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Outline

• Sum capacity of Gaussian vector broadcast channels.

• Complete characterization of the worst-noise.

• Efficient numerical solution for the dual channel.

• Does duality extend beyond the power constrained channels?
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Gaussian Vector Broadcast Channel

• Non-degraded broadcast channel:
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• Capacity region is still unknown.

– Sum capacity C = max{R1 + · · · + RK} is recently solved.
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Marton’s Achievability Region

• For a broadcast channel p(y1, y2|x):

R1 ≤ I(U1;Y1)

R2 ≤ I(U2;Y2)

R1 + R2 ≤ I(U1;Y1) + I(U2;Y2) − I(U1;U2)

for some auxiliary random variables p(u1, u2)p(x|u1, u2).

• For the Gaussian broadcast channel:
I(U2; Y2) − I(U1; U2) is achieved with precoding.
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Writing on Dirty Paper

Gaussian Channel ... with Transmitter Side Information

Z ∼ N (0, Szz) Z ∼ N (0, Szz)S ∼ N (0, Sss)
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• Capacities are the same if S is known non-causally at the transmitter.

C = max
p(u,x|s)

I(U ;Y ) − I(U ;S) = max
p(x)

I(X;Y |S)
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Precoding for the Broadcast Channel
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Converse: Sato’s Outer Bound

• Broadcast capacity does not depend on noise correlation: Sato (’78).
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if

{
p(z1) = p(z′1)
p(z2) = p(z′2)

, not necessarily p(z1, z2) = p(z′1, z
′
2).

• So, sum capacity C ≤ min
Szz

max
Sxx

I(X;Y).

DIMACS Workshop on Network Information Theory 6



Three Proofs of the Sum Capacity Result

1. Decision-Feedback Equalization approach (Yu, Cioffi)

2. Uplink-Downlink duality approach (Viswanath, Tse)

3. Convex duality approach (Jindal, Vishwanath, Goldsmith)
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DFE Approach

x

z′

H HT

︸ ︷︷ ︸
feedforward filter

∆−1G−T Decision

I − G

• Decision-feedback at the receiver is equivalent to transmitter precoding.

• (Non-Singular) Worst Noise ⇐⇒ Diagonal feedforward filter

Fix Sxx, min
Szz

I(X;Y) is achievable.
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Uplink-Downlink Duality Approach

X1 X2Y1 Y2

Z1 ∼ N (0, Q) Z2 ∼ N (0, I)

E[XT
1 X1] ≤ P E[XT

2 QX2] ≤ P

H HT

• Uplink and downlink channels are duals.

• The noise covariance and input constraint are duals.

• Worst-noise gives an input constraint that decouples the inputs.

C = max
Sxx

min
Szz

I(X;Y)

DIMACS Workshop on Network Information Theory 9



Convex Duality Approach
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• Sato’s bound: C ≤ min
Szz

max
Sxx

I(X;Y).

• Broadcast/Multiple-Access duality: C ≥ max
Sx′x′

I(X′;Y′).

• Convex duality: max
Sxx

min
Szz

I(X;Y) = max
Sx′x′

I(X′;Y′).
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Objective

• Completely characterize the worst-noise.

– Duality through minimax.
– Worst-noise through duality.

• Efficient numerical solution for the dual channel.

• Does duality extend beyond the power constrained channel?
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Minimax Capacity

• Gaussian vector broadcast channel sum capacity is the solution of

max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz|
subject to tr(Sxx) ≤ P

Szz =
[

I ?
? I

]

Sxx, Szz ≥ 0

• The minimax problem is convex in Szz, concave in Sxx.

– How to solve this minimax problem?
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Duality through Minimax

• Two KKT conditions must be satisfied simultaneously:

HT (HSxxHT + Szz)−1H = λI

S−1
zz − (HSxxHT + Szz)−1 =

[
Ψ1 0
0 Ψ2

]

• For the moment, assume that H is invertible.

⇒ HTS−1
zz H − λI = HTΨH

⇒ H(HTΨH + λI)−1HT = Szz

This is a “water-filling” condition for the dual channel.
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Power Constraint in the Dual Channel

• Interpretation of dual variable: λ =
∂C

∂P
,Ψi = − ∂C

∂Szizi

.

– Thus, capacity is preserved if λ∆P =

(∑

i

Ψi

)
∆Szizi

• Capacity C = min max
1
2

log
|HSxxHT + Szz|

|Szz|
.

– Thus, capacity is preserved if
∆P

P
=

∆Szizi

1
.

Therefore,

∑
i Ψi

λ
= P .
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Construct the Dual Channel

KKT condition: H(HTDH + I)−1HT = 1
λSzz

• where D = Ψ/λ is diagonal, trace(D) =
∑

i Ψi/λ = P .

• Szz =
[

I ?
? I

]
. Thus, constraint on D: trace(D1) + trace(D2) ≤ P .
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Yet Another Derivation for Duality

The duality between broadcast channel and multiple-access channel:

max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz|
max

D

1
2

log
|HTDH + I|

|I|
s.t. tr(Sxx) ≤ P s.t. tr(D) ≤ P

Szz =
[

I ?
? I

]
D is diagonal

Sxx, Szz ≥ 0 D ≥ 0

KKT conditions for minimax =⇒ KKT condition for max.
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Worst-Noise Through Minimax

• Solve the dual multiple access channel problem with power constraint P .
Obtain (Ψ, λ). Then:

Szz = H(HTΨH + λI)−1HT

Sxx = (λI)−1 − (HTΨH + λI)−1

• What if H is not invertible, or Szz is singular?
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Decision-Feedback Equalization with Singular Noise

• With non-singular noise: S−1
zz − (HSxxHT + Szz)−1 =

[
Ψ1 0
0 Ψ2

]
.

• If H is low-rank, Szz can be singular.

X H

Z

m-dimensional m × n n > m

Linear Estimation/DFE

is not unique if |Sz| = 0.
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Necessary and Sufficient Condition for Diagonalization

• Suppose that the worst-noise |Szz| = 0, let

Szz = USz̃z̃U
T ,

where Szz is n × n, Sz̃z̃ is m × m, m < n.

• It is always possible to write H = UH̃.

• There exists a DFE with diagonal feedforward filter if and only if

S−1
z̃z̃ − (H̃SxxH̃T + Sz̃z̃)−1 = UT

[
Ψ1 0
0 Ψ2

]
U
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Singular Worst-Noise

• It can be verified that the diagonalization condition is satisfied by:

S(0)
zz = H(HTΨH + λI)−1HT

Sxx = (λI)−1 − (HTΨH + λI)−1

• However: S
(0)
zz does not necessarily have 1’s on the diagonal.

S(0)
zz =




I ? ?
? I ?
? ? ?


 .
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Characterization of the Worst-Noise

Theorem 1. The following steps solve the worst noise in y = Hx + z:

1. Find the optimal (Ψ, λ) in the dual multiple access channel.

2. Form S
(0)
zz = H(HTΨH + λI)−1HT ,

Sxx = (λI)−1 − (HTΨH + λI)−1.

3. If Sxx is not full rank, reduce the rank of H, and repeat 1-2.

4. The class of worst-noise is precisely S
(0)
zz + S′

zz.




I ? ?
? I ?
? ? ?


+




0 0 0
0 0 0
0 0 ?


 =




I ? ?
? I ?
? ? I


 .
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Worst-Noise is Not Unique

• The same Sxx water-fills the entire class of S
(0)
zz + S′

zz.

• S
(0)
zz +

[
0 0
0 S′

zz

]
= [U |U ′]

([
Sz̃z̃ 0
0 0

]
+
[

S′
11 S′

12

S′
21 S′

22

])
[U |U ′]T ,

– where S′
11 − S′

12S
′−1
22 S′

21 = 0.
– The entire class of worst-noise is related by linear estimation:

E[z̃ + z′1|z′2] = z̃.

• The class of (Sxx, Szz) that satisfies the KKT condition is precisely:

(Sxx, S(0)
zz + S′

zz)
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Outline

• Complete characterization of the worst-noise.

– Duality through minimax.
– Worst-noise through duality.

• Efficient numerical solution for the dual channel.

• Does duality extend beyond the power constrained channel?
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Sum Power Gaussian Vector Multiple Access Channel

X1

X2

H1

H2

Z

Y

P

max
Sxx

1
2

log |HTSxxH + I|

s.t. tr(Sxx) ≤ P

Sxx is diagonal

Sxx ≥ 0

• An efficient way to find the worst-noise is to solve the dual problem.

– Previous numerical solution: Jindal, Jafar, Vishwanath, Goldsmith.
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Iterative Water-filling

• Iterative water-filling: Optimize each of Si while fixing all others.

max
Si

1
2

log

∣∣∣∣∣
∑

i

HiSiH
T
i + I

∣∣∣∣∣ max
Si

1
2

log

∣∣∣∣∣
∑

i

HiSiH
T
i + I

∣∣∣∣∣

s.t. tr(Si) ≤ Pi s.t.
∑

i

tr(Si) ≤ P

Si ≥ 0 Si ≥ 0

Individual Constraints Coupled Constraint

• Iterative water-filling only works with the individual power constraints.
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Dual Decomposition for the Sum-Power Problem

Take Lagrangian dual with respect to the coupled constraint only:

max
1
2

log

∣∣∣∣∣
∑

i

HiSiH
T
i + I

∣∣∣∣∣ g(ν) = max
1
2

log

∣∣∣∣∣
∑

i

HiSiH
T
i + I

∣∣∣∣∣

s.t.
∑

i

Pi ≤ P − ν

(∑

i

Pi − P

)

tr(Si) ≤ Pi s.t. tr(Si) ≤ Pi

Si ≥ 0 Si ≥ 0

Sum Power Capacity = min
ν>0

g(ν)
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Iterative Water-filling for the Dual Problem

• By introducing a Lagrange multiplier ν, constraints are decoupled:

g(ν) = max
Si

1
2

log

∣∣∣∣∣
∑

i

HiSiH
T
i + I

∣∣∣∣∣− ν

(∑

i

Pi − P

)

s.t. tr(Si) ≤ Pi

Si ≥ 0

– To solve g(ν): Iteratively optimize each of (Si, Pi).
– To find min g(ν) over ν > 0:

Decrease ν if
∑

i Pi < P . Increase ν if
∑

i Pi > P .
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Convergence of the Dual Decomposition Algorithm

• 3 transmit antennas

• 50 receivers each with
a single antenna

– typically 3-6 active

• i.i.d. Gaussian channel

• Bisection on ν.
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Outline

• Complete characterization of the worst-noise.

– Duality through minimax.
– Worst-noise through duality.

• Efficient numerical solution for the dual channel.

• Does duality extend beyond the power constrained channel?
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Broadcast Channel under Linear Covariance Constraint

• The DFE achievability result works with any fixed Sxx.

• The capacity of the broadcast channel under covariance constraint:

max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz|
subject to tr(QSxx) ≤ P

Szz =
[

I ?
? I

]

Sxx, Szz ≥ 0

• What is the duality result in this case?
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KKT Condition for Minimax

• Two KKT conditions must be satisfied simultaneously:

HT (HSxxHT + Szz)−1H = λQ

S−1
zz − (HSxxHT + Szz)−1 =

[
Ψ1 0
0 Ψ2

]

• For simplicity, assume invertible H.

H(HTΨH + λQ)−1HT = Szz

with
∑

i tr(Ψi)
λ

= P
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Duality under Linear Covariance Constraint

The duality between broadcast channel and multiple-access channel:

max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz|
max

D

1
2

log
|HTDH + Q|

|Q|
s.t. tr(QSxx) ≤ P s.t. tr(D) ≤ P

Szz =
[

I ?
? I

]
D is diagonal

Sxx, Szz ≥ 0 D ≥ 0

The above two problems have the same KKT conditions.

DIMACS Workshop on Network Information Theory 32



Generalized Duality

X
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1

X ′
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tr(SxxQ1) ≤ P tr(Sx′x′Q2) ≤ PSzz ∼ N (0, Q2) Sz′z′ ∼ N (0, Q1)

H1
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HT
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Q1: Input constraint in BC and Noise covariance in MAC.
Q2: Worst noise covariance in BC and Input constraint in MAC.
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Broadcast Channel under Convex Covariance Constraint

• Under arbitrary convex constraint, DFE still works.

max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz|
subject to f(Sxx) ≤ P

Szz =
[

I ?
? I

]

Sxx, Szz ≥ 0

Does duality exist in this case?
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Duality under Convex Covariance Constraint

Duality still exists, but the values of the dual variables are not known:

max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz|
max

D

1
2

log
|HTΨH + λQ|

|λQ|
s.t. f(Sxx) ≤ P s.t. tr(Ψ) ≤ P ′

Szz =
[

I ?
? I

]
D is diagonal

Sxx, Szz ≥ 0 D ≥ 0

Q = f ′(·). But if f(·) is non-linear, tr(Ψ) 6= λP .
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Peak Power Constrained Broadcast Channel

• Duality exists, but not computationally useful. Need to solve minimax.

max
Sxx

min
Szz

1
2

log
|HSxxH

T + Szz|
|Szz|

max
D

1
2

log
|HTΨH + Q|

|Q|
s.t. Sxx(i, i) ≤ Pi s.t. tr(Ψ) ≤ P ′

Szz =
[

I ?
? I

]
D is diagonal

Sxx, Szz ≥ 0 D ≥ 0

• Here, Q =




µ1 0
. . .

0 µn


. But, µi, P ′ are not known.

DIMACS Workshop on Network Information Theory 36



Concluding Remarks

• Sum capacity of a Gaussian vector broadcast channel is:

C = max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz|

• If the input constraint is a linear covariance constraint:

C = max
D

1
2

log
|HTDH + Q|

|Q|

• Minimax is a more fundamental expression than duality.

• Duality, when exists, has computational advantage.
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