

How Should We Think About

Transport Abstractions?

Bryan Ford

Yale University

w/ Janardhan Iyengar, Michael Nowlan,

Nabin Tiwari, Syed Obaid Amin

DIMACS Workshop on

Algorithmic Foundations for the Internet

May 22, 2012

http://dedis.cs.yale.edu/

http://dedis.cs.yale.edu/

Tng Project: Relevant Papers

Structured Stream Transport (SIGCOMM '07)

– http://bford.info/pub/net/sst-abs.html

Breaking Up the Transport Logjam (HotNets '08)

– http://bford.info/pub/net/logjam-abs.html

Efficient Cross-Layer Negotiation (HotNets '09)

– http://www.bford.info/pub/net/nego-abs

Square Pegs in Round Pipes (NSDI '12)

– http://dedis.cs.yale.edu/2009/tng/papers/nsdi12-abs

http://bford.info/pub/net/logjam-abs.html
http://www.bford.info/pub/net/nego-abs
http://dedis.cs.yale.edu/2009/tng/papers/nsdi12-abs

Evolutionary Pressures

● Applications need more flexible abstractions

– semantic variations [RDP, DCCP, SCTP, SST, ...]

● Networks need better congestion control

– high-speed [Floyd03], wireless links [Lochert07], ...

● Users need better use of available bandwidth

– dispersion [Gustafsson97], multihoming [SCTP],

logistics [Swany05], multipath [Iyengar06]…

● Operators need administrative control

– Performance Enhancing Proxies [RFC3135],

NATs and Firewalls [RFC3022], traffic shapers

The Transport Layer is (Still)

Stuck in an Evolutionary Logjam!
[HotNets '08 – w/ Janardhan Iyengar]

Many Solutions, None Deployable

● New transports undeployable

– NATs & firewalls

– chicken & egg: app demand vs kernel support

● New congestion control schemes undeployable

– impassable “TCP-friendliness” barrier

– must work E2E, on all network types in path

● Multipath/multiflow enhancements undeployable

– “You want how many flows? Not on my network!”

– Fundamentally “TCP-unfriendly”?

Transport Abstractions

What “abstractions” do transports provide?

● Units of Data Movement (packets, streams)

● Units of Reliable Transmission (e2e principle)

● Units of Rate Control (flow, congestion)

● Units of Resource Sharing (inter-flow fairness)

● Units of Logical Endpoint Naming (ports)

● Units of Pluggability (narrow waist principle)

Analysis of Transport Functions

Current transports conflate application-oriented

and network-oriented functions...

where do security and location-independence go?

Transport

Protocol

Endpoint Identification (port numbers)

Transport Abstraction

Congestion

Control

Semantics, Reliability Concerns:

interacts primarily with applications

Performance

Concerns:

interacts with
 traffic shapers,

PEPs

Naming, Routing Concerns:

interacts with firewalls, NATs

SSL/TLS,

“session layer”

IPsec, HIP, shim6

“Transport Next Generation” (Tng)

Break up the Transport into further sub-layers

according to these classes of functions:

Physical Layer

Data Link Layer

Network Layer

Application Layer

Physical Layer

Data Link Layer

Network Layer

Application Layer

Endpoint Layer

Flow Regulation Layer

Semantic Layer

Transport Layer
E2E Security Layer “Information Wall”

Network-Oriented

Functions

Application-Oriented

Functions

“Cool Stuff You Can Do” in Tng

Can split E2E flow into separate CC segments

– Specialize CC scheme to network technology

– Specialize CC scheme within admin domain

without interfering with E2E transport semantics

Endpoint

Flow

Host A Host B

Network

Semantic

Application

Endpoint

Flow

Network

Semantic

Application

Endpoint

Flow

Network

Endpoint

Flow

Network

Flow Middlebox Flow Middlebox

Segment 2

Satellite

Segment 1

WiFi LAN

Segment 3

Internet Core

E2E Security E2E Security

Random Annoying Questions

About Transport Abstractions

● Do abstractions matter fundamentally,

or only based on performance properties of

their currently available implementations?

● Should we choose or design abstractions

for the network or for the application?

● What is the right granularity for abstractions,

or how do we handle granularity mismatches?

Data Movement Abstractions

Some data movement abstractions we've seen:

● Small Blobs (packets) [UDP, DCCP, SCTP]

● Byte-Stream [TCP]

● Packet-Stream [RDP, SCTP]

● Multi-Stream [SCTP, SST]

● Large Blobs [CDNs, DTN, DOT]

● ???

How Different Are They?

Application choices between TCP and UDP are

mainly about the performance characteristics of

their available implementations

● UDP datagrams: low-overhead and atomic,

but only work at all when “small” (~8K max)

● TCP streams: arbitrary-size and incremental,

but higher setup/shutdown/state overheads

In Structured Stream Transport [SIGCOMM '07],

one abstraction serves both roles efficiently...

Natural approach: streams as transactions or

application data units (ADUs)
[Clark/Tennenhouse]

Example: HTTP/1.0

GET

200 OK

<...>

GET

200 OK

<...>

GET

200 OK

<...>

TCP

Stream

Web

Client

Web

Server

GET

200 OK

<...>

Example Use of TCP Abstraction

Example Use of TCP Abstraction

Practical approach: streams as sessions

Cmd

Echo

TCP

Stream

SSH

Client

SSH

Server

CR

Echo

Cmd

Output

Cmd

Echo

CR

Echo

LIST

+OK

1 <...>

TCP

Stream

POP

Client

POP

Server

RETR

+OK

<...>

DELE

+OK

RETR

+OK

<...>

GET

200 OK

<...>

TCP

Stream

Web

Client

Web

Server

GET

200 OK

<...>

GET

200 OK

<...>

Image
Image

Web Browser: Top-level Stream

Multimedia Plug-in: Control Stream

Video Codec Stream

Audio Codec Stream

Video Frames (Ephemeral Streams)

Audio Frames (Ephemeral Streams)

Web Page Download: HTML

Image
Image

But If Streams Were Cheap...

The Structured Stream

“abstraction”:

● Like TCP, but cheap

● Stream per object

● Stream per datagram

● Stream per AV frame

Do we really need

new abstractions or just

better implementation?

Network vs Application Abstractions

What's important in a transport “abstraction”:

what the application or the network sees?

● Apps can get abstractions from middleware

built in user space atop TCP, UDP, whatever

● Network abstractions matter for interoperability

and for long-term compatibility

So should abstractions be driven by applications

or by the network?

The Minion Suite [NSDI '12]

Recognizing that:

● Apps no longer need TCP for convenience,
but as an efficient, compatible substrate

● But in-order delivery adds unrecoverable delay

Minion offers:

● Out-of-order delivery in TCP and SSL/TLS

● No change in network-visible TCP behavior

– Walks, squawks like a TCP stream!

● But application can receive data out-of-order

Delivery in Minion/uTCP

101

CumAck = 101

TCP Stack
(delivered)

read()
Application

application fragment buffer

1.
In-Order
Arrival

101

(application-level
 stream reassembly)

sequence
number

Delivery in Minion/uTCP

301

CumAck = 201

(delivered)

read()

301

Out-of-Order
Queue

2.
Out-of-Order
Arrival

301

application fragment buffer (with hole)

out-of-order
delivery

sequence
number

Delivery in Minion/uTCP

201

CumAck = 201

(delivered)

read()

301

Out-of-Order
Queue

3.
Gap-Filling
Arrival

201

application fragment buffer (hole filled)

sequence
number

Is Minion a “New Abstraction”?

From “IETF philosophy” (wire format, not API)

● Same network behavior → same “abstraction”

– Stream of bytes with seqnos, all get ACKed, …

But looks pretty different to application!

● Unordered datagrams, fancy COBS encoding

– Or whatever application builds on top of it!

Consideration: do we need abstractions for

application convenience or for interoperability?

Rate Control and Fairness

Transport connections are the traditional units of

rate control and fair-sharing

● Flow, congestion control supposed to happen

end-to-end between end hosts

– Oops: Performance Enhancing Proxies (PEPs)

● Congestion control gives each competing TCP

flow a “fair share” of bandwidth

– Oops, wrong granularity for most purposes

Stream as “Fairness Abstraction”:

Wrong on So Many Levels

Flow 1 Flow 2 Flow 3 Flow 25…Flow 4

Firefox BitTorrentSSH

Bob Alice Guest

Bob's Home Joe's Home

ISP

Tunnels within Tunnels, Layers upon Layers...

● Aggregation at “Flow Layer” [HotNets '08]

● Recursive Internet designs [Day, Zave]

What Might Work (but not sure...)

Endpoint Protocol

Host A2

Transport Protocol

Application Protocol

Endpoint Protocol

Flow Middlebox

Endpoint Protocol

Flow Protocol

Flow Protocol Flow Protocol

Flow Middlebox

Endpoint Protocol

Host A1

Transport Protocol

Application Protocol

Flow Protocol

Endpoint Protocol

Host B2

Transport Protocol

Application Protocol

Flow Protocol

Endpoint Protocol

Host B1

Transport Protocol

Application Protocol

Flow Protocol

Aggregate

Flow

Shared Access Network

or Wide-Area Link

“Fairness Enhancing Middleboxes”

Give customers equal shares of upstream BW

independent of # connections per customer

ISP

Network

Home

Network

Host

Flow Aggregation

Middlebox

Upstream Providers

CPE

Host

ISP-controlled CPE

with flow aggregation

Home

Network

Host

CPE

Host

Per-bundle CC,

1:1 BW sharing
FTP User BitTorrent User

(Non-)Conclusion

Transports “roll many abstractions into one”

● Data Movement, Rate Control, Fair Sharing,

Reliability, Endpoint Naming, Pluggability

How should we choose transport abstractions?

● Are abstraction choices fundamental or just

about properties of current implementations?

● Are they about the network or the application?

● What are the implications of granularity,
and how can we get the right granularity?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

