
Job Scheduling and Multiple Access

Emre Telatar, EPFL

Sibi Raj (EPFL), David Tse (UC Berkeley)

1

Multiple Access Setting

Characteristics of Multiple Access:

Bursty Arrivals

Uncoordinated Transmitters

Interference

Limited Feedback

Different bodies of research approach these characteristics in different ways.

2

Multi Processor Queues

Consider n tasks to be completed. Task k requires sk units of service.

We also have m processors. Processor j can deliver service at a rate rj

units of service per unit time.

We can:

• Assign processors to tasks

• Change the assignment at any time

cannot:

• Assign > 1 processor to a task at a given time

• Assign > 1 task to a processor at a given time

Task k is complete when the cumulative service it has received equals sk.

3

Multi Processor Queues

Example:

We have several cows,

 (__)
 (oo)
 /-------\/
 / | ||
* ||----||
 ~~ ~~

sk = amount of milk in cow k

and we have a number of milkers to milk them

rj = amount of milk milker j can milk in an hour

4

Example

0

1

2

3

0

1

2

3

0 1 21
2

43
4

n(t)

s1(t)
s2(t)

s3(t)

t

t

Three tasks with

s1 = 1, s2 = 2, s3 = 3.

Two processors with

r1 = 1, r2 = 1/2.

First assign the processor 1 to
task 1 and processor 2 to task 2.
When task 1 completes, assign
processor 1 to task 2, processor 2
to task 3. When task 2 completes,
assign processor 1 to task 3.

5

Service Rates

Assume
r1 ≥ r2 ≥ · · ·

If we have only three tasks to serve, what is the set of service rates
(R1, R2, R3) that they can receive?

R1

R2

R3
The vertices of the hexagon and those rates
achievable by permuting the assignment of the
first three processors to the three tasks. The
hexagon itself can be achieved by time sharing,
and any point contained in the polymatroid is
dominated by some point of the hexagon. The
set of service rates are then given by

Ri ≤ r1, Ri+Rj ≤ r1+r2 (i 6= j), R1+R2+R3 ≤ r1+r2+r3

6

Service Rates

In general, if we had n tasks, the deliverable service rates are those
(R1, . . . , Rn) that satisfy:

for every I ⊂ {1, . . . , n},
∑
i∈I

Ri ≤
|I|∑

j=1

rj.

That is, for any collection of tasks, the total rate these tasks receive cannot
exceed the the total rate they would get if the fastest processors were
assigned to them.

7

Service Policies

Given a collection of processors and a set of tasks, if we know the remaining
service requirement sk(t) for each task k at a time t, we do not need to
know anything else about the past of the system to determine the future
evolution. That is, (

sk(t), k = 1, 2, . . .
)

is a state of the system.

A service policy is a function that maps the state of the system to a deliv-
erable service rate vector. It thus determines the rate of service offered to
each task at time t based on the state at time t.

8

Service Policies (cont)

Example: Assume again r1 ≥ r2 ≥ · · · . Consider a policy that assigns
faster processors to shorter tasks. That is: if the state of the system is
(s1, . . . , sn) and π is a permutation of {1, . . . , n} that orders the tasks
in increasing service requirements, i.e.,

sπ(1) ≤ · · · ≤ sπ(n),

then this policy will assign processor i to task π(i).

Formally, this policy maps

(s1, . . . , sn) 7→ (rπ−1(1), . . . , rπ−1(n)),

where π is the above permutation.

9

Job Scheduling

Suppose we serve the tasks using some policy P . Let tk(P) denote the
completion time of task k.

Define

t̄(P) =
1

n

n∑
k=1

tk(P)

as the average completion time of the tasks.

Theorem: The policy of assigning shorter tasks to faster processors mini-

mizes t̄(P). In fact, if s1 ≤ · · · ≤ sn, this policy minimizes

j∑
k=1

tk(P)

for every j ≤ n.

10

Gaussian Multiple Access Channel

We have n transmitters and 1 receiver. The relationship between the
transmitted and received signals is

Y = x1 + · · · + xn + Z

where Y is the received signal
xk is the signal sent by transmitter k
Z is memoryless Gaussian noise with unit variance

Suppose the transmitters have equal power P . Then the data rate vector
(R1, . . . , Rn) is achievable if and only if

for all I ⊂ {1, . . . , n}
∑
i∈I

Ri ≤ 1
2
log(1 + |I|P).

11

Gaussian Multiple Access Channel

If we define

rj = 1
2
log

(
1 + jP

)
− 1

2
log

(
1 + (j − 1)P

)
,

= 1
2
log

(
1 +

P

1 + (j − 1)P

)
then we see that

1
2
log(1 + |I|P) =

|I|∑
j=1

rj,

and so the data rate constraints in the achievability condition is

for all I ⊂ {1, . . . , n}
∑
i∈I

Ri ≤
|I|∑

j=1

rj.

Thus, the same formula determines the achievable data rates in a multiple
access channel and and deliverable service rates in multi processor queues.

Can this be put to some use?

12

Example Application

Given the number of bits s1, s2, . . . each transmitter has to send—not the
data rate, just bits—what transmission strategy will minimize the average
transmission time?

Mimic the ‘shorter tasks faster’ policy: Consider just two users with s1 ≤
s2. Give user 1 service at rate r1 until its message is decoded at time
t1 = s1/r1. By then, also decode t1r2 bits of the second user. Then,
user 2 should get service at rate r1 until its remaining s2 − t1r2 bits are
decoded.

Can this ‘wishful analogy’ be made into a transmission strategy? Since
user 1 is supposed to get rate r1, it should be as if it is the only user of
the channel. But if user 2 is silent, then how is it supposed to get rate r2?
Nevertheless, by a small miracle, all is well. User 2 should break its s2 bits
into two portions of size t1r2 and s2 − t1r2. Then, during the interval
[0, t1] we can decode the first portion regarding user 1 as noise, at rate
r2. Once this portion is decoded user 2’s signal can be subtracted, and we
can indeed decode user 1, at rate r1.

13

Multiprocessor Queues with Arrivals

Suppose that the tasks are not all present at the beginning of time, but
they arrive at random instants of time. What policy should be used to
minimize the expected time a task spends in the system?

I don’t know the answer, but we can still propose the ‘shorter tasks faster’
policy as a heuristic:

Suppose tasks arrive according to some stochastic process (say Poisson)
with rate λ. Suppose each task requires 1 unit of service when it arrives.

Observe: under the ‘shorter tasks faster’ policy a task cannot disturb the
service of earlier tasks. Not only is there no ‘overtaking’, the departure
time of a task is known as soon as it arrives, and is independent of all
future arrivals.

14

Multiprocessor Queues with Arrivals

 (__)
 (oo)
 /-------\/
 / | ||
* ||----||
 ~~ ~~

 (__)
 (oo)
 /-------\/
 / | ||
* ||----||
 ~~ ~~

 (__)
 (oo)
 /-------\/
 / | ||
* ||----||
 ~~ ~~

Tasks Arrive−−−−−−→ Tasks Leave−−−−−−→

Proc 4 Proc 3 Proc 2 Proc 1

A task finding an empty system is assigned processor 1, otherwise it will
be assigned the first idle processor. When the earliest job completes, the
remaining tasks are promoted up the processor hierarchy.

One can show that if
∑

j rj diverges, then the system is stable for any
arrival rate λ.

15

Multiple Access Channel with Arrivals

Can one implement the policy just described as a transmission strategy?

With a bit of feedback, yes: maintain a departures timetable for the trans-
missions currently in service. An arriving packet that finds n people already
in service will need to be served at rates rn+1, rn, . . . , r1, the transitions
taking place every time some other packet is decoded. With the ‘departures
timetable’ the incoming packet knows when these transitions are to take
place, and split itself to subpackets of appropriate size.

Furthermore, during the first interval, the rate it is to get rn+1 is exactly
what it can get if it is decoded while treating the earlier packets as noise. At
the end of the first period, the subpacket can be decoded and subtracted,
and thus not disturbing the earlier packets. And similarly for the remaining
periods.

16

Multiple Access Channel with Arrivals

0 5 10 15 20

λS/W (bits)0.1

0.2

0.5

1

2

5

10

20

λD̄W/S (1/bits)

SNR=0dB SNR=30dB

Performance of the policy: average delay vs arrival rate.

17

A Lower Bound on Delay

Suppose we have a multiprocessor queue to which unit length tasks arrive
at a rate λ. Suppose we have some service policy. Let pn denote the long
term fraction of time during which there are n tasks in the queue (assume
pn exists). Thus, the time-average number of tasks in queue is

N̄ =
∞∑

n=0

npn.

By Little’s law, the average time D̄ a task spends in the system is given
by

λD̄ = N̄

The long-term average service that is offered by the system is at most

∞∑
n=0

Cnpn; Cn =
n∑

j=1

rj

18

A Lower Bound on Delay

For stability λ ≤
∑

n Cnpn, and thus,

N̄ ≥ inf

{∑
n

npn :
∑

n

Cnpn ≥ λ

}
.

Equivalently,

λ ≤ sup

{∑
n

Cnpn :
∑

n

npn ≤ N̄

}
= sup

{
E[C(N)] : E[N] ≤ N̄

}

0 1 2 3 4 5

n

C(n)

(1, C1)

(2, C2)

(3, C3)
(4, C4)

But, by “Jensen’s Inequality”

E[C(N)] ≤ C(E[N]) ≤ C(N̄),

with equality if p puts mass only on
bN̄c and dN̄e. Thus:

D̄ ≥
C−1(λ)

λ
.

19

Multiple Access With Arrivals

0 5 10 15 20

λS/W (bits)0.1

0.2

0.5

1

2

5

10

20

λD̄W/S (1/bits)

SNR=0dB SNR=30dB

Comparison of the performance of the policy with the lower bound.

20

Concluding Remarks

Understanding multiuser communications will require a unified view of net-
working and physical layers.

Network information theory is already hard enough even without trying to
incorporate network-layer questions.

Still, we may be able to say more than what we currently do.

The example above is too fragile, but is perhaps useful as an illustration.

21

