The Timing Capacity of Single-Server Queues with Multiple Flows

Xin Liu and R. Srikant

Coordinated Science Laboratory
University of Illinois at Urbana Champaign

March 14, 2003
• Information can be transmitted through the timing-intervals between messages/events
• Distortion of timing information

• Queueing is a mechanism that naturally blurs the timing information
Multiple Flows

What is the sum timing capacity?
• What is the timing capacity of a flow when there exists uncontrollable and undetectable cross traffic?
An Exponential Server Queue

- Interference flow: Poisson arrival with rate λ_I
- Service time distribution for all packets: i.i.d. exponentially distributed with mean $1/\mu$
A Lower Bound on Capacity

- Service discipline: FIFO
- A lower bound on the timing capacity is

\[C_L(\lambda_0) = \lambda_0 \log \left(\frac{\mu - \lambda_I}{\lambda_0} \right), \]

where \(\lambda_0 + \lambda_I \leq \mu \).
- Input process: Poisson with rate \(\lambda_0 \).
- Special case: \(\lambda_I = 0 \)

\[C(\lambda_0) = \lambda_0 \log \frac{\mu}{\lambda_0}. \]
Randomness is caused by queue and service time

Effective service time is exponentially distributed with mean $1/(\mu - \lambda_I)$.

Proof

\[I(A^n; D^n) = h(D^n) + h(A^n) - h(D^n, A^n) \]
\[= h(D^n) + h(A^n) - h(S^n, A^n) \quad (1) \]
\[= h(D^n) - h(S^n|A^n) \]
\[\geq h(D^n) - h(S^n) \]
\[\geq h(D^n) - \sum_{i=1}^{n} h(S_i) \]
\[\geq \sum_{i=1}^{n} \left(\log \frac{1}{\lambda_0} + 1 \right) - \sum_{i=1}^{n} \left(\log \frac{1}{\mu - \lambda_I} + 1 \right) \quad (2) \]
\[= \sum_{i=1}^{n} \log \frac{\mu - \lambda_I}{\lambda_0}, \]
Number of Effective Interfering Packets

- n_i: number of effective interfering packets

\[P(n_i = k) = \sum_{j=k}^{\infty} \pi(j)p(k|j) \]

\[= p(k|k)\pi(k) + \sum_{j=k+1}^{\infty} p(k|j)\pi(k) \]

\[= (1 - \rho)\rho^k(1 - q_0)^k + \sum_{j=k+1}^{\infty} (1 - \rho)\rho^j(1 - q_0)^k q_0 \]

\[= \left(\frac{\lambda_I}{\mu} \right)^k \left(1 - \frac{\lambda_I}{\mu} \right), \quad k = 0, 1, 2, \ldots \]

$q_0 = \frac{\lambda_0}{\lambda_0 + \lambda_I}$: probability a packet belongs to flow 0
Effective Service Time

- $n_i + 1$: geometrically distributed with mean $\mu/(\mu - \lambda_I)$
- Effective service time: sum of $n_i + 1$ independent and exponentially distributed random variable is exponential with mean

$$E(S_i) = 1 \mu E(n_i + 1) = \frac{1}{\mu - \lambda_I}.$$
Multiple Flows

- N: number of flows
- $B = \log N$ bits for address
- Service times are i.i.d. exponentially distributed.
A Lower Bound

- The arrival process of each flow is an independent Poisson process with rate λ_i, $\sum \lambda_i \leq \mu$.
- Consider all other flows as interference.
We have
\[C \geq \sum_i \lambda_i \log \left(\frac{\mu - \sum_{j \neq i} \lambda_j}{\lambda_i} \right). \]

Lower bound is maximized when all users have the same arrival rate.
Maximize over \(\lambda \)
\[C \geq (B - 1 - \log B)\mu. \]
Theorem

- **Theorem:** The timing capacity of the N flows satisfies

\[(B - 1 - \log B)\mu \leq C \leq B\mu.\]

- Upper bound holds because the overall information capacity cannot exceed $B\mu$ for $B \geq 2$ bits.
The Upper Bound

- X^n: information sent through the packets

\[
I(X^n, D^n; X^n, A^n) \\
= I(D^n; X^n, A^n) + I(X^n; X^n, A^n|D^n) \\
\overset{(1)}{=} I(D^n; A^n) + I(X^n; X^n) \\
\overset{(2)}{\leq} \mu B,
\]

- (1): X^n contains no additional information regarding D^n other than that in A^n.
- (2): if $B > 1$ bit, the system capacity is μB.

Timing Capacity of Multiple Flows

• The arrival process of each flow is an independent Poisson process with rate λ, $N \lambda \leq \mu$.

• The lower bound is asymptotically tight.

• Timing capacity increases as the number of flows increases.
A Single Flow

- Each packet has B bits
- All B bits are used to distinguish sub-flows; i.e. there are $N = 2^B$ sub-flows
Timing Capacity of A Single Flow

- We have
 \[(B - 1 - \log B) \mu \leq C_T \leq B \mu.\]

- The timing capacity is close to the server capacity \(B \mu\) bits/sec

- Without splitting, it is 0.5309\(\mu\) bits/sec

- A large amount of information can be conveyed through timing.

- When \(\lambda\) is small, the distortion caused by queueing delay is relatively small.
Covert Information

- Eavesdropper monitors the server, records packets in sequence
Covert Information

- Covert information C_c:
 \[
 C_c = C_T - C_E,
 \]
 - C_T: information rate at the receiver
 - C_E: information rate at the eavesdropper

- Covert information: secrets that cannot be heard by the eavesdropper.
\[
I(A^n, B^m; N^{n+m}, D^{n+m}) \\
= h(A^n, B^m) + h(N^{n+m}, D^{n+m}) \\
- h(A^n, B^m, N^{n+m}, D^{n+m}) \\
\leq h(A^n, B^m) + h(N^{n+m}, D^{n+m}) - h(A^n, B^m, D^{n+m}) \\
= h(A^n, B^m) + h(N^{n+m}, D^{n+m}) - h(A^n, B^m, S^{n+m}) \\
= h(N^{n+m}, D^{n+m}) - h(S^{n+m}) \\
\leq h(D^{n+m}) - h(S^{n+m}) + H(N^{n+m}).
\]
Covert Information Cont’d

- $I(A^n, B^m; N^{n+m}) = H(N^{n+m})$
 - FIFO
 - Eavesdropper located at the input of server.

- Covert information

$$C_c = C_T - C_E$$
$$\leq \frac{\lambda_1 + \lambda_2}{n + m} \left(h(D^{n+m}) - h(S^{n+m}) \right),$$

which is the covert information of a single flow with rate $\lambda_1 + \lambda_2$.
Location of the Eavesdropper
A Special Case
Service Disciplines

- First come first serve: covert information rate cannot be larger than that of a single flow.

- Random service discipline: covert information rate is larger than that of a single flow.
 - Intuition: timing information reduces randomness introduced by the service discipline.
 - Implementation: each packet randomly picks a difserrv class in its header.
Service Disciplines Cont’d

\[I(A^n, B^m; N^{n+m}, D^{n+m}) \]
\[= h(A^n, B^m) + h(N^{n+m}, D^{n+m}) - h(A^n, B^m, N^{n+m}, D^{n+m}) \]
\[= h(A^n, B^m) + h(N^{n+m}, D^{n+m}) - h(A^n, B^m, S^{m+n}, N^{n+m}) \]
\[= h(A^n, B^m) + h(N^{n+m}, D^{n+m}) - h(A^n, B^m, S^{m+n}) \]
\[= h(N^{n+m}, D^{n+m}) - h(S^{m+n}) \]
\[= h(D^{n+m}) - h(S^{m+n}) + h(N^{n+m}). \]
Random Service Discipline

Total information:

\[I(A^n, B^m; N^{n+m}, D^{n+m}) = h(D^{n+m}) - h(S^{n+m}) + h(N^{n+m}) - h(N^{n+m} | A^n, B^m, S^{n+m}) \]

Eavesdropper:

\[I(N^{n+m}; A^n, B^m) = h(N^{n+m}) - h(N^{n+m} | A^n, B^m). \]

Covert information:

\[h(D^{n+m}) - h(S^{n+m}) + h(N^{n+m} | A^n, B^m) - h(N^{n+m} | A^n, B^m, S^{n+m}). \]
Random Service Discipline Cont’d

- \(h(D^{n+m}) - h(S^{n+m}) \) is maximized when the input is Poisson.

- \(h(N^{n+m}|A^n, B^m) - h(N^{n+m}|A^n, B^m, S^{n+m}) \) is positive because \(N^{n+m} \) is not independent of \(S^{n+m} \) conditioned on \((A^n, B^m) \).
Discrete-Time Case

- $N = 2^B$: number of flows
- Geometric service time with mean $1/\mu$:
 $$\mu(B - 1) - \mu \log(B - 1) \leq C \leq \mu B + 1$$
- Deterministic service time (one packet/slot):
 $$(B - 1) - \log(B - 1) \leq C \leq B + 1$$
General Case

- General service-time distribution:
 \[
 \frac{B - 1}{B} \mu \left(B - \log \left(1 + \frac{B \mu^2 E(S^2)}{2} \right) \right) \leq C \leq B \mu + 1,
 \]
 where \(E(S^2) \) is the second moment of the service-time

- Queueing statistics of a general server queue is unknown.

- Basic idea: use waiting time + service time as an upper bound for the effective service time.

- Good approximation for small \(\lambda \).
Conclusion

- An asymptotically tight lower bound on the timing capacity in the presence of interference traffic
- Timing information for multiple flows
 - Continuous case
 - Discrete case
- Coloring increases the timing information conveyed by a single flow.
- The location of the eavesdropper is important. It can significantly decrease the amount of covert information.
\[
\begin{align*}
&h(N^{n+m} | A^n, B^m) - h(N^{n+m} | A^n, B^m, S^{n+m}) \\
&= \sum_{i=1}^{n+m} I(N_i; D^{n+m} | A^n, B^m, N^{i-1}).
\end{align*}
\]

\[
\begin{align*}
&I(N_i; D^{n+m} | A^n, B^m, N^{i-1}) \\
&= \sum_{j=1}^{n+m} I(N_i; D_j | A^n, B^m, D^{j-1}, N^{i-1}) \\
&\geq I(N_i; D_{i-1} | A^n, B^m, D^{i-2}, N^{i-1}) \\
&= \int f(A^n, B^m, D^{i-2}) E \left(\log \frac{p(N_i | D_{i-1}, A^n, B^m, D^{i-2})}{p(N_i | A^n, B^m, D^{i-2})} \right).
\end{align*}
\]

- To show \(I(N_i; D^{n+m} | A^n, B^m, N^{i-1}) \) is positive, we only need to show that with a positive probability
 \(p(N_i = m | D_{i-1}, A^n, B^m, D^{i-2}, N^{i-1}) \neq p(N_i = m | A^n, B^m, D^{i-2}, N^{i-1}) \),
 \(m = 1, 2 \). Consider the case where after the departure of \((i - 2)\)th packet, there is more than 1 packet in the queue. This event happens with a positive probability. Consider two events with positive probabilities: 1) during the service time of the
(i − 1)th packet, no new packet arrives. 2) during the service time of the (i − 1)th packet, one new packet arrives. Apparently, in these two cases, $p(N_i = m|D_{i-1}, A^n, B^m, D^{i-2}, N_i^{i-1})$ is different. Thus, $p(N_i = m|D_{i-1}, A^n, B^m, D^{i-2}, N_i^{i-1}) \neq p(N_i = m|A^n, B^m, D^{i-2}, N_i^{i-1})$ with a positive probability.