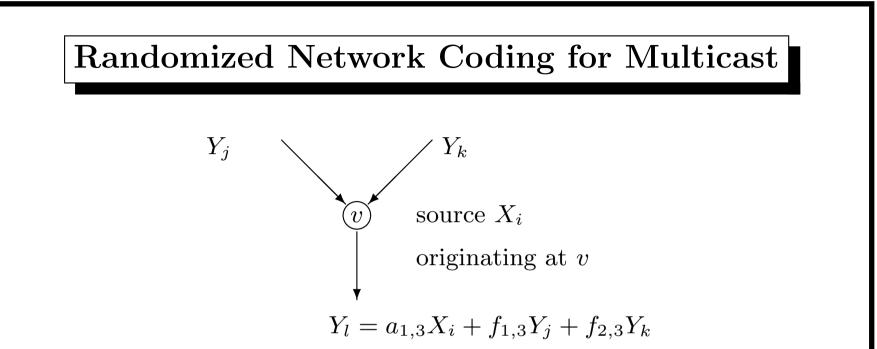
An Overview of the Use of Distributed Mechanisms in Network Coding


Muriel Médard

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

Deb, Effros, Ho, Karger, Koetter, Lun, Médard, Ratnakar

Distributed Methods for Multicast Network Coding

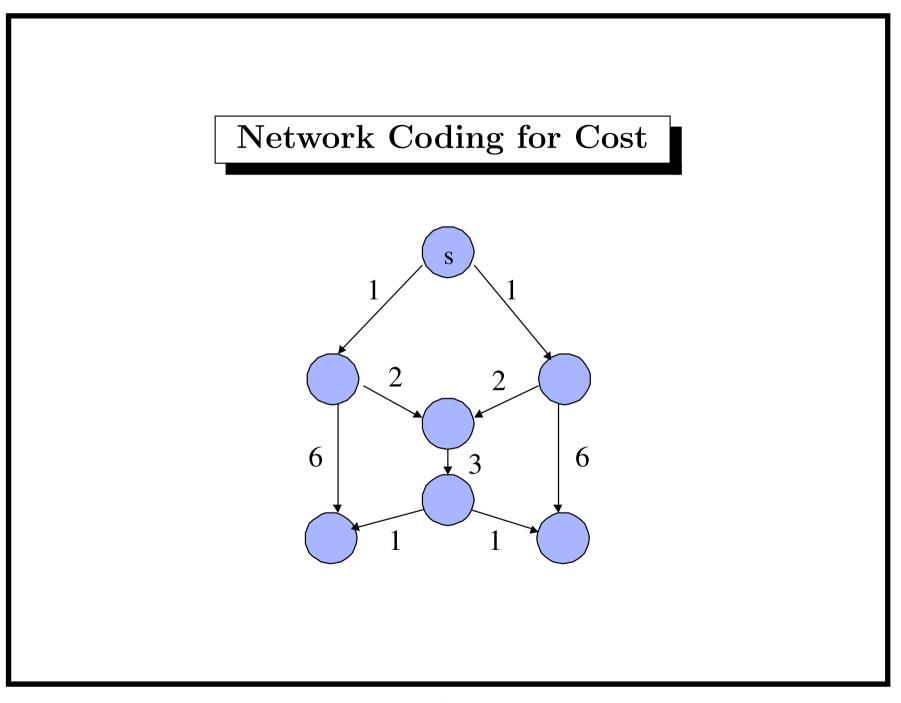
- Can we build codes in a distributed manner?
- Can we have a distributed deployment of network coding that is cost efficient?
- How can we disseminate information in the absence of source information?

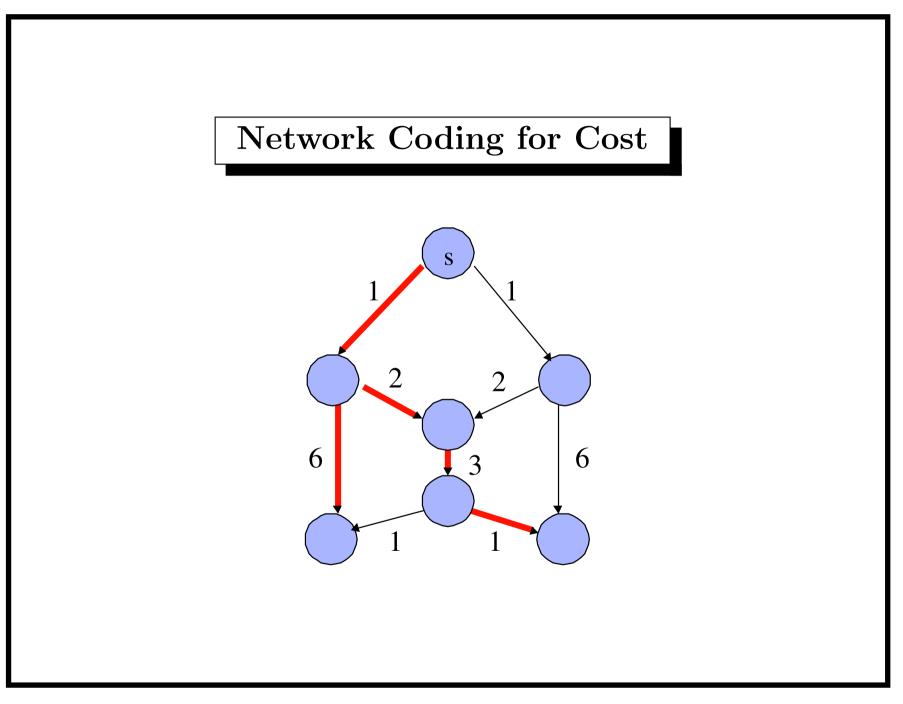
Determining feasibility: min-cut max-flow bound satisfied for each receiver [ACLY00]

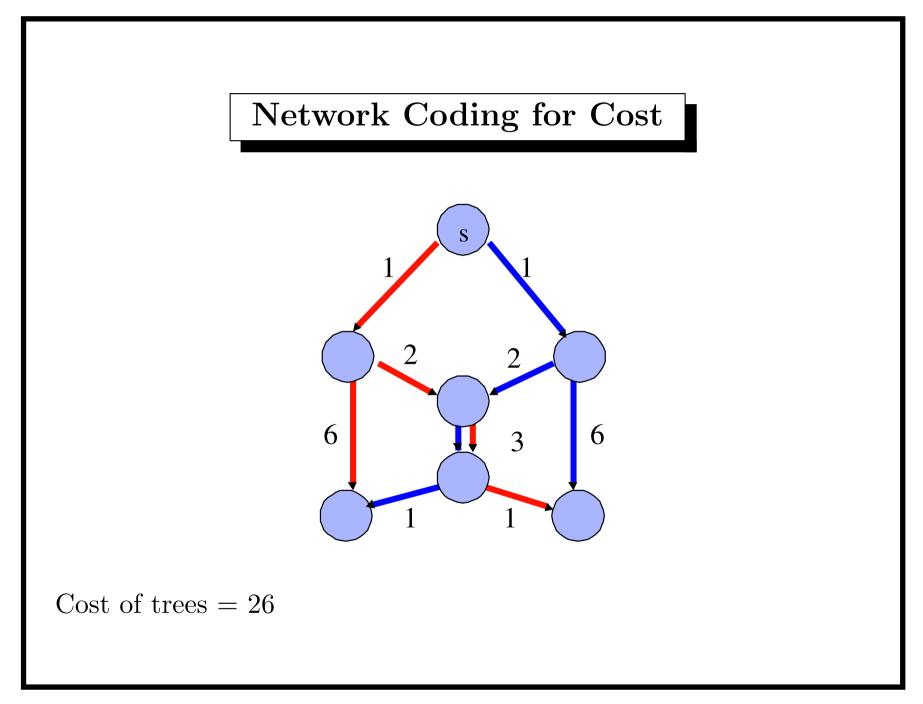
For a feasible *d*-receiver multicast for independent or linearly correlated sources [HKMKE03, HMSEK03, WCJ03]

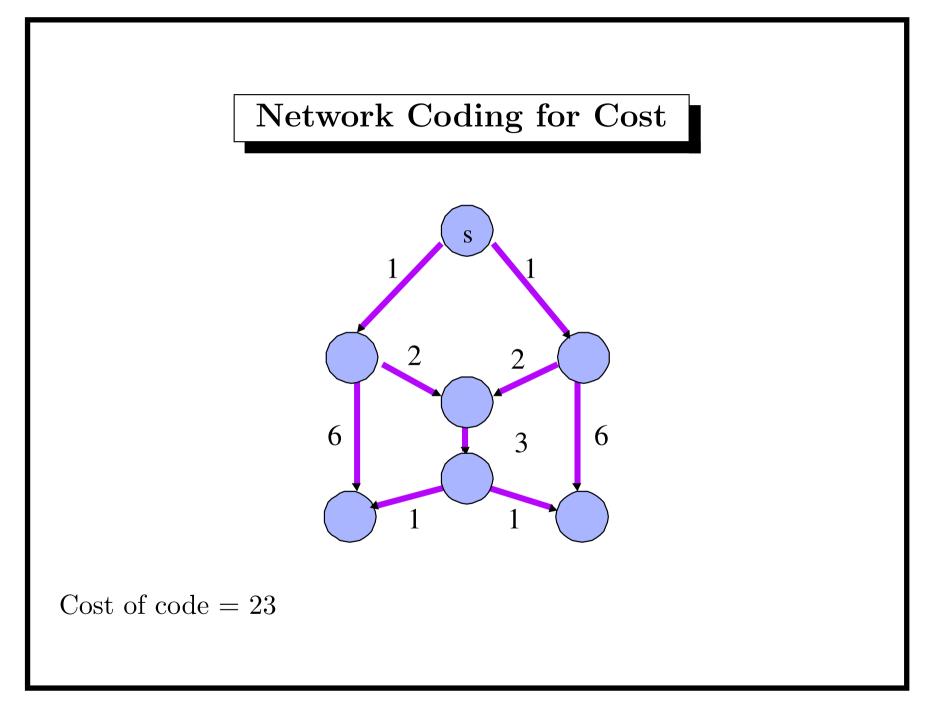
- choose code coefficients $a_{i,j}$, $f_{l,j}$ for η links independently and uniformly over F_q
- success probability is at least $(1 d/q)^{\eta}$ for q > d.

Randomized Network Coding


- Randomized network coding can use any subgraph which satisfies min-cut max-flow bound for each receiver
- Receiver nodes can decode if they receive as many independent linear combinations as the number of source processes
- Differs from traditional networking approaches which first do source/diversity coding followed by routing of coded information
- Closely related to random codes for compression


Random Coding and Robustness


- For multicast recovery, the random code in the **interior** of the network need not be changed [KM01, HMK03]
- Robustness to corruption what happens when a compromised node can transmit nefarious signals? Randomized distributed network coding can be used to achieve Byzantine modification detection using a simple polynomial hash functions included in transmitted packets. The modifications are detected with high probability [HLKMEK04]


Network Coding for Cost

- Random coding in effect decouples routing decisions and code selection decisions in the multicast case
- Are there any true benefits to obtaining a decentralized solution for coding if the choice of subgraphs must itself be centralized?
- Could a decentralized approach, of the Bellman-Ford type, be applied, even though we are not dealing with point-to-point routes?

Network Coding for Cost

- Without coding, the problem of multicast is the Steiner tree problem over dags, possibly with decompositions into several trees
- An immediately attractive approach would be to overlay trees to create codes, attempting to increase overlaps and counting only once several uses of a link - code is built automatically
- Complexity is high and does not make use of distributed random code construction, which works well in practice
- A linear (or convex) program statement of the problem (polynomial-time) can be solved in a **distributed manner** [LMHK04, LRKMLA05]

$$\begin{array}{ll}
\text{minimize} & \sum_{(i,j)\in A} a_{ij} z_{ij} \\
\text{subject to} & z_{ij} \geq x_{ij}^{(t)}, \ \forall \ (i,j) \in A, \ t \in T, \\
& \sum_{\{j|(i,j)\in A\}} x_{ij}^{(t)} - \sum_{\{j|(j,i)\in A\}} x_{ji}^{(t)} = \\
R \text{ if } i = s, \\
-R \text{ if } i = t, \quad \forall \ i \in N, \ t \in T, \\
\end{array}$$
(1)

0 otherwise,

$$c_{ij} \ge x_{ij}^{(t)} \ge 0, \ \forall \ (i,j) \in A, \ t \in T.$$

A LP-based Solution

- The vector z is part of a feasible solution for the LP problem if and only if there exists a network code that sets up a multicast connection in the graph G at rate arbitrarily close to R from source s to terminals in the set T and that puts a flow arbitrarily close to z_{ij} on each link (i, j)
- Proof follows almost immediately from min-cut max-flow necessary and sufficient conditions
- Polynomial-time
- Steiner-tree problem can be seen to be this problem with extra integrality constraints

A Distributed Approach

Consider the dual problem

maximize
$$\sum_{t \in T} q^{(t)}(p^{(t)})$$

subject to $\sum_{t \in T} p_{ij}^{(t)} = a_{ij} \quad \forall \ (i,j) \in A, \qquad (2)$
 $p_{ij}^{(t)} \ge 0 \qquad \forall \ (i,j) \in A, \ t \in T,$

where

$$q^{(t)}(p^{(t)}) = \min_{x^{(t)} \in F^{(t)}} \sum_{(i,j) \in A} p^{(t)}_{ij} x^{(t)}_{ij}, \tag{3}$$

and $F^{(t)}$ is the bounded polyhedron of points $x^{(t)}$ satisfying the conservation of flow constraints and capacity constraints

Subgradient Approach

- Consider a subgradient approach
- Start with an iterate p[0] in the feasible set
- Solve subproblem (3) for each t in T to obtain x[n]

$$p_{ij}[n+1] := \arg\min_{v \in P_{ij}} \sum_{t \in T} (v^{(t)} - (p_{ij}^{(t)}[n] + \theta[n]x_{ij}^{(t)}[n]))^2 \quad (4)$$

for each $(i, j) \in A$, where P_{ij} is the |T|-dimensional simplex

$$P_{ij} = \left\{ v \left| \sum_{t \in T} v^{(t)} = a_{ij}, v \ge 0 \right. \right\}$$

$$(5)$$

and $\theta[n] > 0$ is an appropriate step size

• $p_{ij}[n+1]$ is set to be the Euclidean projection of $p_{ij}[n] + \theta[n]x_{ij}[n]$ onto P_{ij}

Step Size Selection

- $u := p_{ij}[n] + \theta[n]x_{ij}[n]$
- We index the elements of T such that $u^{(t_1)} \ge u^{(t_2)} \ge \ldots \ge u^{(t_{|T|})}$
- Take k^* to be the smallest k such that

$$\frac{1}{k} \left(a_{ij} - \sum_{r=1}^{t_k} u^{(r)} \right) \le -u^{(t_{k+1})} \tag{6}$$

or set $k^* = |T|$ if no such k exists

• Projection is achieved by

$$p_{ij}^{(t)}[n+1] = \begin{cases} u^{(t)} + \frac{1}{k^*} \left(a_{ij} - \sum_{r=1}^{t_{k^*}} u^{(r)} \right) & \text{if } t \in \{t_1, \dots, t_{k^*}\}, \\ 0 & \text{otherwise.} \end{cases}$$
(7)

Distributed Approach - Bringing it Together

- Problem of recovering primal from approximation of dual
- Use approach of [SC96] for obtaining primal from subgradient approximation to dual
- The conditions can be coalesced into a single algorithm to iterate in a distributed fashion towards the correct cost
- There is inherent robustness to change of costs, as in classical distributed Bellman-Ford approach to routing

Application - Wireless Networks

- Omnidirectional antennas when transmitting from node *i* to node *j*, we get transmission to all nodes whose distance from *i* is less than that from *i* to *j* "for free"
- We consider energy efficiency
- We do not consider interference (bursty set-up, for instance)
- We impose an ordering \leq on the set of outgoing links from node *i*, such that $(i, j) \leq (i, k)$ if and only if $a_{ij} \leq a_{ik}$
- Typically, the set of outgoing links from i will be the set of all nodes within a certain, fixed radius of i and the cost a_{ij} of the link between nodes i and j will be proportional to their distance raised to some power α , where $\alpha \geq 2$

LP for Wireless Network

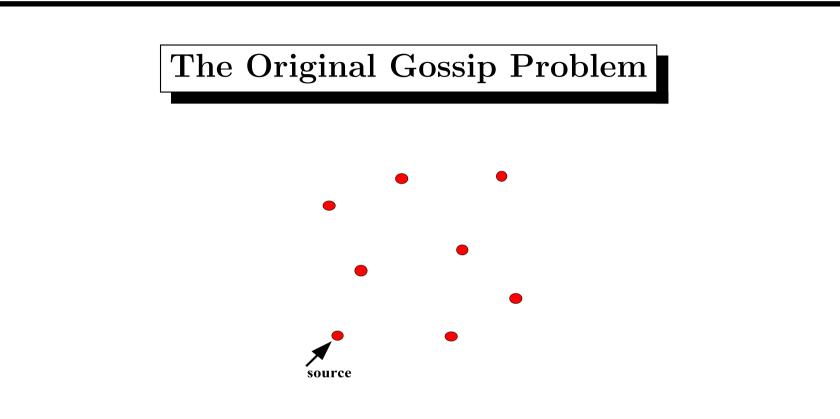
- Owing to the omnidirectionality of the antennas, flow can be pushed from i to j by pushing it to any node k such that
 (i, k) ∈ A and (i, k) ≿ (i, j)
- Thus, the maximum flow $x_{ij}^{(t)}$ that can be pushed for a given t in T is

$$z_{ij} + \sum_{\{k \mid (i,k) \in A, (i,k) \succeq (i,j)\} \setminus \{j\}} (z_{ik} - x_{ik}^{(t)})$$
(8)

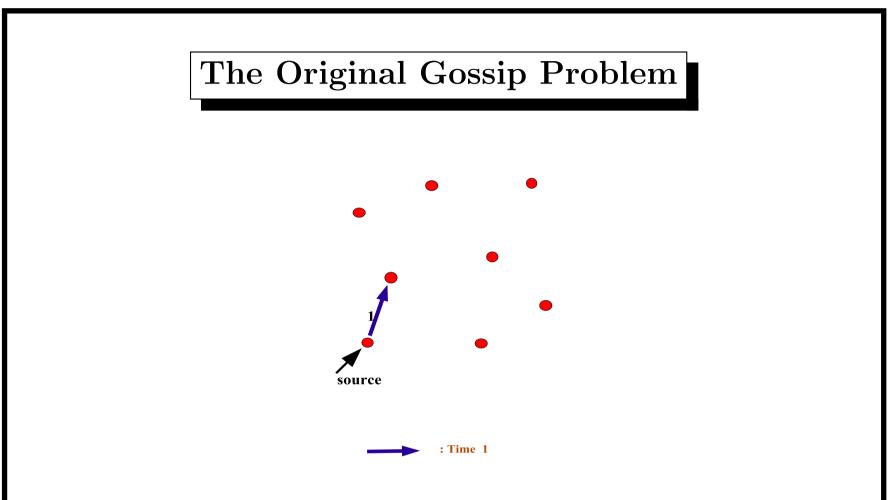
• Hence

$$\sum_{\{k|(i,k)\in A, (i,k)\succeq (i,j)\}} (z_{ik} - x_{ik}^{(t)}) \ge 0$$
(9)

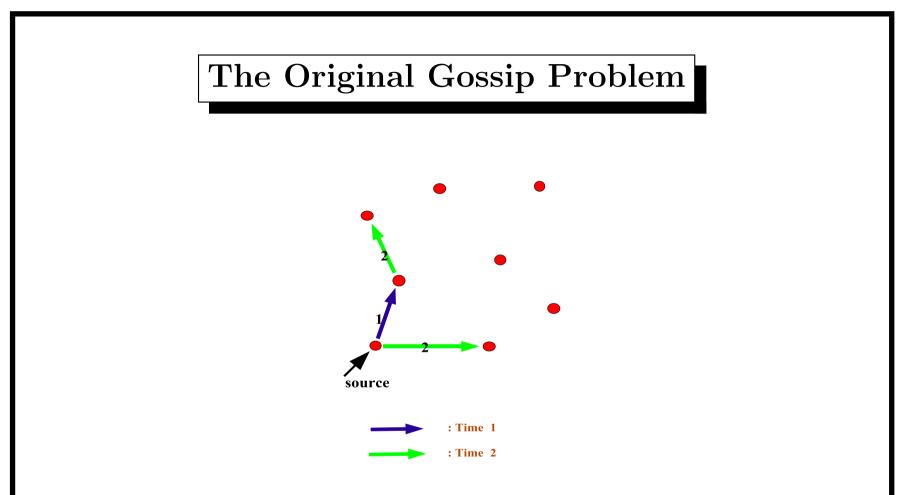
for all $t \in T$.


Usefulness of LP

- We can extend this approach to other types of cost functions, for instant typical cost functions used to represent cost of congestion
- Can use to obtain equivalence of distances in networks, extend minimum first derivative length approaches or other convex cost considerations
- Many open issues: asynchronicity, speed of convergence, compatibility with times associated with routing-based solutions, pricing of resources and economic incentives

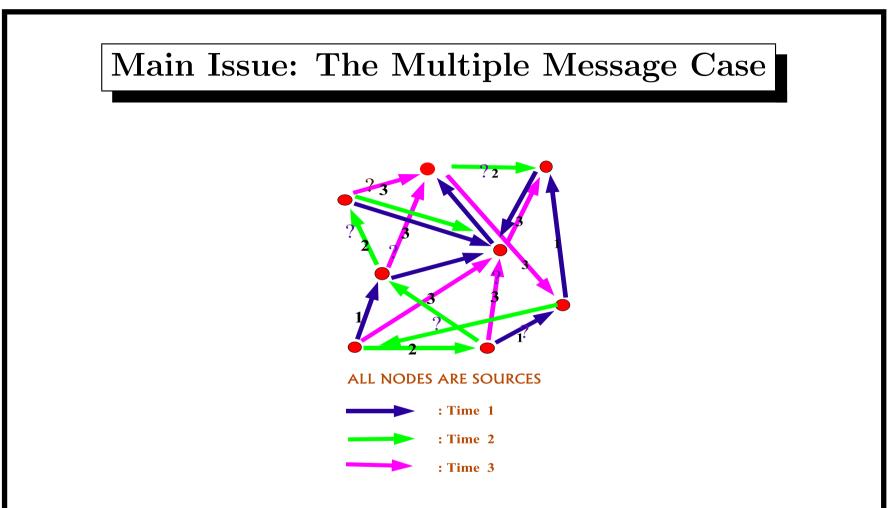

Distributed Sources

Robustness to source location - what happens when the sources of traffic may not be readily identified?


We may apply random network coding for message dissemination in networks, speeding the dissemination of $\Theta(N)$ messages from O(Nlog(N)) to O(N) [DM04]

- A group of N people/nodes. Some body has a message/rumor
- How much time does it take for the rumor to disseminate completely?

- A group of N people/nodes. Some body has a message/rumor
- How much time does it take for the rumor to disseminate completely?


- A group of N people/nodes. Some body has a message/rumor
- How much time does it take for the rumor to disseminate completely?

Our Problem: The Multiple Message Case

- Suppose there are $k = \Theta(N)$ messages to start with
- Every node has only one of the k messages
 Sensor network

File downloading from distributed storage locations in the network

- Goal: To disseminate all the messages among all the nodes
- Can we do better by disseminating the messages simultaneously? How?

- Only one message can be transmitted per communication
- Communication Protocol: What to transmit? Nodes do not know the requirements of the communication partner

Multiple Message Dissemination: A Closer Look

- If there is an omniscient central controller that decides who transmits what, complete dissemination occurs in $\Omega(N)$ rounds
- Takes O(ln(N)) time if entire data-base exchange is allowed (almost the single message framework)
 Assumes unlimited bandwidth between nodes
- Can we disseminate the messages in O(N) transmissions in a decentralized manner?

Nodes only have local knowledge

A sequential approach takes $\Theta(N\ln(N))$ time

A Distributed Random Coding Approach

- O(N) rounds with approach, provided we allow a slight overhead with every transmission. The nodes collect linear combination of the messages, building up **degrees of freedom**
- We allow random algebraic mixing of the messages rather than treating them as mere transportation elements
- An uncoded approach does poorly because:
 Once all the nodes have O(N) messages, a new message is likely to be an old one (coupon collector problem)
 Probability of getting a new message (from virtually any node) goes down with the number of messages collected

Conclusions

- Distributed methods appear to have a natural place in network coding for multicast applications
- Network coding may in effect render several problems for multicasting more easily implemented in a distributed fashion
- Other naturally distributed settings lend themselves well to network coding approaches:
 - distributed storage
 - networks with varying costs
 - networks with erasures