Host
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(Non-)Conclusion

Transports “roll many abstractions into one”

● Data Movement, Rate Control, Fair Sharing,

Reliability, Endpoint Naming, Pluggability

How should we choose transport abstractions?

● Are abstraction choices fundamental or just 

about properties of current implementations?

● Are they about the network or the application?

● What are the implications of granularity,
and how can we get the right granularity?
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