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Multiple Access Communications

• Multiple access (many to one): multiple senders transmit to one
receiver (possibly) over fading channels.

• Ex: cellular telephony, satellite networks, local area networks.
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Central Problems

• Contention/interference - resource sharing.

• Bursty sources ⇒ random number of active senders.

• Network/MAC layer QOS issues - throughput, delay.

• Physical layer issues - channel modelling, coding, detection.
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Need for Cross-Layer Approach

• Multiple access network theory (ALOHA, CSMA) - concentrates
on source burstiness and delay; poor modelling of noise and
interference.

• Multiple access information theory - concentrates on channel
modelling and coding; ignores random arrival of messages and
delay.

• Need more unified cross-layer framework:

– Random packet arrivals affect resource sharing.

– Choice of modulation and coding affects QOS issues.

– Random fading affects resource allocation.

– Gallager (85), Ephremides and Hajek (98).
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New Approach

• Goal:

– Combine information-theoretic limits with QOS issues.

– Establish fundamental bounds on throughput/delay
performance.

• Implementation:

– Random arrivals, information-theoretic optimal coding.

– Power control and rate allocation as function of fading and
queue states to optimize throughput and delay
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Previous Work

• Telatar and Gallager (95)

– Achievable multiple access scheme with feedback.

– Poisson arrivals; no queueing; single-user decoding; processor
sharing system.

• Telatar (95)

– Analogy between MAC and multi-processor queue.

– Each user has fixed pool of bits to send.

– Optimal processor assignment to minimize average packet delay.

• Yeh (01)

– Poisson arrivals; queueing.

– Optimal rate allocation from C to min. average packet delay.

– Longer Queue Higher Rate (LQHR) policy strongly delay
optimal.
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Multiple Access Fading Channel

• Continuous-time M -user Gaussian multiple access fading channel
with bandwidth W :

Y (t) =
M∑

i=1

√
Hi(t)Xi(t) + Z(t).

• {Z(t)}: white Gaussian noise, density N0/2.

• Slowly-varying and flat-fading (under-spread) channel.
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Multiple Access Fading Channel

• Block fading model, block length = T .

• T large enough for reliable communication at a fixed fade.

• {H(t) = (H1(t), . . . , HM (t))} modulated by finite-state ergodic
Markov chain.

• Transmitter i has (long-term) average power constraint P i, and
(short-term) peak power constraint P̂i.
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Information-theoretic Capacity Region C(h, p)

(Ahlswede, Liao, Cover, Wyner 1971-75)

• Fixed h = (h1, . . . , hM ) and p = (p1, . . . , pM ).

• C(h,p) = set of r ∈ RM
+ such that

∑

i∈S

ri ≤ W log
(

1 +
∑

i∈S hipi

N0W

)
, ∀S ⊆ {1, . . . , M}.

• Reliable communication possible inside C(h, p), impossible outside
C(h,p), for any coding and modulation scheme.

• Polymatroid structure (Tse and Hanly 98).
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Two-User Capacity Region C(h,p)
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Multiple Access Channel with Random Arrivals
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Arrivals and Unfinished Work

• {Ai(t)} = ergodic packet arrival process to transmitter i.

• User i packets i.i.d. ∼ FZi(·), E[Zi] < ∞.

• Ui(t) = number of untransmitted bits in queue i at time t.
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Power Control and Rate Allocation

• Controller: (H(t),U(t)) 7→ (P (t), R(t)).

• Two stages:

1. Power control policy P:

p = P(h, u)

s.t. for all i, E[Pi(H, U)] ≤ P̄i, Pi(h, u) ≤ P̂i for all (h, u).

2. Rate allocation policy R:

r = R(h, p, u) ∈ C(h, p).
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Main Results

• Stability region S of all bit arrival rates for which all queues can be
kept finite.

• For given power control policy, find throughput optimal rate
allocation policy.

• In symmetric scenario, find delay optimal rate allocation policy for
any symmetric power control policy.
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Stability Region S

• λi = limt→∞Ai(t)/t = packet arrival rate to queue i.

• ρi = λiE[Zi] = bit arrival rate to queue i.

• Define fi(ξ) = lim supt→∞
1
t

∫ t

0
1{Ui(τ)>ξ}dτ .

• System stable if fi(ξ) → 0 as ξ →∞ for all i.

• S = set of all ρ = (ρ1, . . . , ρM ) for which can stabilize system.
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Stability Region S

• Assume {Ai(t)} modulated by finite-state ergodic Markov chain.

Theorem 1 S = C(P , P̂ ) = information-theoretic capacity region
under power control (Tse and Hanly 98).

• C(P , P̂ ) =
⋃
P∈F C(P).

• F = {P : E[Pi(H)] ≤ P i, ∀i;Pi(h) ≤ P̂i,∀h,∀i}.
• C(P) = E[C(H,P(H))].
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Stability Theorem

• Achievability: ρ ∈ int(S): knowing ρ and statistics of {H(t)},
can stabilize system using stationary P,R depending only on
current channel state.

• Converse: ρ /∈ S: cannot stabilize system, even with
non-stationary policy with knowledge of queue state and/or
knowledge of future events, so long as

lim sup
t→∞

1
t

∫ t

0

pi(τ)dτ ≤ P i ∀i; pi(τ) ≤ P̂i, ∀τ, ∀i.
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Throughput Optimal Resource Allocation

• Find “universal” power/rate policy to stabilize system even if ρ not
known, as long as ρ ∈ int(S).

• Must use both H(t) and U(t).

• Suppose know ρ ∈ C(P) = E[C(H,P(H))].

• Assume {Hi(kT )} i.i.d. for each i, {Ai((k + 1)T )−Ai(kT )} i.i.d.
for each i.

• Assume E[(Ai((k + 1)T )−Ai(kT ))2] < ∞.
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No Work Conservation
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Throughput Optimal Rate Allocation

Theorem 2 Given P ∈ F , throughput optimal rate allocation policy is

r∗ = R∗(h,P(h, u), u) = arg max
r∈C(h,P(h,u))

M∑

i=1

uiri (1)

• Idea appeared in Tassiulas and Ephremides ’92; McKeown, et al.
’96; Tassiulas ’97; Neely et al. ’02.

• Here, motivated by delay optimality results.
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Longest Queue receives Highest Possible Rate (LQHPR)

• Due to polymatroidal nature of C(h,P(h, u)), solution to (1) has
special form.

• Order queues u[1] ≥ u[2] ≥ · · · ≥ u[M ].

r∗[i] = W log

(
1 +

h[i]P[i](h,u)∑
j<i h[j](t)P[j](h, u) + N0W

)

• Longest Queue receives Highest Possible Rate (LQHPR).

• LQHPR ⇔ adaptive successive decoding: u[M ] decoded first,
u[1] decoded last.
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Two-User Rate Allocation
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Proof of Stability Theorem

• Stability of Markov chains based on negative Lyapunov drift.

• V (U) =
∑

i U2
i .

• Show there exists compact set Γ ⊂ RM s.t. for some ε > 0,

E[V (U(t + T ))− V (U(t))|U(t)] ≤ −ε

whenever U /∈ Γ.
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Delay Optimal Resource Allocation

• Beyond stabilization, keep queues as short as possible.

• Find feasible P and R to minimize limt→∞ E[
∑M

i=1 Ui(t)]
(average bit delay) for ρ ∈ int(S).
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Delay Optimal Rate Allocation

• Focus on symmetric Poisson/exponential case.

• {Ai(t)} = Poisson(λ) for each i.

• All packets i.i.d. ∼ exp(µ).

• Queue state Q(t) = (Q1(t), . . . , QM (t)) - number of packets.

• For fixed P, find R to minimize limt→∞ E
[∑M

i=1 Qi(t)
]

(average packet delay).

• Yeh ’01: non-faded symmetric MAC.
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Delay Optimal Rate Allocation

• Symmetric fading process H(t):
For any a = (a1, . . . , aM ), Pr (H1(t) = a1, . . . ,HM (t) = aM ) =
Pr

(
H1(t) = aπ(1), . . . , HM (t) = aπ(M)

)
for any permutation π.

e.g. for every t, H1(t), . . . ,HM (t) i.i.d.

• Symmetric power control P(h, q) = P(h):
Pi(a1, . . . , aM ) = Pπ−1(i)

(
aπ(1), . . . , aπ(M)

)
for all π.

e.g. M = 2 and a1 > a2: P1(a1, a2) = P2(a2, a1).
e.g. Knopp and Humblet (’95).

• For this case, max
∑

uiri (LQHPR) policy is delay optimal.
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Majorization and Weak Majorization

• Need to quantify load balancing.

• For u ∈ RM , let
u[1] ≥ · · · ≥ u[M ].

• For u, v ∈ RM ,

u ≺w v if
k∑

i=1

u[i] ≤
k∑

i=1

v[i], k = 1, . . . ,M.

Say u weakly majorized by v. If equality holds for k = M , say u

majorized by v: u ≺ v.

• Ex: (1 1) ≺w (3 0), (1 1) ≺ (2 0).

• See Marshall and Olkin (79).
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Stochastic Weak Majorization

• Use stochastic coupling to show weak majorization on queue
vectors, in a stochastic sense.

• U = (U1, . . . , UM ), V = (V1, . . . , VM ) random vectors. U is said to
be stochastically weak-majorized by V , U ≺st

w V , if there exist
random vectors Ũ and Ṽ such that

(a) U and Ũ are identically distributed.

(b) V and Ṽ are identically distributed.

(c) Ũ ≺w Ṽ a.s.
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Strong Delay Optimality of LQHPR

Theorem 3 Let q0 be initial queue state. Let Q(t) be queue evolution
under gLQHPR for t ≥ 0. Let Q′(t) be corresponding quantity under
any policy g ∈ GD. Then under all symmetric P,

Q(t) ≺st
w Q′(t) ∀t ≥ 0.

• Proof: generalize stochastic coupling argument for non-faded
symmetric MAC.
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Consequences

Corollary 1

E [ϕ(Q(t))] ≤ E
[
ϕ(Q′(t))

] ∀t ≥ 0

for all ≺w-preserving ϕ : RM 7→ R for which expectations exist.

• ϕ is ≺w-preserving if x ≺w y ⇒ ϕ(x) ≤ ϕ(y) for x, y ∈ RM .

• ≺w-preserving ⇔ Schur-convex, increasing.

• Includes all symmetric, convex and increasing real functions on RM .

• Examples:
ϕ(x) = maxi1<i2<···<ik

(|xi1 |+ · · ·+ |xik
|), 1 ≤ k ≤ M ;

ϕ(x) =
∑M

i=1 |xi|r for r ≥ 1 or r ≤ 0;
ϕ(x) = (

∑M
i=1 |xi|r)1/r for r ≥ 1.
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Summary and Conclusions

• General framework for resource allocation in fading MAC with
random arrivals.

• Stability region S = C(P , P̂ ).

• max
∑

i uiri (LQPHR) policy throughput optimal for given P.

• LQHPR minimizes average packet delay for any symmetric P in
symmetric scenario.

• LQHPR implements adaptive successive decoding at physical layer.
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Summary and Conclusions

• “Converse”: LQHPR establishes fundamental
throughput/delay performance limit for any multiple access
coding scheme which meets any given required Pe (Fano).

• “Achievability”: To approach rates in D, need sufficiently large T

and code over large number of bits.


