
Optimizing Throughput with
Network Coding
Zongpeng Li, Baochun Li

Department of Electrical and Computer Engineering
University of Toronto

DIMACS Working Group on Network Coding
Rutgers University

January 28, 2005

URL: google “Baochun”

Outline
From practice to theory

The problem of optimizing
throughput

A matrix of problems

Does network coding really help?

From theory to practice

The problem of
optimizing throughput

(from practice to theory)

Maximizing throughput

Given an existing network topology and
capacities, how to maximize throughput
between the source and the receivers?

Past work from systems research:
Digital Fountain (SIGCOMM 98 and 02):
uses fountain codes to improve
throughput
SplitStream (SOSP 03): uses multiple
multicast trees
BitTorrent: responsible for a fair amount
of Internet traffic (rumor: 30%)

Network Flows
The problem of maximizing throughput
naturally corresponds to the problem of
finding maximum flow rates in a capacitied
network:

Single unicast session: unicommodity flows
Multiple unicast sessions: multicommodity
flows

But a node in a realistic network can do more
than simply forwarding data

Replicating data for multiple downstream
nodes: multicas%
Encoding and decoding data: network coding

topology con-
finement

respect link
cap.

replicable encodable

info. flow yes yes yes yes

fluid flow yes yes no no

T1 T2

S

T1 T2

S

T

ba

1 T2

a b

a+b

a+b a+b

a b

S

T1 T2

S

T1 T2

S

T1 T2

S

a

a a

replication
point

encoding
point

Figure 1: Multicast rates with information replication and information
encoding.

19

Given a source and a group of receivers, what is the
maximum throughput one can achieve in a network
topology with known link capacities?

is indeed to facilitate significantly more efficient computation

of the strategies to achieve optimal throughput of information

flows. Our empirical studies also show that overlay multicast,

which has recently attracted extensive research efforts, may

approach optimal throughput quite well.

The remainder of this paper is organized as follows. We first

discuss related work in Sec. II. In Sec. III, we present our main

theorems and algorithm with respect to achieving optimal end-

to-end throughput with a single multicast session. In Sec. IV,

we extend our results to the cases of multiple sessions of

unicast, multicast, broadcast, and group communication. We

also consider the model of overlay networks, where only a

subset of nodes are capable of replication and coding. We then

present empirical studies in Sec. V, and conclude the paper in

Sec. VI.

II. RELATED WORK

The open problem of achieving optimal end-to-end through-

put with efficient algorithms has not been discussed in depth

in existing literature. There exist, however, similar problems

that have been extensively studied. Towards the direction of

Quality of Service (QoS) routing, the objective is to find end-

to-end paths or multicast trees that satisfy specific bandwidth

or delay constraints, and therefore providing the desired QoS

guarantees [6]. With respect to end-to-end throughput, finding

good topologies that satisfy bandwidth requirements is obvi-

ously different from — and arguably easier than — finding

optimal ones.

There exists an extensive body of research in the area of

multicast routing in wide-area IP networks (e.g., [7]). The

advantage of IP-based multicast is brought by data packet

replication on multicast-capable switches, improving band-

width efficiency and throughput compared to all (naive) unicast

between the source and the multicast receivers. However, since

it is based on the construction of a single tree, the end-to-end

throughput is not optimal compared to what is achievable by

a topology beyond a tree.

As IP multicast is not readily deployed, algorithms pro-

moting application-layer overlay multicast have recently been

proposed as remedial solutions, focusing on the issue of

constructing and maintaining a multicast tree using only end

hosts [8], [9]. Though a single multicast tree may not lead to

optimized throughput, recent studies (e.g., SplitStream [10],

CoopNet [11], Digital Fountain [12] and Bullet [13]) have

proposed to utilize either multiple multicast trees (forest) or a

topological mesh to deliver striped data from the source, using

either multiple description coding or source erasure codes to

split content to be multicast. These proposals have indeed

improved end-to-end throughput beyond that of a single tree,

but there have been no discussions on whether the optimal

throughput may be achieved, or how close the proposed

algorithms approach optimality. In this paper, we study such

achievable optimality, while considering the most general case

where the data source transmits a stream of bytes, and is not

assumed to perform any source or error correction coding.

There have been studies on achieving optimality with

respect to computing oblivious routing strategies in data

networks. The objectives are to maximize throughput for a

source-destination pair, and to minimize congestion on the

network. Most notably, using linear programming techniques,

polynomial time algorithms (with a polynomial number of

variables and constraints in the LP formulation) can be con-

structed to compute strategies for optimal oblivious routing for

any network, directed or undirected [14]. Though we also em-

ploy linear optimization tools and study undirected networks,

our problem domain is more general: while optimal oblivious

routing focuses on origin-destination pairs of unicast sessions

(possibly exploiting path diversity), we focus on a variety of

communication sessions, including unicast, multicast, broad-

cast and group communication. We seek fundamental insights

on how optimal a routing strategy may become, and what is the

maximum achievable throughput in a communication session.

The theory of network flows studies the transmission of

commodities of the same type (unicommodity flows) through

a capacitied network. The maximum flow rate between the

source and the destination which may be computed with vari-

ous efficient combinatorial algorithms [2]. When commodities

to be transmitted are of different types (multicommodity

flows), computing the maximum flow rate can be solved as

a linear optimization problem. In both unicommodity and

multicommodity flows, commodities may only be forwarded at

intermediate nodes, comparable to all unicast in data networks.

The concept of network coding extends the capabilities of

network nodes in a communication session: from basic data

forwarding (as in all unicast) and data replication (as in IP or

overlay multicast), to coding in Galois fields. Fig. 1 illustrates

a classic example of how network coding assists to improve

end-to-end throughput. As R1 receives both a and a + b
(encoded over GF(2)), it is able to decode and retrieve both

a and b. If the link capacities are 1, the maximum achievable

throughput with network coding is 2. Without coding, it can
be computed that the optimal throughput is 1.875 [3]. If only
one multicast tree is used (as in IP multicast), the achieved

throughput is 1.

S

R

a a

a a

1 R2

(a) Maximum throughput with one multicast
tree is 1(1.875 with multiple trees).

S

R

a b

a

a

b

ba+b

a+b a+b

1 R2

(b) Maximum throughput with
network coding is 2.

Fig. 1. The advantage of network coding with respect to improving the
end-to-end multicast throughput from S to R1 and R2.

The recent breakthrough theorem in network coding shows

that, for a multicast session in directed networks, if a rate

x can be achieved from the sender to each of the multicast

receivers independently, it can also be achieved for the entire

multicast session (refer to independent proofs of Ahlswede

Ahlswede et al. and Koetter et al.: for a multicast
communication session in a directed network, if a rate x
can be achieved to each receiver independently, it can
also be achieved for the entire session.

Coded Multicast Throughput in Directed Networks

Ahlswede et al. and Koetter et al.:
For a multicast transmission in a directed network, a rate x that can
be achieved for each receiver independently can be achieved for the
whole session, with appropriate routing and coding strategies.

Well-known example:

T1 T2

S

T1 T2

S

T

ba

1 T2

a b

a+b

a+b a+b

a b

S

2

Directed vs. Undirected Networks

Bidirectional links:

A more general, and “harder” model than
directed networks

Results in directed settings no longer hold:

The Undirected Network Model

• Bidirectional links.

• f(
−→
AB) + f(

−→
BA) ≤ Cap(AB).

• A more general, and “harder” model.

• Result in directed settings no longer holds. A simple
counter example:

m
0

m
1

m
2

3

4

m
0

m
0

m
0

m
1 m

1
m

1
m

2
m

2
m

20.5

0.5

1 1 ab ac

bc

(a) A partition. (b) Optimal throughput with

network coding is 1.5.

(c) Optimal throughput without

network coding is also 1.5.

Fig. 3. A counter-example on the effects of network coding in undirected net-
works. The independently achievable throughput is 2 for both m1 and m2, but
the multicast throughput is only 1.5 with or without network coding.

a multicast session. To understand this infeasibility, consider a

partition, shown in Fig. 3(a), that divides the network into three

components. In order to achieve a multicast throughput of x, it
is necessary to have a capacity of x to concurrently flow into

the m1 and the m2 component, respectively. Since the inter-

component capacity is 3 (three unit-capacity links being cut), we
have 2x ≤ 3. The optimal throughput is therefore upper bounded
by 1.5, even with network coding.
In this example, our informal intuition corresponds to the con-

cept of steiner strength. Formally, in an undirected network N ,
we consider partitions of the network where there exists at least

one source or receiver node in each component of the partition.

Let P be the set of all such partitions. The steiner strength of

N is defined as minp∈P |Ec|/(|p| − 1), where |Ec| is the total
inter-component capacity on the set of linksEc being cut, and |p|
is the number of components in the partition p. In our example,
the steiner strength is 3/2 = 1.5.
Our discussions so far have effectively led to Theorem 1 —

in the case of a single multicast session, the achievable optimal

throughput is in between the steiner tree packing number and the

steiner strength in undirected data networks.

Theorem 1. For an undirected data network with a single

multicast session, N = {G(V,E), C : E → Q+,M =
{m0,m1, . . . ,mk} ⊆ V }, we have

π(N) ≤ χ(N) ≤ η(N)

where π(N) is the steiner tree packing number, χ(N) is the
achievable optimal throughput, and η(N) is the steiner strength.

Proof: First, optimal throughput obtained without coding is al-

ways feasible when coding is supported — one just ignores net-

work coding and applies the same routing strategy as in the case

without coding. Thus, throughput with coding is lower bounded

by throughput without coding, and π(N) ≤ χ(N). Second, as
argued in the previous example, the partition condition is neces-

sary for a certain multicast throughput to be feasible. Therefore

multicast throughput is upper bounded by steiner strength, and

χ(N) ≤ η(N). %&
Though the inequality in π(N) ≤ χ(N) can not be replaced

by equality in general (an obvious counter-example is shown in

Fig. 2), one naturally wonders if χ(N) = η(N) is true, i.e., if the
optimal throughput is equivalent to its upper bound— the steiner

strength of the network. If this conjecture holds in general, it

would be a nice max-min characterization that essentially ren-

ders both the optimal throughput problem and the steiner strength

problem Co-NP1. Given that the optimal throughput problem is

1The reason is that, the existence of a partition with |Ec|/|p| − 1 = x can
serve as a short certificate for the claim that no transmission strategy may achieve
a higher multicast throughput than x, and vice versa.

apparently NP, if it is also Co-NP, it usually implies the existence

of an efficient solution.

If we further study our example, we can show that steiner

strength may be precisely achieved by using the directed network

shown in Fig. 3(b), obtained by appropriately orienting the undi-

rected links. Using the main theorem of network coding in di-

rected networks, the optimal multicast throughput is 1.5 to both
m1 and m2. In addition, if we compute the achievable optimal

throughput without coding using steiner tree packing, since we

can optimally pack 3 trees (annotated with letters, with the tree a
highlighted) with a weight of 0.5 in each, the result is also 1.5.
The favorable properties of this example are, in fact, due to its

broadcast nature: all nodes in the network are in the multicast

group. It is known that in the special case of a single broadcast

session where the source transmits to all nodes, steiner tree pack-

ing degrades to spanning tree packing, and steiner strength is re-

named to network strength. The good news is that, the spanning

tree packing number is always equal to the network strength in

the case of broadcast, independently proved by Tutte [22] and

Nash-Williams [23]. It can be derived from Theorem 1 that,

π(N) = χ(N) = η(N) in the broadcast case.
However, we have investigated the complexity of the steiner

strength problem, and find it to be — unfortunately — NP-

complete, as proved in Theorem 2.

Theorem 2. The steiner strength problem is NP-complete.

Proof: We present a brief outline of the proof. We can re-

duce another well-known NP-complete problem, max cut [24], to

the steiner strength problem in polynomial time. The reduction

works in essentially the same way as the one given by Dahlhaus

et al., in their NP-completeness proof for the multiterminal cut

problem [25]. We observe that in the instance graph constructed

in their proof, the optimal multiterminal cut always leads to the

minimum |Ec|/(|p|−1) ratio, and is therefore always the optimal
partition that corresponds to the steiner strength value of the net-

work. Since the max cut in the original graph corresponds to the

optimal multiterminal cut, it also corresponds to the optimal par-

tition for the steiner strength. The remaining steps of the proof

can be found in [25] and are omitted in this paper. %&
It immediately becomes unlikely for optimal throughput to

be equal to steiner strength in general, since this implies that

the steiner strength problem is both Co-NP and NP-complete,

and such problems are not believed to exist. Still, it is exceed-

ingly hard to find a specific counter-example where the optimal

throughput is not equal to the steiner strength. Fig. 4 shows one

of the counter-examples that we have found, in which case the

steiner strength is 14. We will later show that the achievable

optimal throughput is 13.5. With this counter-example, we can
conclude that neither of the inequalities in Theorem 1 can be re-

placed by equality in general.

Though both steiner tree packing and steiner strength are natu-

ral research directions towards optimal throughput and offer tight

bounds to the problem, they are computationally intractable. It

seems to suggest that computing the optimal throughput and its

corresponding transmission strategies may also be computation-

ally intractable in general. Our search for efficient solutions to

achieve optimal throughput continues.

Fractional vs. integral routing

Fractional routing: link capacities can
be shared fractionally, and flows can be
split and merged in arbitrarily fine scales

Integral routing: all link capacities and
flow rates have integer values

4

capacities, then each node has an even degree after doubling link

capacities. Furthermore, a split-off operation does not affect the

parity of the degree of any node in the network. Therefore the

Undirected Splitting Theorem guarantees that as long as there

are relay nodes that are not cut nodes, operation (1) is possible.

Furthermore, operation (1) does not increase π(N). Therefore, if
1
2λ(N) ≤ π(N) holds after applying operation (1), it holds be-
fore applying operation (1) as well. Operation (2) does not affect

either π(N) or λ(N). So, again we can claim that for opera-

tion (2), if 1
2λ(N) ≤ π(N) holds after applying the operation, it

holds before applying the operation as well.

As long as there are relay nodes in the multicast network, at

least one of the two operations can be applied. If both operations

are possible, operation (1) takes priority. Since each operation

reduces the number of relay nodes by one, eventually we obtain

a broadcast network. By Theorem 2, 1
2λ(N) ≤ π(N) holds.

Finally, note that we obtained an integral transmission strategy

achieving throughput 1
2λ(N), after doubling each link capacity.

Therefore, after we scale the solution back by a factor of 1
2 , the

transmission strategy is half-integral. "#
Corollary 3. For a multicast transmission in an undirected net-

work, the coding advantage is upper-bounded by a constant factor

of two, as long as half-integer routing is allowed.

Proof: By Theorem 3, 1
2λ(N) ≤ π(N) and χ(N) ≤ λ(N) as

long as half integer routing is allowed. Therefore we conclude
1
2χ(N) ≤ π(N), i.e., the coding advantage χ(N)/π(N) ≤ 2.

"#
S

R

ab

1 R2

S

R1 R2

ab

bc

bc

ac ac

ace
12 bdf23

acde abdf

a
d
e
1
2

b
c
e
f

a
d
f2

3

bcf13 bce13

(a) Half-integer routing,
 optimal throughput = 1.5.

(b) Arbitrary fractional routing,
 optimal throughput = 1.875.

Fig. 3. Throughput without coding, for the example shown in Fig.1.

Fig. 3 shows the optimal throughput without coding of the

multicast session given in Fig. 1, assuming half-integral routing

and arbitrarily fractional routing respectively, with the network

being undirected. Links labeled with the same letter or number

form a steiner tree. For example, the tree labeled with ‘a’ has

been highlighted in bold edges. In (a), each tree has capacity 0.5;

in (b), trees labeled with a letter have capacity 0.25, and trees

labeled with a number have capacity 0.125. As a result, uncoded

throughput achieved is 1.5 in (a) and 1.875 in (b) respectively,

by transmitting a flow along each steiner tree, with the flow rate

equal to the tree capacity. Since optimal throughput with coding

is 2, the corresponding coding advantages are 1.333 and 1.067,

respectively.

IV. SOURCE INDEPENDENCE IN UNDIRECTED NETWORKS

In this section, we show that the achievable throughput for a

multicast transmission does not depend on which node in the

multicast group acts as the sender. In other words, if we move

the information source from one node in the multicast group onto

another, the optimal coded throughput remains unchanged. First,

note that such a property does not hold in directed networks,

where the connectivity between two nodes can be arbitrarily dif-

ferent in two directions. Second, it is rather obvious that this

property holds for multicast without coding. The uncoded mul-

ticast problem is equivalent to the steiner tree packing problem,

and the packing number is defined upon the network topology

and the steiner set, regardless of which node in the steiner set is

the “sender”.

However, with network coding considered, it is less obvious

whether the source independence property still holds. In Theo-

rem 4, we show that it is the case.

Theorem 4. The optimal throughput of a multicast transmission

in an undirected network is completely determined by the net-

work topology, the link capacities, and the multicast group; it is

not dependent on the selection of the sender within the multicast

group.

A

B

C

A

B

C

Fig. 4. Two scenarios of reversing the A→B flow. Darker links are being
reversed.

Proof: The proof we present below is based on the following

fact: a directed multicast transmission is feasible if and only if

it satisfies all the simple cut conditions [2].

Suppose we exchange the sender and receiver roles between

two multicast nodes A and B, and the optimal throughput before
the exchange is f . Consider reversing the A→B flow, which has

rate f . We show that after the reversal, simple cut conditions

are still satisfied. Let C be another multicast node. Consider a

cut that separates B and C. There are two cases, either A is in

the same partition as B, or A is in the same partition as C, as
shown in Fig. 4. In the first case, we have net flow of rate f
traversing the cut from the AB component to the C component

before the reversal, and an equal amount of flow in both direc-

tions will be reversed; therefore after the reversal, we still have

the same amount of flow going from the AB component towards

the C component. In the second case, similarly, the total flow go-

ing from the AC component towards the B component is f be-
fore the reversal, and all flows crossing the cut will be reversed.

Therefore, after the flow reversal, we have flows of strength f
going from the B component towards the AC component. "#
Our proof also shows that, after the information source is

moved, the same multicast throughput can be achieved with ex-

actly the same bandwidth consumption on each link. Therefore,

we can derive the following corollary:

Corollary 4. A multicast rate is feasible if and only if it is feasi-

ble with the information source separated into independent sub-

sources and redistributed among the multicast group.

Steiner tree packing
Steiner tree packing: decompose the network into
weighted steiner trees, such that the total tree weight is
maximized, and the capacity constraints are not
violated.

3

achievable throughput with network coding is 2. Without cod-
ing, it can be computed that the optimal throughput is 1.875. If
only one multicast tree is used (as in IP multicast), the achieved

throughput is 1.
The recent breakthrough theorem in network coding shows

that, for a multicast session in directed networks, if a rate x can be
achieved from the sender to each of the multicast receivers inde-

pendently, it can also be achieved for the entire multicast session

(refer to independent proofs of Ahlswede et al. [5] and Koetter

et al. [6]). In addition, Li et al. [20] show that linear codes suf-

fice to achieve such a property. All linear coding operations are

defined as linear combinations over Galois fields with fixed el-

ement lengths, thus the size of the data does not increase after

being encoded. The power of network coding comes from the

difference between information flows and traditional commod-

ity flows: information may not only be replicated, but also be

coded and forwarded without increases in size, which are impos-

sible with commodities. As a consequence, the theory of network

flows may only be used to study unicast communication sessions

in data networks. This paper seeks to design efficient solutions

for the problem of achieving optimal throughput in general, and

network coding is one of the avenues leading to such an objec-

tive.

III. ACHIEVING OPTIMAL THROUGHPUT IN UNDIRECTED

DATA NETWORKS: THE SINGLE MULTICAST CASE

We begin our theoretical study from the case of a single mul-

ticast session. We consider the most general form of data net-

works, represented by a simple graph G = (V,E) with undi-
rected edges between network nodes. Each edge represents a

communication link, and the edge capacities are specified by a

function C : E → Q+ (where Q+ denotes the set of positive ra-

tional numbers), representing the available bandwidth capacities

of communication links. Throughout this paper, we focus on the

fractional model of data routing, where the capacity of each link

may be shared fractionally in both directions, and information

flows may be split and merged at arbitrarily fine scales.

Now consider a single multicast communication session. We

use M = {m0,m1, . . . ,mk} ⊆ V to specify the set of nodes

involved in the multicast communication, withm0 being the data

source. In graphical illustrations throughout this paper (e.g.,

Fig. 1), nodes in M are shown as black, and nodes in V − M
are shown as white. Links are labeled with their capacities, and

all unlabeled links have a capacity of 1.

A. Optimal throughput without coding: steiner tree packing

To achieve optimal throughput in undirected data networks in

general, a natural direction is to first consider the problem of

achieving optimal throughput without coding, but with data repli-

cation on network nodes (as in IP multicast). This problem is

equivalent to the graph theoretic problem of steiner tree packing

[2], [21].

A steiner tree is a sub-tree of the network that connects ev-

ery multicast node. In the steiner tree packing problem, we seek

to decompose the network into weighted steiner trees, such that

the total of tree weights is maximized, referred to as the steiner

tree packing number. A link e may appear in a set of different

steiner trees, T ; but it is required that
∑

t∈T c(t) ≤ c(e) (where
c(t) is the weight of tree t), i.e., the total weights of trees using
a common edge e should not exceed the capacity of e. Without
network coding, a solution to steiner tree packing leads to a spe-

cific strategy to achieve optimal multicast throughput, since we

can transmit a data stream of throughput c(t) along each steiner
tree t, and the resulting throughput is precisely the total weights
of all trees.

To illustrate how steiner tree packing corresponds to achiev-

able optimal throughput without coding, we show an example

in Fig. 2(a). In the illustration, each letter corresponds to a dis-

tinct steiner tree that connects the multicast group, consisting of

m0,m1,m2 and m3. Nine such steiner trees exist in the shown

packing scheme (from a to i), where the tree corresponding to a
is highlighted. Since each link with unit capacity needs to accom-

modate 5 steiner trees, the achievable throughput on each tree is,
therefore, 0.2. This leads to a multicast throughput of 1.8, which
is optimal without coding.

a

a

a

b

b b

a+b

a+b

a+b

m1

m0

m2m3

abcd
i

defgh

a
fg

h
i

abcdi

a
b
c
d
i

b
d
e
fh

befg
h

acegi cefgh

m1

m0

m2
m3

(a) steiner tree packing and

multicast without coding.

(b) multicast with network coding.

Fig. 2. The achievable optimal throughput is 1.8 without coding, and 2 with
coding.

Unfortunately, steiner tree packing has been shown to be NP-

complete and APX-hard [2], [4], and the best known polynomial

time algorithm has an approximation ratio of around 1.55 [3]. It
is not sufficiently accurate to be used in practice. On the brighter

side, with the same example, we also show that the achievable

optimal throughput with network coding is 2 (Fig. 2(b)), which
is higher than that achieved without coding.

B. Optimal throughput with coding: bounds and complexities

Since network coding may lead to higher optimal throughput,

we turn our focus on the problem of achieving optimal through-

put with coding, and consider the steiner tree packing number as

a natural lower bound. With coding, our first attempt towards a

solution is to apply the breakthrough theorem of network cod-

ing in directed networks, which reveals that if a rate x can be
achieved for each receiver in the group independently, it can also

be achieved for the entire multicast session. It implies that we

may compute the optimal throughput achievable in the session by

finding the minimum of the maximum flow rates from the source

to each of the receivers, where the maximum flow rates may be

efficiently computed by any of the polynomial time maximum

flow algorithms.

Unfortunately, this theorem is not valid in undirected net-

works. Fig. 3 shows a counter-example. In the example, if the

source m0 sends to either m1 or m2 independently, the achiev-

able throughput is 2. However, it is impossible to achieve a

throughput of 2 from m0 to both m1 and m2 simultaneously in

3

achievable throughput with network coding is 2. Without cod-
ing, it can be computed that the optimal throughput is 1.875. If
only one multicast tree is used (as in IP multicast), the achieved

throughput is 1.
The recent breakthrough theorem in network coding shows

that, for a multicast session in directed networks, if a rate x can be
achieved from the sender to each of the multicast receivers inde-

pendently, it can also be achieved for the entire multicast session

(refer to independent proofs of Ahlswede et al. [5] and Koetter

et al. [6]). In addition, Li et al. [20] show that linear codes suf-

fice to achieve such a property. All linear coding operations are

defined as linear combinations over Galois fields with fixed el-

ement lengths, thus the size of the data does not increase after

being encoded. The power of network coding comes from the

difference between information flows and traditional commod-

ity flows: information may not only be replicated, but also be

coded and forwarded without increases in size, which are impos-

sible with commodities. As a consequence, the theory of network

flows may only be used to study unicast communication sessions

in data networks. This paper seeks to design efficient solutions

for the problem of achieving optimal throughput in general, and

network coding is one of the avenues leading to such an objec-

tive.

III. ACHIEVING OPTIMAL THROUGHPUT IN UNDIRECTED

DATA NETWORKS: THE SINGLE MULTICAST CASE

We begin our theoretical study from the case of a single mul-

ticast session. We consider the most general form of data net-

works, represented by a simple graph G = (V,E) with undi-
rected edges between network nodes. Each edge represents a

communication link, and the edge capacities are specified by a

function C : E → Q+ (where Q+ denotes the set of positive ra-

tional numbers), representing the available bandwidth capacities

of communication links. Throughout this paper, we focus on the

fractional model of data routing, where the capacity of each link

may be shared fractionally in both directions, and information

flows may be split and merged at arbitrarily fine scales.

Now consider a single multicast communication session. We

use M = {m0,m1, . . . ,mk} ⊆ V to specify the set of nodes

involved in the multicast communication, withm0 being the data

source. In graphical illustrations throughout this paper (e.g.,

Fig. 1), nodes in M are shown as black, and nodes in V − M
are shown as white. Links are labeled with their capacities, and

all unlabeled links have a capacity of 1.

A. Optimal throughput without coding: steiner tree packing

To achieve optimal throughput in undirected data networks in

general, a natural direction is to first consider the problem of

achieving optimal throughput without coding, but with data repli-

cation on network nodes (as in IP multicast). This problem is

equivalent to the graph theoretic problem of steiner tree packing

[2], [21].

A steiner tree is a sub-tree of the network that connects ev-

ery multicast node. In the steiner tree packing problem, we seek

to decompose the network into weighted steiner trees, such that

the total of tree weights is maximized, referred to as the steiner

tree packing number. A link e may appear in a set of different

steiner trees, T ; but it is required that
∑

t∈T c(t) ≤ c(e) (where
c(t) is the weight of tree t), i.e., the total weights of trees using
a common edge e should not exceed the capacity of e. Without
network coding, a solution to steiner tree packing leads to a spe-

cific strategy to achieve optimal multicast throughput, since we

can transmit a data stream of throughput c(t) along each steiner
tree t, and the resulting throughput is precisely the total weights
of all trees.

To illustrate how steiner tree packing corresponds to achiev-

able optimal throughput without coding, we show an example

in Fig. 2(a). In the illustration, each letter corresponds to a dis-

tinct steiner tree that connects the multicast group, consisting of

m0,m1,m2 and m3. Nine such steiner trees exist in the shown

packing scheme (from a to i), where the tree corresponding to a
is highlighted. Since each link with unit capacity needs to accom-

modate 5 steiner trees, the achievable throughput on each tree is,
therefore, 0.2. This leads to a multicast throughput of 1.8, which
is optimal without coding.

a

a

a

b

b b

a+b

a+b

a+b

m1

m0

m2m3

abcd
i

defgh

a
fg

h
i

abcdi

a
b
c
d
i

b
d
e
fh

befg
h

acegi cefgh

m1

m0

m2
m3

(a) steiner tree packing and

multicast without coding.

(b) multicast with network coding.

Fig. 2. The achievable optimal throughput is 1.8 without coding, and 2 with
coding.

Unfortunately, steiner tree packing has been shown to be NP-

complete and APX-hard [2], [4], and the best known polynomial

time algorithm has an approximation ratio of around 1.55 [3]. It
is not sufficiently accurate to be used in practice. On the brighter

side, with the same example, we also show that the achievable

optimal throughput with network coding is 2 (Fig. 2(b)), which
is higher than that achieved without coding.

B. Optimal throughput with coding: bounds and complexities

Since network coding may lead to higher optimal throughput,

we turn our focus on the problem of achieving optimal through-

put with coding, and consider the steiner tree packing number as

a natural lower bound. With coding, our first attempt towards a

solution is to apply the breakthrough theorem of network cod-

ing in directed networks, which reveals that if a rate x can be
achieved for each receiver in the group independently, it can also

be achieved for the entire multicast session. It implies that we

may compute the optimal throughput achievable in the session by

finding the minimum of the maximum flow rates from the source

to each of the receivers, where the maximum flow rates may be

efficiently computed by any of the polynomial time maximum

flow algorithms.

Unfortunately, this theorem is not valid in undirected net-

works. Fig. 3 shows a counter-example. In the example, if the

source m0 sends to either m1 or m2 independently, the achiev-

able throughput is 2. However, it is impossible to achieve a

throughput of 2 from m0 to both m1 and m2 simultaneously in

3

achievable throughput with network coding is 2. Without cod-
ing, it can be computed that the optimal throughput is 1.875. If
only one multicast tree is used (as in IP multicast), the achieved

throughput is 1.
The recent breakthrough theorem in network coding shows

that, for a multicast session in directed networks, if a rate x can be
achieved from the sender to each of the multicast receivers inde-

pendently, it can also be achieved for the entire multicast session

(refer to independent proofs of Ahlswede et al. [5] and Koetter

et al. [6]). In addition, Li et al. [20] show that linear codes suf-

fice to achieve such a property. All linear coding operations are

defined as linear combinations over Galois fields with fixed el-

ement lengths, thus the size of the data does not increase after

being encoded. The power of network coding comes from the

difference between information flows and traditional commod-

ity flows: information may not only be replicated, but also be

coded and forwarded without increases in size, which are impos-

sible with commodities. As a consequence, the theory of network

flows may only be used to study unicast communication sessions

in data networks. This paper seeks to design efficient solutions

for the problem of achieving optimal throughput in general, and

network coding is one of the avenues leading to such an objec-

tive.

III. ACHIEVING OPTIMAL THROUGHPUT IN UNDIRECTED

DATA NETWORKS: THE SINGLE MULTICAST CASE

We begin our theoretical study from the case of a single mul-

ticast session. We consider the most general form of data net-

works, represented by a simple graph G = (V,E) with undi-
rected edges between network nodes. Each edge represents a

communication link, and the edge capacities are specified by a

function C : E → Q+ (where Q+ denotes the set of positive ra-

tional numbers), representing the available bandwidth capacities

of communication links. Throughout this paper, we focus on the

fractional model of data routing, where the capacity of each link

may be shared fractionally in both directions, and information

flows may be split and merged at arbitrarily fine scales.

Now consider a single multicast communication session. We

use M = {m0,m1, . . . ,mk} ⊆ V to specify the set of nodes

involved in the multicast communication, withm0 being the data

source. In graphical illustrations throughout this paper (e.g.,

Fig. 1), nodes in M are shown as black, and nodes in V − M
are shown as white. Links are labeled with their capacities, and

all unlabeled links have a capacity of 1.

A. Optimal throughput without coding: steiner tree packing

To achieve optimal throughput in undirected data networks in

general, a natural direction is to first consider the problem of

achieving optimal throughput without coding, but with data repli-

cation on network nodes (as in IP multicast). This problem is

equivalent to the graph theoretic problem of steiner tree packing

[2], [21].

A steiner tree is a sub-tree of the network that connects ev-

ery multicast node. In the steiner tree packing problem, we seek

to decompose the network into weighted steiner trees, such that

the total of tree weights is maximized, referred to as the steiner

tree packing number. A link e may appear in a set of different

steiner trees, T ; but it is required that
∑

t∈T c(t) ≤ c(e) (where
c(t) is the weight of tree t), i.e., the total weights of trees using
a common edge e should not exceed the capacity of e. Without
network coding, a solution to steiner tree packing leads to a spe-

cific strategy to achieve optimal multicast throughput, since we

can transmit a data stream of throughput c(t) along each steiner
tree t, and the resulting throughput is precisely the total weights
of all trees.

To illustrate how steiner tree packing corresponds to achiev-

able optimal throughput without coding, we show an example

in Fig. 2(a). In the illustration, each letter corresponds to a dis-

tinct steiner tree that connects the multicast group, consisting of

m0,m1,m2 and m3. Nine such steiner trees exist in the shown

packing scheme (from a to i), where the tree corresponding to a
is highlighted. Since each link with unit capacity needs to accom-

modate 5 steiner trees, the achievable throughput on each tree is,
therefore, 0.2. This leads to a multicast throughput of 1.8, which
is optimal without coding.

a

a

a

b

b b

a+b

a+b

a+b

m1

m0

m2m3

abcd
i

defgh

a
fg

h
i

abcdi

a
b
c
d
i

b
d
e
fh

befg
h

acegi cefgh

m1

m0

m2
m3

(a) steiner tree packing and

multicast without coding.

(b) multicast with network coding.

Fig. 2. The achievable optimal throughput is 1.8 without coding, and 2 with
coding.

Unfortunately, steiner tree packing has been shown to be NP-

complete and APX-hard [2], [4], and the best known polynomial

time algorithm has an approximation ratio of around 1.55 [3]. It
is not sufficiently accurate to be used in practice. On the brighter

side, with the same example, we also show that the achievable

optimal throughput with network coding is 2 (Fig. 2(b)), which
is higher than that achieved without coding.

B. Optimal throughput with coding: bounds and complexities

Since network coding may lead to higher optimal throughput,

we turn our focus on the problem of achieving optimal through-

put with coding, and consider the steiner tree packing number as

a natural lower bound. With coding, our first attempt towards a

solution is to apply the breakthrough theorem of network cod-

ing in directed networks, which reveals that if a rate x can be
achieved for each receiver in the group independently, it can also

be achieved for the entire multicast session. It implies that we

may compute the optimal throughput achievable in the session by

finding the minimum of the maximum flow rates from the source

to each of the receivers, where the maximum flow rates may be

efficiently computed by any of the polynomial time maximum

flow algorithms.

Unfortunately, this theorem is not valid in undirected net-

works. Fig. 3 shows a counter-example. In the example, if the

source m0 sends to either m1 or m2 independently, the achiev-

able throughput is 2. However, it is impossible to achieve a

throughput of 2 from m0 to both m1 and m2 simultaneously in

Steiner tree packing

For fractional routing, Steiner tree packing is
NP-complete, with the best polynomial time
approximation ratio of ~ 1.55 (Robins et al.,
SODA 2000).

Even worse for integral routing: 26 (Lau,
FOCS 2004, unknown before this paper)

In practice, it can not be used to maximize
throughput

The coding advantage: the ratio of
achievable throughput with
network coding and that without
coding (steiner tree packing)

We have proved that [CISS 2004], in
fractional or half-integral routing:

The coding advantage of a single unicas%
session and of a single broadcast session is one.

The coding advantage of a single multicas%
session is upper bounded by 2.

We have conjectured that [Allerton 2004]:

The coding advantage of multiple unicas%
sessions (allowing inter-session coding) is also
one.

Steiner Strength
Partition of the network: there exists at least one
source or receiver node in each component of
the partition.
Steiner strength:

P: set of all partitions
 : total inter-component link capacity

4

be NP-complete [17], [18], and the best known polyno-

mial time algorithm has an approximation ratio of around

1.55 [18]. With the same example, we can also show that
the achievable optimal throughput with network coding is 2
(Fig. 2(b)), which is higher than that achieved without cod-

ing. Consequently, even if steiner tree packing is computa-

tionally feasible, it may not always yield the actual optimal

multicast throughput.

Steiner strength. In an undirected capacitied network N ,
we consider partitions of the network where there exists

at least one source or receiver node in each component of

the partition. Let P be the set of all such partitions. The

steiner strength of N is defined as minp∈P |Ec|/(|p| − 1),
where |Ec| is the total inter-component link capacity on the
set of links Ec being cut, and |p| is the number of compo-
nents in the partition p. It is a natural extension of network
strength [19] defined for a broadcast network. It is known

from our previous work that network strength is equivalent

to the achievable optimal throughput in broadcast sessions

[3]. Therefore, it is a natural direction to compute optimal

multicast throughput by computing the steiner strength.

Unfortunately, the steiner strength problem turns out to

be NP-complete as well. The fact that computing steiner

strength is NP-complete also rules out the possibility that

steiner strength and optimal multicast throughput are al-

ways equal. In fact, we find that steiner strength is either

equal to or higher than the achievable optimal throughput1.

B. Efficient solutions for throughput optimization: the

cFlow Linear Program

Contrary to the previous pessimistic views, we present

the surprising result that efficient solutions do exist for

computing optimal throughput in undirected networks. We

first formulate the problem as a linear network optimiza-

tion problem, in which both the number of variables and

the number of constraints are bounded by O(|M ||E|). We
then show that the result of such optimization exactly gives

the maximum achievable throughput, as well as the corre-

sponding routing strategy. We also discuss possible solu-

tions to the linear program.

We begin by presenting the orientation constraints of the

linear program that computes optimal throughput. An ori-

entation of a network N is a strategy to replace each undi-

rected link e = uv with two directed links a1 =
−→
uv and

a2 =
−→
vu , such that C(e) = C(a1) + C(a2). After the ori-

entation, the set of undirected links E becomes a set of di-

rected links A, with the number of links in the set doubled.

1Observing space constraints, we exclude the proofs of this result and

the NP-completeness of steiner strength. Interested readers are referred

to our technical report [20], which also includes more detailed expla-

nations and an example in which the steiner strength is higher than the

optimal throughput.

We proceed to consider flows from the source to the mul-

ticast receivers. To take advantage of the power of network

coding to resolve competition for link capacities, we intro-

duce the concept of conceptual flows (cFlow). We define

conceptual flows as network flows that co-exist in the net-

work without contending for link capacities.

Our linear program to compute the optimal throughput,

shown in Table I, is referred to as the cFlow LP since it is

based on conceptual flows. In the LP, f1 . . . fk are the con-

ceptual flows from senderm0 to each of the receivers. Each

flow vector f i specifies a flow rate f i(a) for each directed
link a ∈ A. f i

in(v) denotes the total incoming f i flow rate

at a node v, similar for f i
out(v). Finally, the scalar χ is the

target flow rate of optimization.

In addition to the orientation constraints, the cFlow LP

also includes the network flow constraints for each con-

ceptual flow, and the equal rate constraints. The network

flow constraints are specified in a compact form for all con-

ceptual flows, which requires (1) flow rates must be upper

bounded by link capacities; (2) flow conservation, i.e., the

incoming flow rate in the conceptual flow f i equals to out-

going flow rate in f i at a relay node for f i; and (3) the in-

coming flow rate at the source and the outgoing flow rates

at the receiver are all zero, for each f i. The equal rate con-

straints require that the flow rates of conceptual flows are

identical, with χ being the uniform flow rate. With these

linear constraints, the target flow rate χ is then maximized.

TABLE I

THE cFlow LP

Maximize: χ
Subject to:

Orientation constraints:{
0 ≤ C(a) ∀a ∈ A
C(a1) + C(a2) = C(e) ∀e ∈ E

Independent network flow constraints for each conceptual flow:

0 ≤ f i(a) ∀i ∈ [1..k],∀a ∈ A
f i(a) ≤ C(a) ∀i ∈ [1..k],∀a ∈ A
f i

in(v) = f i
out(v) ∀i ∈ [1..k],∀v ∈ V − {m0,mi}

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

Equal rate constraints:

χ = f i
in(mi) ∀i ∈ [1..k]

We are now ready to present one of our main contribu-

tions of this paper, by showing that the cFlow LP provides

an efficient algorithm to compute the achievable optimal

throughput, as well as the routing strategy.

Theorem 1. For an undirected data network with a

single multicast session, N = {G(V, E), C : E →

4

be NP-complete [17], [18], and the best known polyno-

mial time algorithm has an approximation ratio of around

1.55 [18]. With the same example, we can also show that
the achievable optimal throughput with network coding is 2
(Fig. 2(b)), which is higher than that achieved without cod-

ing. Consequently, even if steiner tree packing is computa-

tionally feasible, it may not always yield the actual optimal

multicast throughput.

Steiner strength. In an undirected capacitied network N ,
we consider partitions of the network where there exists

at least one source or receiver node in each component of

the partition. Let P be the set of all such partitions. The

steiner strength of N is defined as minp∈P |Ec|/(|p| − 1),
where |Ec| is the total inter-component link capacity on the
set of links Ec being cut, and |p| is the number of compo-
nents in the partition p. It is a natural extension of network
strength [19] defined for a broadcast network. It is known

from our previous work that network strength is equivalent

to the achievable optimal throughput in broadcast sessions

[3]. Therefore, it is a natural direction to compute optimal

multicast throughput by computing the steiner strength.

Unfortunately, the steiner strength problem turns out to

be NP-complete as well. The fact that computing steiner

strength is NP-complete also rules out the possibility that

steiner strength and optimal multicast throughput are al-

ways equal. In fact, we find that steiner strength is either

equal to or higher than the achievable optimal throughput1.

B. Efficient solutions for throughput optimization: the

cFlow Linear Program

Contrary to the previous pessimistic views, we present

the surprising result that efficient solutions do exist for

computing optimal throughput in undirected networks. We

first formulate the problem as a linear network optimiza-

tion problem, in which both the number of variables and

the number of constraints are bounded by O(|M ||E|). We
then show that the result of such optimization exactly gives

the maximum achievable throughput, as well as the corre-

sponding routing strategy. We also discuss possible solu-

tions to the linear program.

We begin by presenting the orientation constraints of the

linear program that computes optimal throughput. An ori-

entation of a network N is a strategy to replace each undi-

rected link e = uv with two directed links a1 =
−→
uv and

a2 =
−→
vu , such that C(e) = C(a1) + C(a2). After the ori-

entation, the set of undirected links E becomes a set of di-

rected links A, with the number of links in the set doubled.

1Observing space constraints, we exclude the proofs of this result and

the NP-completeness of steiner strength. Interested readers are referred

to our technical report [20], which also includes more detailed expla-

nations and an example in which the steiner strength is higher than the

optimal throughput.

We proceed to consider flows from the source to the mul-

ticast receivers. To take advantage of the power of network

coding to resolve competition for link capacities, we intro-

duce the concept of conceptual flows (cFlow). We define

conceptual flows as network flows that co-exist in the net-

work without contending for link capacities.

Our linear program to compute the optimal throughput,

shown in Table I, is referred to as the cFlow LP since it is

based on conceptual flows. In the LP, f1 . . . fk are the con-

ceptual flows from senderm0 to each of the receivers. Each

flow vector f i specifies a flow rate f i(a) for each directed
link a ∈ A. f i

in(v) denotes the total incoming f i flow rate

at a node v, similar for f i
out(v). Finally, the scalar χ is the

target flow rate of optimization.

In addition to the orientation constraints, the cFlow LP

also includes the network flow constraints for each con-

ceptual flow, and the equal rate constraints. The network

flow constraints are specified in a compact form for all con-

ceptual flows, which requires (1) flow rates must be upper

bounded by link capacities; (2) flow conservation, i.e., the

incoming flow rate in the conceptual flow f i equals to out-

going flow rate in f i at a relay node for f i; and (3) the in-

coming flow rate at the source and the outgoing flow rates

at the receiver are all zero, for each f i. The equal rate con-

straints require that the flow rates of conceptual flows are

identical, with χ being the uniform flow rate. With these

linear constraints, the target flow rate χ is then maximized.

TABLE I

THE cFlow LP

Maximize: χ
Subject to:

Orientation constraints:{
0 ≤ C(a) ∀a ∈ A
C(a1) + C(a2) = C(e) ∀e ∈ E

Independent network flow constraints for each conceptual flow:

0 ≤ f i(a) ∀i ∈ [1..k],∀a ∈ A
f i(a) ≤ C(a) ∀i ∈ [1..k],∀a ∈ A
f i

in(v) = f i
out(v) ∀i ∈ [1..k],∀v ∈ V − {m0,mi}

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

Equal rate constraints:

χ = f i
in(mi) ∀i ∈ [1..k]

We are now ready to present one of our main contribu-

tions of this paper, by showing that the cFlow LP provides

an efficient algorithm to compute the achievable optimal

throughput, as well as the routing strategy.

Theorem 1. For an undirected data network with a

single multicast session, N = {G(V, E), C : E →

Comparison with Existing Parameters – Definitions

• λ(N) — Edge connectivity among multicast nodes.

• π(N) — Packing number, also max throughput with
routing only.

• η(N) — Strength, min |Ec|/(p − 1) ratio.

abcdi

defgh
afghi

abcdi abcdi

bdefh

befgh

acegi

cefgh

m2

m3m3

m1 m1

m0m0

m3

m1

m0

m2

m2

 Connectivity Packing Strength

5

Maximum throughput
Maximum throughput: maximum information
flow rate from a source to a group of receivers
concurrently, with fractional routing
We have proved that [CISS 2004]:

achievable throughput with steiner tree
packing maximum throughput steiner
strength
Both steiner tree packing and steiner
strength is NP-hard
Maximum throughput [INFOCOM
2005]

Comparison with Existing Parameters – Unicast

(1) η(N) = λ(N) ⇐= by definition

(2) π(N) ≤ χ(N) ⇐= uncoded throughput ≤ coded throughput

(3) χ(N) ≤ η(N) ⇐= necessary condition

(4) π(N) = λ(N) ⇐= Menger’s Theorem

(1)-(4) =⇒ π(N) = χ(N) = η(N) = λ(N).

Corollary: coding advantage (ratio of throughput improvement due
to coding) is always 1 for a unicast transmission.

6

Comparison with Existing Parameters – Unicast

(1) η(N) = λ(N) ⇐= by definition

(2) π(N) ≤ χ(N) ⇐= uncoded throughput ≤ coded throughput

(3) χ(N) ≤ η(N) ⇐= necessary condition

(4) π(N) = λ(N) ⇐= Menger’s Theorem

(1)-(4) =⇒ π(N) = χ(N) = η(N) = λ(N).

Corollary: coding advantage (ratio of throughput improvement due
to coding) is always 1 for a unicast transmission.

6

Max multicast rate ∈ P

The cFlow LP has O(km) variables and O(km) constraints.
Since linear programming is in general polynomial time
solvable, therefore:

Theorem 1: The maximum multicast rate in an undirected
network, together with the optimal flow routing scheme,
can be computed in polynomial time.

15

How to design an efficient
algorithm to compute the

maximum throughput?

Conceptual Flows
The power of network coding resides in its
ability to resolve competition for link
capacities

Rather than considering a multicast flow, we
consider unicast flows from source to each of
the receivers

Conceptual Flows: network flows that co-exist
in the network without contending for link
capacities

Conceptual Flows vs.
Commodity Flows 5

4

4

4

4

4

4

44

8

8

m0

m1

m2

Fig. 4. Optimal throughput and steiner strength: a counter-example. The source
is m0. The optimal partition is shown, cutting the network to three components.
The steiner strength of the network is 14.

C. Efficient solutions for throughput optimization: The cFlow

Linear Program

Contrary to the previous pessimistic views, we present the

surprising result that efficient solutions do exist for computing

optimal throughput in undirected networks, including the corre-

sponding routing and coding strategies that achieve such through-

put. To design such efficient solutions, we first formulate the

problem as a linear optimization problem, in which both the num-

ber of variables and the number of constraints are bounded by

O(|M | · |E|). We then show that the result of such optimization
exactly gives the maximum achievable throughput, as well as the

corresponding routing strategy.

u v u v

e
 a1

 a2

orientation

Fig. 5. Orienting each undirected link in the network into two directed ones,
such that c(e) = c(a1) + c(a2).

We begin by presenting the orientation constraints of the lin-

ear program that computes optimal throughput. As illustrated in

Fig. 5, an orientation of a network N is a strategy to replace

each undirected link e = uv with two directed links a1 =−→
uv

and a2 =−→
vu , such that C(e) = C(a1) + C(a2),∀e ∈ E. Af-

ter the orientation, the undirected link set E becomes a directed

link setD, with the number of links in the set doubled. Since the
capacity of a directed link must be non-negative, we also have

C(a) ≥ 0,∀a ∈ D. For example, Fig. 3(b) is an orientation of
the undirected network in Fig. 3(a).

We proceed to consider flows from the source to the multicast

receivers. To take advantage of the power of network coding to

resolve competition for link capacities, we introduce the concept

of conceptual flows (cFlow). We define conceptual flows as net-

work flows that co-exist in the network without contending for

link capacities. In comparison, if we view information flows as

traditional commodity flows (where data can only be forwarded,

and can not be coded or replicated), they do compete for the ca-

pacity of a shared link, similar to the case of all unicast between

the source and each of the receivers. Fig. 6 illustrates the fun-

damental difference between conceptual and commodity flows

with respect to achievable optimal throughput, in a random net-

work of 20 nodes generated by BRITE [26], with the size of the
multicast group increasing. The rapid decrease of optimal ses-

sion throughput is due to competition for shared link capacities

among different commodity flows, especially at the source.

0

50

100

150

200

2 2010 155

Conceptual flows

Commodity flows

A
c
h
ie

va
b
le

 t
h

ro
u

g
h
p
u

t
(K

b
p
s
)

Number of nodes in the multicast group (|M|)

Fig. 6. Achievable optimal throughput: a comparison between conceptual and
commodity flows, as the number of nodes in the multicast session increases.

Our linear program to compute the optimal throughput with

coding, shown in Table I, is referred to as the cFlow LP since it

is based on conceptual flows. In the LP, m0 is the source and

m1 . . . mk are the multicast receivers. f1 . . . fk are the concep-

tual flows to each of the receivers. Each f i specifies a flow rate

f i(a) for each directed link a ∈ D. f i
in(v) denotes the total in-

coming f i flow rate at a node v, similar for f i
out(v). Finally, the

scalar f∗ is the target flow rate of optimization.
In addition to the orientation constraints, the cFlow LP also

includes the network flow constraints for each conceptual flow,

and the equal rate constraints. The network flow constraints are

specified in a compact form for all conceptual flows, which re-

quires the following: (1) Flow rates must be non-negative and

upper bounded by link capacities; (2) flow conservation, which

requires that the incoming flow rate in the conceptual flow f i

equals to outgoing flow rate in f i at a relay node for f i; and (3)

the incoming flow rate at the source and the outgoing flow rates

at the receiver are all zero, for each f i. The equal rate constraints

require that the flow rates of conceptual flows are identical, with

f∗ being the uniform flow rate. With these linear constraints, the
target flow rate f∗ is then maximized.

TABLE I

THE cFlow LP

Maximize: f∗
Subject to:

Orientation constraints:{
0 ≤ C(a) ∀a ∈ D
C(a1) + C(a2) = C(e) ∀e ∈ E

Independent network flow constraints for each conceptual flow:
0 ≤ f i(a) ∀i ∈ [1..k],∀a ∈ D
f i(a) ≤ C(a) ∀i ∈ [1..k],∀a ∈ D
f i

in(v) = f i
out(v) ∀i ∈ [1..k],∀v ∈ V − {m0, mi}

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

Equal rate constraints:

f∗ = f i
in(mi) ∀i ∈ [1..k]

We are now ready to formally present one of our main contri-

butions of this paper. We show that the cFlow LP provides an

efficient algorithm to compute the achievable optimal through-

put, as well as the routing strategy.

Orientation of a network
Orientation of an undirected network is a
strategy of replacing each undirected link
with two directed arcs, without violating the
capacity constraint:

5

4

4

4

4

4

4

44

8

8

m0

m1

m2

Fig. 4. Optimal throughput and steiner strength: a counter-example. The source
is m0. The optimal partition is shown, cutting the network to three components.
The steiner strength of the network is 14.

C. Efficient solutions for throughput optimization: The cFlow

Linear Program

Contrary to the previous pessimistic views, we present the

surprising result that efficient solutions do exist for computing

optimal throughput in undirected networks, including the corre-

sponding routing and coding strategies that achieve such through-

put. To design such efficient solutions, we first formulate the

problem as a linear optimization problem, in which both the num-

ber of variables and the number of constraints are bounded by

O(|M | · |E|). We then show that the result of such optimization
exactly gives the maximum achievable throughput, as well as the

corresponding routing strategy.

u v u v

e
 a1

 a2

orientation

Fig. 5. Orienting each undirected link in the network into two directed ones,
such that c(e) = c(a1) + c(a2).

We begin by presenting the orientation constraints of the lin-

ear program that computes optimal throughput. As illustrated in

Fig. 5, an orientation of a network N is a strategy to replace

each undirected link e = uv with two directed links a1 =−→
uv

and a2 =−→
vu , such that C(e) = C(a1) + C(a2),∀e ∈ E. Af-

ter the orientation, the undirected link set E becomes a directed

link setD, with the number of links in the set doubled. Since the
capacity of a directed link must be non-negative, we also have

C(a) ≥ 0,∀a ∈ D. For example, Fig. 3(b) is an orientation of
the undirected network in Fig. 3(a).

We proceed to consider flows from the source to the multicast

receivers. To take advantage of the power of network coding to

resolve competition for link capacities, we introduce the concept

of conceptual flows (cFlow). We define conceptual flows as net-

work flows that co-exist in the network without contending for

link capacities. In comparison, if we view information flows as

traditional commodity flows (where data can only be forwarded,

and can not be coded or replicated), they do compete for the ca-

pacity of a shared link, similar to the case of all unicast between

the source and each of the receivers. Fig. 6 illustrates the fun-

damental difference between conceptual and commodity flows

with respect to achievable optimal throughput, in a random net-

work of 20 nodes generated by BRITE [26], with the size of the
multicast group increasing. The rapid decrease of optimal ses-

sion throughput is due to competition for shared link capacities

among different commodity flows, especially at the source.

0

50

100

150

200

2 2010 155

Conceptual flows

Commodity flows

A
c
h

ie
va

b
le

 t
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Number of nodes in the multicast group (|M|)

Fig. 6. Achievable optimal throughput: a comparison between conceptual and
commodity flows, as the number of nodes in the multicast session increases.

Our linear program to compute the optimal throughput with

coding, shown in Table I, is referred to as the cFlow LP since it

is based on conceptual flows. In the LP, m0 is the source and

m1 . . . mk are the multicast receivers. f1 . . . fk are the concep-

tual flows to each of the receivers. Each f i specifies a flow rate

f i(a) for each directed link a ∈ D. f i
in(v) denotes the total in-

coming f i flow rate at a node v, similar for f i
out(v). Finally, the

scalar f∗ is the target flow rate of optimization.
In addition to the orientation constraints, the cFlow LP also

includes the network flow constraints for each conceptual flow,

and the equal rate constraints. The network flow constraints are

specified in a compact form for all conceptual flows, which re-

quires the following: (1) Flow rates must be non-negative and

upper bounded by link capacities; (2) flow conservation, which

requires that the incoming flow rate in the conceptual flow f i

equals to outgoing flow rate in f i at a relay node for f i; and (3)

the incoming flow rate at the source and the outgoing flow rates

at the receiver are all zero, for each f i. The equal rate constraints

require that the flow rates of conceptual flows are identical, with

f∗ being the uniform flow rate. With these linear constraints, the
target flow rate f∗ is then maximized.

TABLE I

THE cFlow LP

Maximize: f∗
Subject to:

Orientation constraints:{
0 ≤ C(a) ∀a ∈ D
C(a1) + C(a2) = C(e) ∀e ∈ E

Independent network flow constraints for each conceptual flow:
0 ≤ f i(a) ∀i ∈ [1..k],∀a ∈ D
f i(a) ≤ C(a) ∀i ∈ [1..k],∀a ∈ D
f i

in(v) = f i
out(v) ∀i ∈ [1..k],∀v ∈ V − {m0, mi}

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

Equal rate constraints:

f∗ = f i
in(mi) ∀i ∈ [1..k]

We are now ready to formally present one of our main contri-

butions of this paper. We show that the cFlow LP provides an

efficient algorithm to compute the achievable optimal through-

put, as well as the routing strategy.

5

4

4

4

4

4

4

44

8

8

m0

m1

m2

Fig. 4. Optimal throughput and steiner strength: a counter-example. The source
is m0. The optimal partition is shown, cutting the network to three components.
The steiner strength of the network is 14.

C. Efficient solutions for throughput optimization: The cFlow

Linear Program

Contrary to the previous pessimistic views, we present the

surprising result that efficient solutions do exist for computing

optimal throughput in undirected networks, including the corre-

sponding routing and coding strategies that achieve such through-

put. To design such efficient solutions, we first formulate the

problem as a linear optimization problem, in which both the num-

ber of variables and the number of constraints are bounded by

O(|M | · |E|). We then show that the result of such optimization
exactly gives the maximum achievable throughput, as well as the

corresponding routing strategy.

u v u v

e
 a1

 a2

orientation

Fig. 5. Orienting each undirected link in the network into two directed ones,
such that c(e) = c(a1) + c(a2).

We begin by presenting the orientation constraints of the lin-

ear program that computes optimal throughput. As illustrated in

Fig. 5, an orientation of a network N is a strategy to replace

each undirected link e = uv with two directed links a1 =−→
uv

and a2 =−→
vu , such that C(e) = C(a1) + C(a2),∀e ∈ E. Af-

ter the orientation, the undirected link set E becomes a directed

link setD, with the number of links in the set doubled. Since the
capacity of a directed link must be non-negative, we also have

C(a) ≥ 0,∀a ∈ D. For example, Fig. 3(b) is an orientation of
the undirected network in Fig. 3(a).

We proceed to consider flows from the source to the multicast

receivers. To take advantage of the power of network coding to

resolve competition for link capacities, we introduce the concept

of conceptual flows (cFlow). We define conceptual flows as net-

work flows that co-exist in the network without contending for

link capacities. In comparison, if we view information flows as

traditional commodity flows (where data can only be forwarded,

and can not be coded or replicated), they do compete for the ca-

pacity of a shared link, similar to the case of all unicast between

the source and each of the receivers. Fig. 6 illustrates the fun-

damental difference between conceptual and commodity flows

with respect to achievable optimal throughput, in a random net-

work of 20 nodes generated by BRITE [26], with the size of the
multicast group increasing. The rapid decrease of optimal ses-

sion throughput is due to competition for shared link capacities

among different commodity flows, especially at the source.

0

50

100

150

200

2 2010 155

Conceptual flows

Commodity flows

A
c
h
ie

va
b
le

 t
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Number of nodes in the multicast group (|M|)

Fig. 6. Achievable optimal throughput: a comparison between conceptual and
commodity flows, as the number of nodes in the multicast session increases.

Our linear program to compute the optimal throughput with

coding, shown in Table I, is referred to as the cFlow LP since it

is based on conceptual flows. In the LP, m0 is the source and

m1 . . . mk are the multicast receivers. f1 . . . fk are the concep-

tual flows to each of the receivers. Each f i specifies a flow rate

f i(a) for each directed link a ∈ D. f i
in(v) denotes the total in-

coming f i flow rate at a node v, similar for f i
out(v). Finally, the

scalar f∗ is the target flow rate of optimization.
In addition to the orientation constraints, the cFlow LP also

includes the network flow constraints for each conceptual flow,

and the equal rate constraints. The network flow constraints are

specified in a compact form for all conceptual flows, which re-

quires the following: (1) Flow rates must be non-negative and

upper bounded by link capacities; (2) flow conservation, which

requires that the incoming flow rate in the conceptual flow f i

equals to outgoing flow rate in f i at a relay node for f i; and (3)

the incoming flow rate at the source and the outgoing flow rates

at the receiver are all zero, for each f i. The equal rate constraints

require that the flow rates of conceptual flows are identical, with

f∗ being the uniform flow rate. With these linear constraints, the
target flow rate f∗ is then maximized.

TABLE I

THE cFlow LP

Maximize: f∗
Subject to:

Orientation constraints:{
0 ≤ C(a) ∀a ∈ D
C(a1) + C(a2) = C(e) ∀e ∈ E

Independent network flow constraints for each conceptual flow:
0 ≤ f i(a) ∀i ∈ [1..k],∀a ∈ D
f i(a) ≤ C(a) ∀i ∈ [1..k],∀a ∈ D
f i

in(v) = f i
out(v) ∀i ∈ [1..k],∀v ∈ V − {m0, mi}

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

Equal rate constraints:

f∗ = f i
in(mi) ∀i ∈ [1..k]

We are now ready to formally present one of our main contri-

butions of this paper. We show that the cFlow LP provides an

efficient algorithm to compute the achievable optimal through-

put, as well as the routing strategy.

The cFlow LP

5

4

4

4

4

4

4

44

8

8

m0

m1

m2

Fig. 4. Optimal throughput and steiner strength: a counter-example. The source
is m0. The optimal partition is shown, cutting the network to three components.
The steiner strength of the network is 14.

C. Efficient solutions for throughput optimization: The cFlow

Linear Program

Contrary to the previous pessimistic views, we present the

surprising result that efficient solutions do exist for computing

optimal throughput in undirected networks, including the corre-

sponding routing and coding strategies that achieve such through-

put. To design such efficient solutions, we first formulate the

problem as a linear optimization problem, in which both the num-

ber of variables and the number of constraints are bounded by

O(|M | · |E|). We then show that the result of such optimization
exactly gives the maximum achievable throughput, as well as the

corresponding routing strategy.

u v u v

e
 a1

 a2

orientation

Fig. 5. Orienting each undirected link in the network into two directed ones,
such that c(e) = c(a1) + c(a2).

We begin by presenting the orientation constraints of the lin-

ear program that computes optimal throughput. As illustrated in

Fig. 5, an orientation of a network N is a strategy to replace

each undirected link e = uv with two directed links a1 =−→
uv

and a2 =−→
vu , such that C(e) = C(a1) + C(a2),∀e ∈ E. Af-

ter the orientation, the undirected link set E becomes a directed

link setD, with the number of links in the set doubled. Since the
capacity of a directed link must be non-negative, we also have

C(a) ≥ 0,∀a ∈ D. For example, Fig. 3(b) is an orientation of
the undirected network in Fig. 3(a).

We proceed to consider flows from the source to the multicast

receivers. To take advantage of the power of network coding to

resolve competition for link capacities, we introduce the concept

of conceptual flows (cFlow). We define conceptual flows as net-

work flows that co-exist in the network without contending for

link capacities. In comparison, if we view information flows as

traditional commodity flows (where data can only be forwarded,

and can not be coded or replicated), they do compete for the ca-

pacity of a shared link, similar to the case of all unicast between

the source and each of the receivers. Fig. 6 illustrates the fun-

damental difference between conceptual and commodity flows

with respect to achievable optimal throughput, in a random net-

work of 20 nodes generated by BRITE [26], with the size of the
multicast group increasing. The rapid decrease of optimal ses-

sion throughput is due to competition for shared link capacities

among different commodity flows, especially at the source.

0

50

100

150

200

2 2010 155

Conceptual flows

Commodity flows

A
c
h
ie

va
b
le

 t
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Number of nodes in the multicast group (|M|)

Fig. 6. Achievable optimal throughput: a comparison between conceptual and
commodity flows, as the number of nodes in the multicast session increases.

Our linear program to compute the optimal throughput with

coding, shown in Table I, is referred to as the cFlow LP since it

is based on conceptual flows. In the LP, m0 is the source and

m1 . . . mk are the multicast receivers. f1 . . . fk are the concep-

tual flows to each of the receivers. Each f i specifies a flow rate

f i(a) for each directed link a ∈ D. f i
in(v) denotes the total in-

coming f i flow rate at a node v, similar for f i
out(v). Finally, the

scalar f∗ is the target flow rate of optimization.
In addition to the orientation constraints, the cFlow LP also

includes the network flow constraints for each conceptual flow,

and the equal rate constraints. The network flow constraints are

specified in a compact form for all conceptual flows, which re-

quires the following: (1) Flow rates must be non-negative and

upper bounded by link capacities; (2) flow conservation, which

requires that the incoming flow rate in the conceptual flow f i

equals to outgoing flow rate in f i at a relay node for f i; and (3)

the incoming flow rate at the source and the outgoing flow rates

at the receiver are all zero, for each f i. The equal rate constraints

require that the flow rates of conceptual flows are identical, with

f∗ being the uniform flow rate. With these linear constraints, the
target flow rate f∗ is then maximized.

TABLE I

THE cFlow LP

Maximize: f∗
Subject to:

Orientation constraints:{
0 ≤ C(a) ∀a ∈ D
C(a1) + C(a2) = C(e) ∀e ∈ E

Independent network flow constraints for each conceptual flow:
0 ≤ f i(a) ∀i ∈ [1..k],∀a ∈ D
f i(a) ≤ C(a) ∀i ∈ [1..k],∀a ∈ D
f i

in(v) = f i
out(v) ∀i ∈ [1..k],∀v ∈ V − {m0,mi}

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

Equal rate constraints:

f∗ = f i
in(mi) ∀i ∈ [1..k]

We are now ready to formally present one of our main contri-

butions of this paper. We show that the cFlow LP provides an

efficient algorithm to compute the achievable optimal through-

put, as well as the routing strategy.

The Complete Solution

Computing the coding strategies: polynomial
time algorithm of code assignment [Sanders e%
al., SPAA 2003]

The complete solution that achieves
maximum throughput in undirected networks
with a single multicast session can be
computed in polynomial time, including both
routing and coding strategies.

Let us put it to good use

Uniform Bipartite Networks: conjectured to be
good candidates to show the power of coding
on improving throughput

C(n, k): consists of the source and two
layers, one with n relay nodes and the other
with receivers. Each relay node is
connected to the sender, and each receiver
is connected to a different group of k relay
nodes. All link capacities are one.

5

Q+, M = {m0, m1, . . . , mk} ⊆ V }, the maximum end-

to-end throughput χ(N) and its corresponding optimal

routing strategy can be computed in polynomial time using

the cFlow LP, in which both the number of variables and

the number of constraints are polynomial, and on the order

of O(|M ||E|). The conceptual flows f1 . . . fk constitute

the optimal routing strategy.

Proof: The orientation constraints reflect complete flexibil-

ity in orienting the undirected network N , without being
too restrictive or too relaxed. For each fixed orientation,

conceptual flows are being maximized with independent

and standard network flow constraints, as well as the extra

constraint that conceptual flow rates are equal to each other.

Therefore, the result of the maximization is the maximum

possible flow rate that can be independently achieved from

the source to all receivers, over all possible orientations of

the network:

χ = max
o∈O

[min
mi∈M−{m0}

(maximumm0 → mi flow rate)],

whereO denotes all possible orientations of the network,

and M − {m0} is the set of multicast receivers. Recall
the recent breakthrough in network coding [4], [5] shows

that, for a fixed orientation of the network, a rate x can be
achieved for the entire multicast session if and only if it

can be achieved for each multicast receiver independently.

This implies that, the maximum throughput in each orien-

tation equals to the minimum of the maximum source to re-

ceiver flow rate. The cFlow LP essentially maximizes this

min-max flow over all possible network orientations, and

obtains the max-min-max flow that is precisely the maxi-

mum multicast throughput in the original undirected net-

work. Further, the source may transmit information to each

receiver mi according to the conceptual flow f i. Should

more than one conceptual flows utilize capacity on the same

link, the conflict can always be resolved, provided that net-

work coding is applied appropriately [4], [5].

The cFlow LP contains 2|E| orientation variables C(a),
2|M ||E| virtual flow variables f i(a), and one target flow
rate variable χ. Therefore, the total number of variables is
2(|M | + 1)|E| + 1, which is on the order of O(|M ||E|).
In addition, the cFlow LP contains 3|E| orientation con-
straints, (4|E| + |V |)(|M | − 1) network flow constraints,
as well as |M |− 1 equal rate constraints. The total number
of constraints is, therefore, (4|E|+|V |+1)(|M |−1)+3|E|,
which is also on the order of O(|M ||E|). $%
The optimal routing strategy computed by cFlow LP

specifies the rate of data streams being transmitted along

each link. Based on the routing strategy, we need to per-

form the additional step of code assignment to compute the

coding strategy, before data streams may be transmitted.

The coding strategy includes one transformation matrix for

each node, which specifies how incoming data streams are

linearly coded into outgoing streams. Given the routing

strategy from the cFlow LP, there exist polynomial time

algorithms to perform such code assignments [21]. There-

fore, we have the following corollary of Theorem 1:

Corollary 1. The complete solution that achieves optimal

throughput in undirected data networks with a single multi-

cast session can be computed in polynomial time, including

both the routing and coding strategies.

In order to evaluate the advantage of network coding

with respect to improving achievable optimal throughput,

we have implemented both the cFlow LP and a brute-force

algorithm to compute the steiner tree packing number. The

steiner tree packing algorithm enumerates all steiner trees

in the network, assigns a flow variable to each tree, and

then maximizes the summation of all tree flows, subject to

the constraints that the total weight (throughput) of trees

using each link should not exceed its capacity.

We have evaluated both the cFlow LP and steiner tree

packing (denoted as π(N)) using our previous example in
Fig. 1, as well as a set of uniform bipartite networks, which

are believed to be good candidates to show the power of

coding on improving throughput [21], [22]. A uniform bi-

partite network C(n, k) consists of the data source and two
layers: one with n relay nodes and the other with

(
n
k

)
re-

ceivers. Each relay node is connected to the sender, and

each receiver is connected to a different group of k relay
nodes, and all links have a capacity of 1. For instance, the
network in Fig. 2 is C(3, 2), and the classic example of net-
work coding in Fig. 1 is isomorphic to C(3, 2).

Table II summarizes the results of our empirical studies,

from which we have derived the following observations.

First, the cFlow LP is much more scalable and efficient than

steiner tree packing, which fails to compute a solution for

a network as small as C(5, 3), with only 16 nodes and 35
links, but almost 50 million different steiner trees. In sepa-
rate experiments, the cFlow LP is able to compute the op-

timal throughput for networks having thousands of nodes.

Second, optimal throughput with coding is always lower

bounded by that without coding; however, network coding

only introduces a slight advantage, with the χ(N)/π(N)
ratio no higher than 1.125. Third, coded transmission may
lead to more integral flow rates and throughput than un-

coded transmission.

As a final note, we point out that beyond applying gen-

eral linear programming solutions — such as the simplex

method — it is also possible to design custom-tailored al-

gorithms for the cFlow LP, to take advantage of its under-

lying network flow structure. In an accompanying paper

Uniform Bipartite Networks

6

Theorem 3. For an undirected data network with a single

multicast session, N = {G(V,E), C : E → Q+,M =
{m0,m1, . . . ,mk} ⊆ V }, the maximum end-to-end through-

put χ(N) and its corresponding optimal routing strategy can be
computed in polynomial time using the cFlow LP, in which both

the number of variables and the number of constraints are poly-

nomial, and on the order of O(|M | · |E|). The conceptual flows
f1 . . . fk constitute the optimal routing strategy.

Proof: The orientation constraints reflect complete flexibility in

orienting the undirected networkN , without being too restrictive
or too relaxed. For each fixed orientation, conceptual flows are

being maximized with independent and standard network flow

constraints, as well as the extra constraint that conceptual flow

rates are equal to each other. Therefore, the result of the maxi-

mization is the maximum possible flow rate that can be indepen-

dently achieved from the source to all receivers, over all possible

orientations of the network:

f∗ = max
o∈O

[min
mi∈M−{m0}

(maximumm0 → mi flow rate)],

where O denotes all possible orientations of the network, and

M − {m0} is the set of multicast receivers. The recent break-
through in network coding [5], [6] shows that, for a fixed orien-

tation of the network, a rate x can be achieved for the entire mul-
ticast session if and only if it can be achieved for each multicast

receiver independently. This implies that, the maximum through-

put in each orientation equals to the minimum of the maximum

source → receiver flow rate. The cFlow LP essentially maxi-

mizes this min-max flow over all possible network orientations,

and obtains the max-min-max flow that is precisely the maximum

multicast throughput in the original undirected network. Further,

the source may transmit information to each receivermi accord-

ing to the conceptual flow f i. Should more than one conceptual

flows utilize capacity on the same link, the conflict can always be

resolved, provided that network coding is applied appropriately

[5], [6].

The cFlow LP contains 2|E| orientation variablesC(a), 2|M |·
|E| virtual flow variables f i(a), and one target flow rate variable
f∗. Therefore, the total number of variables is 2(|M |+1)|E|+1,
which is on the order of O(|M | · |E|). In addition, the cFlow LP
contains 3|E| orientation constraints, (4|E|+ |V |)(|M |−1) net-
work flow constraints, as well as |M | − 1 equal rate constraints.
The total number of constraints is, therefore, (4|E| + |V | +
1)(|M |− 1) + 3|E|, which is also on the order of O(|M | · |E|).

$%
The optimal routing strategy computed by cFlow LP speci-

fies the rate of data streams being transmitted along each link.

Based on the routing strategy, we need to perform the additional

step of code assignment to compute the coding strategy, before

data streams may be transmitted. The coding strategy includes

one transformation matrix for each node, which specifies how

incoming data streams are linearly coded into outgoing streams.

Given the routing strategy from the cFlow LP, there exist poly-

nomial time algorithms to perform such code assignments. For

completeness of this paper, we include a more detailed discus-

sion in the Appendix. The existence of polynomial time code

assignment algorithms leads to the following corollary of Theo-

rem 3:

Corollary. The complete solution that achieves optimal through-

put in undirected data networks with a single multicast session

can be computed in polynomial time, including both the routing

and coding strategies.

As an example of applying the cFlow LP on actual networks,

Fig. 7 shows the optimal orientation to achieve the optimal

throughput of 13.5 in the previous network in Fig. 4.

4

4

4

4

4

4

44

8

8

2.5

1.5

2.5

1.5

0.5

0.5

0.5

0.5

m
0

m
1

m
2

Fig. 7. The optimal network orientation computed by the cFlow LP, in which
the maximumm0→m1 flow and the maximumm0→m2 flow are both 13.5.

In order to evaluate the advantage of network coding with re-

spect to improving achievable optimal throughput, we have im-

plemented both the cFlow LP and a brute-force algorithm to com-

pute the steiner tree packing number. The steiner tree packing

algorithm enumerates all steiner trees in the network, assigns a

flow variable to each tree, and then maximizes the summation

of all tree flows, subject to the constraints that the total weight

(throughput) of trees using each link should not exceed its capac-

ity.

We have evaluated both the cFlow LP and the steiner tree pack-

ing algorithm using our previous examples, as well as a set of

uniform bipartite networks, which are believed to be good candi-

dates to show the power of coding on improving throughput [7],

[27]. A uniform bipartite network C(n, k) consists of the data
source and two layers: one with n relay nodes and the other with(n

k

)
receivers. Each relay node is connected to the sender, and

each receiver is connected to a different group of k relay nodes,
and all links have a capacity of 1. For instance, C(4, 3) is shown
in Fig. 8, the example in Fig. 2 isC(3, 2), and the classic example
of network coding in Fig. 1 is isomorphic to C(3, 2).

Fig. 8. The uniform bipartite network C(4, 3).

Table II summarizes the results of our empirical studies, from

which we have derived the following observations. First, the

cFlow LP is much more scalable and efficient than steiner tree

packing, which fails to compute a solution for a network as small

as C(5, 3), with only 16 nodes and 35 links, but almost 50 mil-
lion different steiner trees. In separate experiments, the cFlow

LP is able to compute the optimal throughput for networks hav-

ing thousands of nodes. Second, the results support Theorem

1, and show that the optimal throughput with coding is always

6

Theorem 3. For an undirected data network with a single

multicast session, N = {G(V,E), C : E → Q+,M =
{m0,m1, . . . ,mk} ⊆ V }, the maximum end-to-end through-

put χ(N) and its corresponding optimal routing strategy can be
computed in polynomial time using the cFlow LP, in which both

the number of variables and the number of constraints are poly-

nomial, and on the order of O(|M | · |E|). The conceptual flows
f1 . . . fk constitute the optimal routing strategy.

Proof: The orientation constraints reflect complete flexibility in

orienting the undirected networkN , without being too restrictive
or too relaxed. For each fixed orientation, conceptual flows are

being maximized with independent and standard network flow

constraints, as well as the extra constraint that conceptual flow

rates are equal to each other. Therefore, the result of the maxi-

mization is the maximum possible flow rate that can be indepen-

dently achieved from the source to all receivers, over all possible

orientations of the network:

f∗ = max
o∈O

[min
mi∈M−{m0}

(maximumm0 → mi flow rate)],

where O denotes all possible orientations of the network, and

M − {m0} is the set of multicast receivers. The recent break-
through in network coding [5], [6] shows that, for a fixed orien-

tation of the network, a rate x can be achieved for the entire mul-
ticast session if and only if it can be achieved for each multicast

receiver independently. This implies that, the maximum through-

put in each orientation equals to the minimum of the maximum

source → receiver flow rate. The cFlow LP essentially maxi-

mizes this min-max flow over all possible network orientations,

and obtains the max-min-max flow that is precisely the maximum

multicast throughput in the original undirected network. Further,

the source may transmit information to each receivermi accord-

ing to the conceptual flow f i. Should more than one conceptual

flows utilize capacity on the same link, the conflict can always be

resolved, provided that network coding is applied appropriately

[5], [6].

The cFlow LP contains 2|E| orientation variablesC(a), 2|M |·
|E| virtual flow variables f i(a), and one target flow rate variable
f∗. Therefore, the total number of variables is 2(|M |+1)|E|+1,
which is on the order of O(|M | · |E|). In addition, the cFlow LP
contains 3|E| orientation constraints, (4|E|+ |V |)(|M |−1) net-
work flow constraints, as well as |M | − 1 equal rate constraints.
The total number of constraints is, therefore, (4|E| + |V | +
1)(|M |− 1) + 3|E|, which is also on the order of O(|M | · |E|).

$%
The optimal routing strategy computed by cFlow LP speci-

fies the rate of data streams being transmitted along each link.

Based on the routing strategy, we need to perform the additional

step of code assignment to compute the coding strategy, before

data streams may be transmitted. The coding strategy includes

one transformation matrix for each node, which specifies how

incoming data streams are linearly coded into outgoing streams.

Given the routing strategy from the cFlow LP, there exist poly-

nomial time algorithms to perform such code assignments. For

completeness of this paper, we include a more detailed discus-

sion in the Appendix. The existence of polynomial time code

assignment algorithms leads to the following corollary of Theo-

rem 3:

Corollary. The complete solution that achieves optimal through-

put in undirected data networks with a single multicast session

can be computed in polynomial time, including both the routing

and coding strategies.

As an example of applying the cFlow LP on actual networks,

Fig. 7 shows the optimal orientation to achieve the optimal

throughput of 13.5 in the previous network in Fig. 4.

4

4

4

4

4

4

44

8

8

2.5

1.5

2.5

1.5

0.5

0.5

0.5

0.5

m
0

m
1

m
2

Fig. 7. The optimal network orientation computed by the cFlow LP, in which
the maximumm0→m1 flow and the maximumm0→m2 flow are both 13.5.

In order to evaluate the advantage of network coding with re-

spect to improving achievable optimal throughput, we have im-

plemented both the cFlow LP and a brute-force algorithm to com-

pute the steiner tree packing number. The steiner tree packing

algorithm enumerates all steiner trees in the network, assigns a

flow variable to each tree, and then maximizes the summation

of all tree flows, subject to the constraints that the total weight

(throughput) of trees using each link should not exceed its capac-

ity.

We have evaluated both the cFlow LP and the steiner tree pack-

ing algorithm using our previous examples, as well as a set of

uniform bipartite networks, which are believed to be good candi-

dates to show the power of coding on improving throughput [7],

[27]. A uniform bipartite network C(n, k) consists of the data
source and two layers: one with n relay nodes and the other with(n

k

)
receivers. Each relay node is connected to the sender, and

each receiver is connected to a different group of k relay nodes,
and all links have a capacity of 1. For instance, C(4, 3) is shown
in Fig. 8, the example in Fig. 2 isC(3, 2), and the classic example
of network coding in Fig. 1 is isomorphic to C(3, 2).

Fig. 8. The uniform bipartite network C(4, 3).

Table II summarizes the results of our empirical studies, from

which we have derived the following observations. First, the

cFlow LP is much more scalable and efficient than steiner tree

packing, which fails to compute a solution for a network as small

as C(5, 3), with only 16 nodes and 35 links, but almost 50 mil-
lion different steiner trees. In separate experiments, the cFlow

LP is able to compute the optimal throughput for networks hav-

ing thousands of nodes. Second, the results support Theorem

1, and show that the optimal throughput with coding is always

cFlow LP vs. steiner tre'
packing: a comparison

6

TABLE II

COMPUTING OPTIMAL THROUGHPUT: cFlow LP VS. STEINER TREE

PACKING

Network |V | |M | |E| χ(N) π(N) χ(N)
π(N) # of trees

Fig. 1 7 3 9 2 1.875 1.067 17

C(3, 2) 7 4 9 2 1.8 1.111 26

C(4, 3) 9 5 16 3 2.667 1.125 1,113

C(4, 2) 11 7 16 2 1.778 1.125 1,128

C(5, 4) 11 6 25 4 3.571 1.12 75,524

C(5, 2) 16 11 25 2 1.786 1.12 119,104

C(5, 3) 16 11 35 3 – – 49,956,624

[23], we apply Lagrangian relaxation on the dual program

of the cFlow LP, and design a distributed subgradient solu-

tion. The algorithm iteratively refines an existing orienta-

tion of the original network, until an optimal one is reached.

At this point, |M | max-flow computations are invoked to
find the optimal multicast throughput.

IV. ACHIEVING OPTIMAL THROUGHPUT IN

UNDIRECTED DATA NETWORKS: MORE GENERAL

CASES

Our efficient solution, the cFlow LP, can be extended to

solve the optimal throughput problem in cases beyond a

single multicast session. We now present its extensions (1)

to unicast, broadcast and group communication sessions,

(2) to the case of multiple communication sessions, and (3)

to the model of overlay networks.

A. The cases of unicast, broadcast and group communica-

tion sessions

Since unicast and broadcast can be viewed as special

cases of multicast, where two nodes and all nodes are in

the multicast group, respectively, our solution in the sin-

gle multicast case can be readily applied to a single unicast

or broadcast session without modifications. In the case of

a unicast session, the cFlow LP essentially solves a linear

program for a single network flow. In the case of a broad-

cast session, the cFlow LP computes the optimal broadcast

throughput, which has been shown by our previous work to

be the same as both the spanning tree packing number and

the network strength [3].

Traditionally, these three equal quantities have been

computed from either the perspective of network strength

or spanning tree packing. Cunningham [19] first gave

a combinatorial algorithm that computes the network

strength, which was later improved by Barahona [24]. Both

algorithms are based on matroid theory, and are highly so-

phisticated. Though the spanning tree packing problem has

an LP formulation, the number of variables is exponen-

tial. It is therefore necessary to work on its dual program,

where the minimum spanning tree algorithms can serve as

the separation oracle. In comparison, the cFlow LP pro-

vides an efficient alternative, with a polynomial number of

constraints and variables, and with both general LP solvers

and custom-tailored distributed subgradient solutions [23]

available.

S

S S

f

f

1

2

21

Fig. 3. Transforming group communication into multicast transmis-

sion.

Group communication refers to many-to-many commu-

nication sessions where multiple sources multicast inde-

pendent data to the same group of receivers, the set of

senders and the set of receivers may or may not overlap.

Previous work [5] has shown that a many-to-many ses-

sion can be easily transformed into a multicast session, by

adding a super source, which is a traditional technique in

network flows. As illustrated in Fig. 3, we can add an ad-

ditional source S to the network, and connect it to each of
the sources in the group communication session, with links

of unbounded capacity. We may then apply the cFlow LP

to maximize the multicast throughput from S to all the re-
ceivers. Additional constraints can be applied to flow rates

on the newly added links between the super source and the

original sources in the session, governing fairness among

the original sources. The outcome from the cFlow LP is

the optimal throughput and its corresponding routing strat-

egy for the original group communication session.

B. The case of multiple sessions

In its most general form, the optimal throughput problem

allows multiple communication sessions of different types

to co-exist in the same network. Since multicast is repre-

sentative — in that unicast, broadcast and group commu-

nication can all be transformed into multicast — it is suf-

ficient to consider the optimal throughput problem in the

case of multiple multicast sessions.

To achieve optimal throughput with multiple sessions,

we need to consider the problem of inter-session fairness.

The definition of fairness is usually application dependent;

however, as long as it can be expressed using linear con-

straints, we can easily include them in the LP formulation.

Good and bad news

Good news: the polytime cFlow LP is much
more computationally feasible;

Bad news: the coding advantage with a single
multicast session in thousands of randomly
chosen network topologies is one.

Except for the cases of uniform bipartit'
networks.

Does network coding really help?

It does not help much with respect to
improving the maximum achievable
throughput

 It does help to reduce the complexity of
computing routing strategies

Complexity: multicast with
fractional routing

Problem: computing maximum multicast rate
in an undirected network, with fractional
routing

Without coding: fractional steiner tree
packing, NP-complete.

With coding: transform into a LP problem, P.

Complexity: multicast with
integral routing

Problem: computing maximum multicast rate
with in an undirected network, with integral
routing

Without coding: integral steiner tree packing,
only polytime approximation known: 26-
approximation [Lau, FOCS 2004]

With network coding: 2-approximation [CISS
2004]

Towards efficient and distributed
computation of the cFlow LP

Performance of general LP solvers is not
good, as the cFlow LP has O(km) number of
variables and O(km) number of constraints, k
is the number of receivers, and m is the
number of links
Experimented with:

Interior Point method: can handle m = 1000,
and k = 10
Simplex method: scalability much worse

Primal cFlow LP: revisitedThe primal cFlow LP

Maximize χ

Subject to:

χ ≤ fi(
→

TiS) ∀i (1)

fi(
→

uv) ≤ c(
→

uv) ∀i,∀
→

uv #=
→

TiS (2)∑
v∈N(u) fi(

→

uv) =
∑

v∈N(u) fi(
→

vu) ∀i,∀u (3)

c(
→

uv) + c(
→

vu) ≤ C(uv) ∀uv #= TiS (4)

c(
→

uv), fi(
→

uv), χ ≥ 0, ∀i,∀
→

uv

21

Dual cFlow LPThe dual cFlow LP

Minimize
∑

uv C(uv)x(uv)

Subject to:

x(uv) ≥
∑

i yi(
→

uv) ∀uv #= TiS (5)

yi(
→

uv) + pi(v) ≥ pi(u) ∀i,∀
→

uv #=
→

TiS (6)

pi(Ti) − pi(S) ≥ zi ∀i (7)∑
i zi ≥ 1 (8)

x(uv), yi(
→

uv), zi ≥ 0 ∀i,∀
→

uv

primal (1) (2) (3) (4) c f(
→
uv) f(

→

TiS) χ

dual z y p x (5) (6) (7) (8)

22

The dual cFlow LP

Minimize
∑

uv C(uv)x(uv)

Subject to:

x(uv) ≥
∑

i yi(
→

uv) ∀uv #= TiS (5)

yi(
→

uv) + pi(v) ≥ pi(u) ∀i,∀
→

uv #=
→

TiS (6)

pi(Ti) − pi(S) ≥ zi ∀i (7)∑
i zi ≥ 1 (8)

x(uv), yi(
→

uv), zi ≥ 0 ∀i,∀
→

uv

primal (1) (2) (3) (4) c f(
→
uv) f(

→

TiS) χ

dual z y p x (5) (6) (7) (8)

22

Subgradient algorithm:
dualization strategy

Applying Lagrangian relaxation on the
constraint (5) in the dual program (primal
subgradient)

Decomposes the entire problem into a
sequence of max-flow/min-cut
computations

Allows a decentralized implementation

Algorithm overview

(1) Choose initial orientation (e.g., balanced orientation)

(2) Repeat

Compute S→Ti max-flow, ∀i

Refine orientation:

increase bandwidth share for saturated links

decrease bandwidth share for under-utilized links

Until convergence

→ optimal orientation obtained

(3) Compute S→Ti max-flow, ∀i

→ optimal multicast rate and routing strategy obtained

(4) Randomized code assignment

→ complete transmission strategy obtained

28

An example

4

4

4

4

4

4

4
4

8

8

1
1

1
1

1

1

S

T1

T2

4

4

4

4

44

8

8

2.5

1.5

2.5

1.5

0.5
0.5

0.5

0.5

S

T1

1

1

1

1

T2

(a)

4

1.5

4

8

8

1.5

2.5

0.5

0.5

S

T1

1

1
T2

0.5

0.5

2.5

(b)

4

4

4

44

2.5

2.5

1.5

0.5

0.5

S

T1

1

1

T2

0.5

0.5

5.5

(c)

30

8

9

10

11

12

13

14

15

0 20 40 60 80 100

Iteration number

M
u
lt
ic

a
s
t
ra

te
 (

K
b
p
s
)

31

11

!�

"�

#�

$�

%�

&'&�

(
)
*
*
+*
,
-.
+/
0
-1
2
3�

4!� "!� 5!� 4!!� "!!� 5!!� 4!!!�

-"--6070+8062�
-5--6070+8062�
4!-6070+8062�

!�

4!�

"!�

9!�

4!� "!� 5!� 4!!� "!!� 5!!� 4!!!�

:
-;
<-
+.
0
6=
.+
;
*
2
�

Fig. 4. Convergence speed in random networks.

4! "! 5! 4!! "!! 5!! 4!!!
4!

!4

4!
!

4!
4

4!
"

4!
9

4!
#

&'&

(
)
*
*
+*
,
-.
+/
0
-1
2
3

>)?,6=@+0*.-=A,;B
CDE-+*.06+;6-F;+*.
>.0+*06-.600-F=7G+*,

Fig. 5. Computation time comparison: steiner tree packing, general LP solver, and proposed subgradient solution (axes on log scale).

the order of seconds), but the running time grows up rapidly as the network size further grows. On the other hand,

the subgradient algorithm may solve networks with one thousand nodes in around 1 second. Another important
advantage of the subgradient solution over the direct LP solving method is that, the former is amenable to fully

distributed implementations, while the later is inherently centralized. We also point out that the computation time

discussed here corresponds to the one-time only session set up delay, and does not apply to successive data packet

transmissions.

C. Robustness of coded multicast streaming

We tested the robustness of our coded transmission scheme in a network with 200 nodes, and 19 receivers in
the multicast group. We randomly pick a certain percentage of links on the multicast streaming routes to fail, and

compute how many flows can still arrive at each receiver. If the number is less than n, then that receiver will not be

able to successfully recover the source data. In Fig. 6, x-axis corresponds to the percentage of active links that fail,

and y-axis corresponds to the percentage of receivers that can still successfully recover all data streams. We can

see that with 3% redundancy in source FEC coding, even if 5% of the currently utilized links fail, all receivers can

still receive at least n independent coded data streams, and can successfully recover original data being multicast

by the sender.

Extensions

The case of multiple multicast sessions
(without inter-session coding)

The case of overlay networks: only a subset of
the nodes (the end hosts) may be able to
replicate and code data

In both cases, the corresponding problem can
be formulated as LP problem, with a
polynomial number of variables and
constraints

From theory to
practice

From theory to reality

Coding in GF(256)

Random code assignment

Start with a high quality mesh

Distributed computation of flow routing
strategy (with network coding)

Application-layer message switch

12

switch. (3) Emulation of bandwidth availability. To verify correctness of the algorithm implementations,

we sometimes prefer to perform preliminary tests of the algorithm under controlled environments, in which

node and link characteristics are more predictable. The switch supports precise emulations of bandwidth

availability on each overlay link.

We have implemented our design for coded overlay flows as an algorithm based on the message

processing switch. Our implementation is designed to support coded flows in any form, by allowing both

1-to-n and m-to-1 mapping between incoming and outgoing flows. In a typical scenario of 1-to-n mapping,

each data message may be duplicated and then forwarded to its outgoing links. In the scenario of m-to-1

mapping, however, multiple flows may be encoded into one flow, and a single flow may be involved in the

encoding process of multiple flows. An architectural illustration is shown in Fig. 7, in which the design

for coded flows introduced in Sec. III is referred to as the coding algorithm for simplicity.

receiver buffer1

receiver buffer

receiver buffer 2

receiver buffer

receiver buffer 3

receiver buffer

flow 1
messages

flow 2
messages

flow 3
messages

From
 upstream

 nodes

sender buffer A

sender buffer

sender buffer B

sender buffer

sender buffer C

sender buffer

flow B
coded messages

flow C
coded messages

flow A
coded messages

To dow
nstream

 nodes

Coding Algorithm

m-to-1
mapping

1-to-n
mapping

Fig. 7. Coded overlay flows: an implementation.

We note that our implementation of the basic operations over the Galois field GF(28) is based on a

previous implementation in the form of a library [17]. As the original library is in C, we have implemented

a C++-based class wrapper for easier usage.

V. PERFORMANCE ANALYSIS OF CODED OVERLAY FLOWS

Compared to traditional data dissemination without network coding, coded overlay flows introduce

additional overhead at initialization time and during the process of data transmissions. In this section, we

perform an experimental study of various performance aspects of coded flows, taking advantage of the

coding algorithm implementation that we have completed.

A long way to go

Penalty of synchrony: flows have to wait for
other incoming flows to be encoded or
decoded

Link capacities often unknown

Decoding efficiency is a concern, if we use
network coding on large volume of data

Towards better decoding efficiency

single sessio(multiple sessions (w/
intersession coding)

integral routing linear coding is
sufficient

nonlinear coding
required

)actional routing linear coding is
sufficient [?]

[?] Conjecture, Sec. 3, Medard, Effros, Karger, Ho, “O(
Coding for Non-multicast Networks,” Allerton 2003.
[*] Zongpeng Li, Baochun Li, untitled, tech. report in
preparation.

XOR only coding
is sufficient [*]

S

T1 T2 T3 T4 T5 T6

x y x y ?

12

S

T1 T2 T3 T4 T5 T6

x y x+y 2x+y

x
y

x
x+y

x

2x+y
y
x+y

y

2x+y 2x+y

x+y

13

S

T1 T2 T3 T4 T5 T6

x1 x2
x2 x3+

x3 x4+

x3 x4

x4 x1+

x1 x2+

x1
x2 x3+

x2

x3 x4+

x1
x2 x3+

x1
x2 x3+

x3

x1 x2+

x2

x3 x4+

x3

x2

x3 x+

x4
x1 x2+

4

x3

x4

x4 x1+

x1 x2+

x4 x1+

x4

x4 x1+

14

Papers that this talk is based on

Zongpeng Li, Baochun Li, Dan Jiang, Lap Chi Lau. “On Achieving
Optimal Throughput with Network Coding,” INFOCOM 2005.
Zongpeng Li, Baochun Li. “Efficient and Distributed Computation of
Maximum Multicast Rates,” INFOCOM 2005.
Zongpeng Li, Baochun Li. “Network Coding in Undirected Networks,”
CISS 2004.
Mea Wang, Baochun Li, Zongpeng Li. “Implementing Networ,
Coded Flows,” in preparation for submission.
Zongpeng Li, Baochun Li. “Network Coding: The Case of Multipl'
Unicast Sessions,” Allerton 2004.
Zongpeng Li, Baochun Li. untitled, in preparation for submission.

Zongpeng Li, Baochun Li
ECE, University of Toronto

google “Baochun”

Empirical Studies

Unicast, standard multicast and
overlay multicast

9

Previous work [21] shows that in directed acyclic net-

works with integral routing requirement, there exist multi-

cast networks where the coding advantage grows propor-

tionally as log(|V |), and is thus not finitely bounded. How-
ever, we found the situation is drastically different in undi-

rected networks. In [3], we use undirected splitting and

graph orientation to prove that, for multicast transmissions

in undirected networks, the coding advantage is bounded

by a constant factor of 2.
Given the bound 1.125 obtained for contrived networks,

and the bound 2 proven in theory, we further studied the
coding advantage in over one thousand randomly gener-

ated topologies. Our observation is that, for all the random

topologies we tested, the coding advantage always remains

1.0, i.e., network coding does not introduce any improve-
ment in achievable throughput. This implies that the fun-

damental benefit of network coding is not higher optimal

throughput, but to facilitate significantly more efficient com-

putation and implementation of strategies to achieve such

optimal throughput.

How advantageous is standard multicast compared to uni-

cast and overlay multicast?

The cFlow LP is instrumental to precisely compute the

achievable optimal throughput with one multicast commu-

nication session, either with network coding or with mul-

tiple multicast trees, since the outcomes from the two are

hardly different. In either case, data replication need to be

supported on all network nodes, including core network el-

ements. It has been common knowledge that, when com-

pared to unicast from the source to all receivers, standard

multicast brings better bandwidth efficiency and higher

end-to-end session throughput. However, even in the case

of unicast, path diversity needs to be exploited to achieve

optimal throughput, equivalent to the maximum unicom-

modity flow problem. It is not immediately clear how ad-

vantageous standard multicast is.

Overlay multicast balances the tradeoff between the

practicality of standard multicast and unicast. It refers to

the case where only the members of the multicast group

may replicate or code data, whereas all other nodes may

only forward data. The optimal throughput achieved by

overlay multicast is efficiently computed by the oFlow LP.

We perform a quantitative study that compares the op-

timal throughput achieved with standard multicast, over-

lay multicast and unicast. The study is performed in ran-

dom networks with up to 500 nodes and over 1000 links.
There are 3 and 10 members in the multicast group respec-
tively, in two different sets of tests. Multicast nodes are

randomly selected, with different multicast groups being as

disjoint as possible. For each network size, multiple tests

are performed with different network topologies and dif-

ferent choices of the multicast group, the results are then

averaged.

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

(a) Size of multicast group = 3

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

(b) Size of multicast group = 10

Standard multicast
Overlay multicast
All unicast

Fig. 4. Achievable optimal throughput using standard multicast, over-

lay multicast, and all unicast from the sender to all receivers.

As we may observe from Fig. 4, there exists obvious dif-

ferences between standard multicast throughput and all uni-

cast throughput, and the differences are more significant in

Fig. 4(b), where the scale of the multicast transmission is

larger. This is due to the fact that with a large number of

receivers, the number of unicast flows increases in the all

unicast approach, and links incident to the sender become

bottlenecks for the transmission. Surprisingly, the figure

also suggests that, the optimal throughput achieved by over-

lay multicast is almost identical to that achieved by stan-

dard multicast, where all network nodes are able to repli-

cate or code data. On average, the optimal throughput of

overlay multicast is over 95% of standard multicast. This

observation shows that, from the perspective of maximum

achievable throughput, while there may exist contrived net-

work topologies that show more significant advantages of

standard multicast over overlay multicast, little difference

remains once large scale practical network topologies are

considered. In summary, the all unicast approach does not

scale, while overlay multicast may closely approach opti-

mal throughput without requiring core routers to be modi-

fied.

How sensitive is optimal throughput to node joins?

When new nodes join the multicast session, how may

achievable optimal throughput be affected? Intuitively, if a

relay node joins the multicast group and becomes a new re-

ceiver, the achievable session throughput should decrease,

due to the following two causes: (1) a larger number of

receivers may lead to more intense competition for band-

width; and (2) a new node with low capacity may become

a bottleneck and limit the throughput for the entire session.

Our simulation results show that, the second cause has a

much more significant impact than the first one.

Fig. 5(a) shows variations of optimal throughput as the

number of nodes in the multicast group increases from three

to !|V |/2", and then to |V | (effectively a broadcast ses-
sion), for various network sizes |V |. In this experiment,

How sensitive is optimal
throughput to node joins?

10

network topologies are generated with two edges per node

without power-law relationships, with heavy-tailed band-

width distribution between 10 and 50 Kbps on the links.

As we can observe, when the size of the multicast group

increases from three to !|V |/2", the effects on achievable
throughput is rather significant. However, further expand-

ing the multicast group to the entire network leads to a

much smaller decrease. Both causes that we have discussed

contribute to the initial decrease of throughput, while the

second cause (i.e., the effects of a bottleneck node) plays a

less important role in the subsequent decrease — when the

multicast group contains half of the nodes in the network,

it is very likely for the group to have already contained a

node with low capacity.

20 25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

45

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

(a) Heavy!tailed link capacity

20 25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

(b) Constant link capacity

|M|=3
|M|=|V|/2
|M|=|V|

Fig. 5. Variations of optimal throughput due to new nodes joining the

multicast session.

We further performed the same tests on power-law net-

work topologies with 10Kbps constant link bandwidth, and
the results are shown in Fig. 5(b). In the power-law topolo-

gies, most nodes have small degrees of two or three, while

a small number of nodes have high degrees. Therefore, the

initial multicast group usually contains a node with a small

degree already, which also has a low capacity, since the

link bandwidth is constant. In this case, only inter-receiver

bandwidth competition remains as a major concern. How-

ever, as we can observe in the figure, in most cases the op-

timal multicast throughput remains roughly constant, even

after all the nodes have joined the multicast session. This

counter-intuitive observation shows that, new receivers may

share bandwidth with existing receivers well, and do not

significantly affect the achievable throughput, as long as

their capacities are not too low. Spikes in Fig. 5(b) cor-

respond to the occasional cases where nodes in the initial

multicast group all have relatively high capacities. Both

results in Fig. 5(a) and 5(b) have led to the same obser-

vation that, when new nodes join a multicast session, the

decreased optimal throughput is mainly due to bottleneck

receivers with lower capacities.

How sensitive is optimal throughput to the addition of new

sessions?

When new sessions are added to the network, how do

they affect achievable optimal throughput? The mFlow

LP, presented in Sec. IV, makes it feasible to carry out

our empirical studies. Fig. 6 shows the variation of opti-

mal throughput as new communication sessions are created.

Three types of throughput are shown: (1) previous optimal,

which represents the optimal weighted session throughput

before the new session is added; (2) incremental, which is

the weighted throughput for the new session using residual

link capacities only, or just the previous optimal throughput

if the achievable throughput of the new session is higher;

and (3) re-optimized, which is the re-computed optimal ses-

sion throughput after the new session is added. Four groups

of simulations are performed, with two, three, four, and five

existing sessions, respectively, before the new session is es-

tablished. Each multicast group has a size five, and nodes

in different multicast groups are chosen to be as disjoint as

possible. Each session is assigned an equal weight.

0

5

10

15

20

25

Number of sessions = 2

1
2

1
4

1
6

1
8

2
0

5
0

1
0

0

2
0

0

3
0

0

5
0

0

0

5

10

15

20

25

Number of sessions = 3

1
2

1
4

1
6

1
8

2
0

5
0

1
0

0

2
0

0

3
0

0

5
0

0

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

0

5

10

15

20

25

Number of sessions = 4

1
2

1
4

1
6

1
8

2
0

5
0

1
0

0

2
0

0

3
0

0

5
0

0

0

5

10

15

20

25

Number of sessions = 5

1
2

1
4

1
6

1
8

2
0

5
0

1
0

0

2
0

0

3
0

0

5
0

0

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

prev optimal
incremental
re!optimized

Fig. 6. Throughput variations as a new session is created.

Results in Fig. 6 show that, the addition of an extra ses-

sion does not dramatically affect the achievable optimal

throughput, especially when the network size is large in

comparison to the number of nodes involved in the trans-

missions. However, if the existing sessions remain trans-

mitting according to the optimal transmission strategy com-

puted before the new session joins, and only residual ca-

pacities can be utilized to serve the new session (the incre-

mental throughput case), then the resulting throughput is

not satisfactory unless the number of sessions is very small

(s = 2). In general, this may lead to very low, even zero,
throughput for the new session. Therefore it is necessary

to perform re-optimization before a new session starts to

transmit.

How sensitive is optimal throughput to fairness con-

How sensitive is optimal
throughput to new sessions?

10

network topologies are generated with two edges per node

without power-law relationships, with heavy-tailed band-

width distribution between 10 and 50 Kbps on the links.

As we can observe, when the size of the multicast group

increases from three to !|V |/2", the effects on achievable
throughput is rather significant. However, further expand-

ing the multicast group to the entire network leads to a

much smaller decrease. Both causes that we have discussed

contribute to the initial decrease of throughput, while the

second cause (i.e., the effects of a bottleneck node) plays a

less important role in the subsequent decrease — when the

multicast group contains half of the nodes in the network,

it is very likely for the group to have already contained a

node with low capacity.

20 25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

45

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

(a) Heavy!tailed link capacity

20 25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

(b) Constant link capacity

|M|=3
|M|=|V|/2
|M|=|V|

Fig. 5. Variations of optimal throughput due to new nodes joining the

multicast session.

We further performed the same tests on power-law net-

work topologies with 10Kbps constant link bandwidth, and
the results are shown in Fig. 5(b). In the power-law topolo-

gies, most nodes have small degrees of two or three, while

a small number of nodes have high degrees. Therefore, the

initial multicast group usually contains a node with a small

degree already, which also has a low capacity, since the

link bandwidth is constant. In this case, only inter-receiver

bandwidth competition remains as a major concern. How-

ever, as we can observe in the figure, in most cases the op-

timal multicast throughput remains roughly constant, even

after all the nodes have joined the multicast session. This

counter-intuitive observation shows that, new receivers may

share bandwidth with existing receivers well, and do not

significantly affect the achievable throughput, as long as

their capacities are not too low. Spikes in Fig. 5(b) cor-

respond to the occasional cases where nodes in the initial

multicast group all have relatively high capacities. Both

results in Fig. 5(a) and 5(b) have led to the same obser-

vation that, when new nodes join a multicast session, the

decreased optimal throughput is mainly due to bottleneck

receivers with lower capacities.

How sensitive is optimal throughput to the addition of new

sessions?

When new sessions are added to the network, how do

they affect achievable optimal throughput? The mFlow

LP, presented in Sec. IV, makes it feasible to carry out

our empirical studies. Fig. 6 shows the variation of opti-

mal throughput as new communication sessions are created.

Three types of throughput are shown: (1) previous optimal,

which represents the optimal weighted session throughput

before the new session is added; (2) incremental, which is

the weighted throughput for the new session using residual

link capacities only, or just the previous optimal throughput

if the achievable throughput of the new session is higher;

and (3) re-optimized, which is the re-computed optimal ses-

sion throughput after the new session is added. Four groups

of simulations are performed, with two, three, four, and five

existing sessions, respectively, before the new session is es-

tablished. Each multicast group has a size five, and nodes

in different multicast groups are chosen to be as disjoint as

possible. Each session is assigned an equal weight.

0

5

10

15

20

25

Number of sessions = 2

1
2

1
4

1
6

1
8

2
0

5
0

1
0
0

2
0
0

3
0
0

5
0
0

0

5

10

15

20

25

Number of sessions = 3

1
2

1
4

1
6

1
8

2
0

5
0

1
0
0

2
0
0

3
0
0

5
0
0

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

0

5

10

15

20

25

Number of sessions = 4

1
2

1
4

1
6

1
8

2
0

5
0

1
0
0

2
0
0

3
0
0

5
0
0

0

5

10

15

20

25

Number of sessions = 5

1
2

1
4

1
6

1
8

2
0

5
0

1
0
0

2
0
0

3
0
0

5
0
0

Number of nodes in the network

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

prev optimal
incremental
re!optimized

Fig. 6. Throughput variations as a new session is created.

Results in Fig. 6 show that, the addition of an extra ses-

sion does not dramatically affect the achievable optimal

throughput, especially when the network size is large in

comparison to the number of nodes involved in the trans-

missions. However, if the existing sessions remain trans-

mitting according to the optimal transmission strategy com-

puted before the new session joins, and only residual ca-

pacities can be utilized to serve the new session (the incre-

mental throughput case), then the resulting throughput is

not satisfactory unless the number of sessions is very small

(s = 2). In general, this may lead to very low, even zero,
throughput for the new session. Therefore it is necessary

to perform re-optimization before a new session starts to

transmit.

How sensitive is optimal throughput to fairness con-

How sensitive is optimal
throughput to fairness?

11

straints?

In order to investigate how inter-session fairness require-

ments affect the optimal throughput, we establish three

one-to-two multicast sessions in networks of various sizes

between 10 and 350, and computed their total optimal

throughput with the following fairness constraints, respec-

tively: (a) no fairness requirement, which leads to the max-

imum value possible for the total throughput; (b) absolute

fairness, in which each session is required to have exactly

the same throughput; (c) weighted proportional fairness,

where the throughput of each session is proportional to the

associated weight of that session; and (d) max-min fairness,

in which no session throughput can be increased without

decreasing another already smaller session throughput.

As a first small-scale experiment to gain some insights,

Fig. 7 shows the total throughput of three sessions in a net-

work with twenty nodes, using the mFlow LP. Multicast

groups are chosen to be as disjoint as possible. The total

weight of three sessions w1 + w2 + w3 = 1. As we can
see, the weight distribution has a significant impact on the

achievable total throughput. When the three weights are

heavily unbalanced, the session with the smallest weight

can not realize its throughput potential, and consequently

leads to a small value of total throughput. The achievable

throughput with absolute fairness at w1 = w2 = w3 =
0.333 is 91.8 Kbps. The global optimal throughput 107.0
Kbps is achieved at (w1, w2, w3) = (0.287, 0.407, 0.306),
which turns out to be identical to the throughput with max-

min fairness in this case.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0
20
40
60
80

100
120

W1
W2T

o
ta

l
th

ro
u

g
h

p
u

t
o

f
3

 s
e

s
s
io

n
s
 (

K
b

p
s
)

Fig. 7. Total throughput of three multicast sessions, as inter-session

fairness requirements change.

Further results in Table V show that the excellent perfor-

mance of max-min fairness in the above example is not a

coincidence. As we may observe, when the network size is

relatively large (50 and above in the table), max-min fair-
ness always leads to optimal throughput. When the network

size is small (10 and 20 in the table), the inter-session com-
petition for bandwidth becomes more intense. The through-

put with max-min fairness may be inferior to the optimal

throughput in this case, but the difference is usually small.

TABLE V

TOTAL ACHIEVABLE THROUGHPUT WITH MAX-MIN FAIRNESS VS.

GLOBAL OPTIMAL THROUGHPUT

network size 10 50 100 150 250 350

max-min (Kbps) 120.0 173.3 160.0 146.7 146.7 183.3

optimal (Kbps) 126.1 173.3 160.0 146.7 146.7 183.3

Does optimal throughput lead to low bandwidth effi-

ciency?

In order to find out whether achieving optimal through-

put sacrifices bandwidth efficiency, we have conducted per-

formance comparisons between optimal throughput multi-

cast and single tree multicast. In the latter case, we com-

pute the widest steiner tree, which has the highest through-

put from all possible multicast trees. The throughput of a

tree is the lowest capacity of its links. We choose the tree

with the highest throughput rather than the one that is most

bandwidth efficient, since the latter is equivalent to the min-

imum steiner tree problem, which is hard to compute or to

approximate. Even when we can find such a bandwidth

efficient tree, it may have an exceedingly low throughput,

which is not practical for data transmissions.

0

10

20

30

40
Heavy!tailed link capacity

10 50 100 200 300 400 500

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

0

20

40

60

80
Heavy!tailed link capacity

10 50 100 200 300 400 500

B
a

n
d

w
id

th
 e

ff
ic

ie
n

c
y
 (

%
)

0

10

20

30

40
Constant link capacity

10 50 100 200 300 400 500
0

20

40

60

80
Constant link capacity

10 50 100 200 300 400 500

Number of nodes in the network

cFlow
Widest tree

Fig. 8. Achievable throughput and bandwidth efficiency: a comparison

between the optimal throughput multicast (cFlow LP) and the widest

steiner tree.

In Fig. 8, we compare both achievable throughput and

bandwidth efficiency between the two approaches. Band-

width efficiency is computed as the total receiving rate at

all receivers divided by total bandwidth consumption. We

tested two groups of networks, one with variable link ca-

pacity conforming to the heavy-tailed distribution, the other

with constant link capacity. For the variable link capacity

case, optimal throughput is higher than the widest steiner

11

straints?

In order to investigate how inter-session fairness require-

ments affect the optimal throughput, we establish three

one-to-two multicast sessions in networks of various sizes

between 10 and 350, and computed their total optimal

throughput with the following fairness constraints, respec-

tively: (a) no fairness requirement, which leads to the max-

imum value possible for the total throughput; (b) absolute

fairness, in which each session is required to have exactly

the same throughput; (c) weighted proportional fairness,

where the throughput of each session is proportional to the

associated weight of that session; and (d) max-min fairness,

in which no session throughput can be increased without

decreasing another already smaller session throughput.

As a first small-scale experiment to gain some insights,

Fig. 7 shows the total throughput of three sessions in a net-

work with twenty nodes, using the mFlow LP. Multicast

groups are chosen to be as disjoint as possible. The total

weight of three sessions w1 + w2 + w3 = 1. As we can
see, the weight distribution has a significant impact on the

achievable total throughput. When the three weights are

heavily unbalanced, the session with the smallest weight

can not realize its throughput potential, and consequently

leads to a small value of total throughput. The achievable

throughput with absolute fairness at w1 = w2 = w3 =
0.333 is 91.8 Kbps. The global optimal throughput 107.0
Kbps is achieved at (w1, w2, w3) = (0.287, 0.407, 0.306),
which turns out to be identical to the throughput with max-

min fairness in this case.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0
20
40
60
80

100
120

W1
W2T

o
ta

l
th

ro
u
g
h
p
u
t
o
f
3
 s

e
s
s
io

n
s
 (

K
b
p
s
)

Fig. 7. Total throughput of three multicast sessions, as inter-session

fairness requirements change.

Further results in Table V show that the excellent perfor-

mance of max-min fairness in the above example is not a

coincidence. As we may observe, when the network size is

relatively large (50 and above in the table), max-min fair-
ness always leads to optimal throughput. When the network

size is small (10 and 20 in the table), the inter-session com-
petition for bandwidth becomes more intense. The through-

put with max-min fairness may be inferior to the optimal

throughput in this case, but the difference is usually small.

TABLE V

TOTAL ACHIEVABLE THROUGHPUT WITH MAX-MIN FAIRNESS VS.

GLOBAL OPTIMAL THROUGHPUT

network size 10 50 100 150 250 350

max-min (Kbps) 120.0 173.3 160.0 146.7 146.7 183.3

optimal (Kbps) 126.1 173.3 160.0 146.7 146.7 183.3

Does optimal throughput lead to low bandwidth effi-

ciency?

In order to find out whether achieving optimal through-

put sacrifices bandwidth efficiency, we have conducted per-

formance comparisons between optimal throughput multi-

cast and single tree multicast. In the latter case, we com-

pute the widest steiner tree, which has the highest through-

put from all possible multicast trees. The throughput of a

tree is the lowest capacity of its links. We choose the tree

with the highest throughput rather than the one that is most

bandwidth efficient, since the latter is equivalent to the min-

imum steiner tree problem, which is hard to compute or to

approximate. Even when we can find such a bandwidth

efficient tree, it may have an exceedingly low throughput,

which is not practical for data transmissions.

0

10

20

30

40
Heavy!tailed link capacity

10 50 100 200 300 400 500

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

0

20

40

60

80
Heavy!tailed link capacity

10 50 100 200 300 400 500

B
a

n
d

w
id

th
 e

ff
ic

ie
n

c
y
 (

%
)

0

10

20

30

40
Constant link capacity

10 50 100 200 300 400 500
0

20

40

60

80
Constant link capacity

10 50 100 200 300 400 500

Number of nodes in the network

cFlow
Widest tree

Fig. 8. Achievable throughput and bandwidth efficiency: a comparison

between the optimal throughput multicast (cFlow LP) and the widest

steiner tree.

In Fig. 8, we compare both achievable throughput and

bandwidth efficiency between the two approaches. Band-

width efficiency is computed as the total receiving rate at

all receivers divided by total bandwidth consumption. We

tested two groups of networks, one with variable link ca-

pacity conforming to the heavy-tailed distribution, the other

with constant link capacity. For the variable link capacity

case, optimal throughput is higher than the widest steiner

Does optimal throughput lead to
low bandwidth efficiency?

Bandwidth efficiency: total receiving rate at all
receivers divided by total bandwidth consumption

11

straints?

In order to investigate how inter-session fairness require-

ments affect the optimal throughput, we establish three

one-to-two multicast sessions in networks of various sizes

between 10 and 350, and computed their total optimal

throughput with the following fairness constraints, respec-

tively: (a) no fairness requirement, which leads to the max-

imum value possible for the total throughput; (b) absolute

fairness, in which each session is required to have exactly

the same throughput; (c) weighted proportional fairness,

where the throughput of each session is proportional to the

associated weight of that session; and (d) max-min fairness,

in which no session throughput can be increased without

decreasing another already smaller session throughput.

As a first small-scale experiment to gain some insights,

Fig. 7 shows the total throughput of three sessions in a net-

work with twenty nodes, using the mFlow LP. Multicast

groups are chosen to be as disjoint as possible. The total

weight of three sessions w1 + w2 + w3 = 1. As we can
see, the weight distribution has a significant impact on the

achievable total throughput. When the three weights are

heavily unbalanced, the session with the smallest weight

can not realize its throughput potential, and consequently

leads to a small value of total throughput. The achievable

throughput with absolute fairness at w1 = w2 = w3 =
0.333 is 91.8 Kbps. The global optimal throughput 107.0
Kbps is achieved at (w1, w2, w3) = (0.287, 0.407, 0.306),
which turns out to be identical to the throughput with max-

min fairness in this case.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0
20
40
60
80

100
120

W1
W2T

o
ta

l
th

ro
u
g
h
p
u
t
o
f
3
 s

e
s
s
io

n
s
 (

K
b
p
s
)

Fig. 7. Total throughput of three multicast sessions, as inter-session

fairness requirements change.

Further results in Table V show that the excellent perfor-

mance of max-min fairness in the above example is not a

coincidence. As we may observe, when the network size is

relatively large (50 and above in the table), max-min fair-
ness always leads to optimal throughput. When the network

size is small (10 and 20 in the table), the inter-session com-
petition for bandwidth becomes more intense. The through-

put with max-min fairness may be inferior to the optimal

throughput in this case, but the difference is usually small.

TABLE V

TOTAL ACHIEVABLE THROUGHPUT WITH MAX-MIN FAIRNESS VS.

GLOBAL OPTIMAL THROUGHPUT

network size 10 50 100 150 250 350

max-min (Kbps) 120.0 173.3 160.0 146.7 146.7 183.3

optimal (Kbps) 126.1 173.3 160.0 146.7 146.7 183.3

Does optimal throughput lead to low bandwidth effi-

ciency?

In order to find out whether achieving optimal through-

put sacrifices bandwidth efficiency, we have conducted per-

formance comparisons between optimal throughput multi-

cast and single tree multicast. In the latter case, we com-

pute the widest steiner tree, which has the highest through-

put from all possible multicast trees. The throughput of a

tree is the lowest capacity of its links. We choose the tree

with the highest throughput rather than the one that is most

bandwidth efficient, since the latter is equivalent to the min-

imum steiner tree problem, which is hard to compute or to

approximate. Even when we can find such a bandwidth

efficient tree, it may have an exceedingly low throughput,

which is not practical for data transmissions.

0

10

20

30

40
Heavy!tailed link capacity

10 50 100 200 300 400 500

O
p

ti
m

a
l
th

ro
u

g
h

p
u

t
(K

b
p

s
)

0

20

40

60

80
Heavy!tailed link capacity

10 50 100 200 300 400 500

B
a

n
d

w
id

th
 e

ff
ic

ie
n

c
y
 (

%
)

0

10

20

30

40
Constant link capacity

10 50 100 200 300 400 500
0

20

40

60

80
Constant link capacity

10 50 100 200 300 400 500

Number of nodes in the network

cFlow
Widest tree

Fig. 8. Achievable throughput and bandwidth efficiency: a comparison

between the optimal throughput multicast (cFlow LP) and the widest

steiner tree.

In Fig. 8, we compare both achievable throughput and

bandwidth efficiency between the two approaches. Band-

width efficiency is computed as the total receiving rate at

all receivers divided by total bandwidth consumption. We

tested two groups of networks, one with variable link ca-

pacity conforming to the heavy-tailed distribution, the other

with constant link capacity. For the variable link capacity

case, optimal throughput is higher than the widest steiner

Prototype implementation
10

Algorithm for coded flows

 Generic application-layer message switch

incoming
messages

send

Galois field library

C++ class wrapper receive

coded
messages

Galois field
operations

TCP-based stream sockets

Routing Algorithm

k-MaxST Mesh

mesh
information

messages

messages

routing
strategy

Fig. 10. The implementation of coded flows in overlay networks.

strategy computation algorithm. Upon receiving either a

communication session request or routing related mes-

sages, a node applies the routing strategy to compute the

flows to be received or sent on its incident links. Once

the algorithm converges, the optimal routing strategy

is computed, and each node in the optimal routing

strategy initializes the randomized code matrix, ready

for incoming data streams.

A final note is that, our implementation of the basic

operations over the Galois field GF(28) is based on a

previous implementation in the form of a library [15].

As the original library is in C, we have implemented a

C++-based class wrapper for easier usage.

Evaluation Results

In order to verify the feasibility of coded flows in over-

lay networks, we have completed a realistic implementa-

tion of our proposed algorithms, and conduct a series of

experiments on a cluster of dual-CPU Pentium 4 Xeon

2.4GHz servers. The topology of the test networks are

generated using the BRITE topology generator [17]. In

this section, we present the results from our experiments

in networks of different sizes, ranging from 10 to 100.

A. Performance of the mesh construction algorithm

Fig. 11(a) illustrates the message overhead introduced

by the k-MaxST algorithm, in random networks of

size 10 to 100. The message overhead depends on the
connectivity of the random network topology. In our

experiments, each node in the random networks has at

most 8 incident links on average. In the worst case, the
per-node stress is 28KB for constructing a 4-MaxST
overlay mesh in a network of size 100, which shows
that the algorithm is lightweight.

For comparison, we have also experimented with the

k-MST algorithm. We executed the k-MST algorithm

with the same network topology used for k-MaxST
evaluation to compare the bandwidth performance. The

results are presented in Fig. 11(b). We compute the

throughput of both k-MaxST and k-MST as the sum

of the maximum throughput of each tree. It is obvious

that the throughput increases with the number of trees.

It is also easy to observe that the k-MaxST always

outperforms the k-MST in terms of bandwidth regardless
of the network size and the value of k.

To evaluation the overlay mesh performance in reac-

tion to bandwidth variation, we conduct a set of exper-

iments to collect the message overhead introduced by

bandwidth variations in 3-MaxST overlay mesh. In each
trial, we randomly select r = 2, 4, or6 links to decrease
their bandwidth, and collect the message overhead due

to these variations. As illustrated in Fig. 11(c), the higher

variation rate introduces higher message overhead to the

network, especially when the network size is large. The

overhead also depends on how the random links are

distributed among the k MaxSTs. If all links belong to
the same MaxST, the message overhead is low since

only one tree needs to be improved due to bandwidth

variations. When r > k, most k MaxSTs are affected

by the bandwidth variation, thus the message overhead

is much higher when r = 4 and 6.

B. Performance of routing strategy computation

The message overhead required to compute the op-

timal routing strategy is significantly less than that of

mesh construction, since messages are passed between

nodes only when the prices of flows and nodes are being

updated. We define the session size of a data communica-

tion session as the number of interested receivers of this

session. We conduct a set of experiments with various

session sizes and network sizes. Fig. 12(a) illustrates that

the message overhead required to compute the optimal

routing strategy is closely related to both the network

size and session size. As the network size increases, the

message overhead grows linearly. The optimal routing

strategy between each pair of source and destination

nodes are computed separately. For every additional

destination, the message overhead is increased.

The message overhead is also affected by the network

topology. Depending on the number of nodes involved in

the optimal transmission topology, the message overhead

may vary. As shown in Fig. 12(a), the total message

overhead is increased by 400KB in the network of size
30 when the session size is increased from 2 to 3. This
is mainly because the optimal routing strategy between

the source and the third destination introduces a number

of new nodes to the final optimal routing strategy.

