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Figure 1: Illustration of the 3D augmented shock scaffold,�����
. The dark broken lines are in correspondence to surface

ridges ( ��� ), while the smaller dots correspond to surface ver-
tices ( �	�
��� ). The larger nodes are ��� � shocks, the interior links
have arrows to indicate flow (all � � � ’s here), the hashed sheets
are hyperlinks ( ��
 � ; not all shown). Left: The

��� �
for a trun-

cated tetrahedron consists of 8 nodes, 7 links and 9 hyperlinks.
Right: Sketch of the

��� �
for a branching structure which at the

top is a cylinder whose base grows from a triangle to an ellipse,
and which splits into two cylindrical structures with elliptic bases
(only the hyperlink interior to the shape is shown).

The shock scaffold is a hierarchical organization of the
medial axis ( ��� ) in 3D consisting of special medial
points, and curves connecting these points, thereby form-
ing a geometric directed graph [5] (Fig.1). We will de-
scribe a new method for computing the shock scaffold for
an unorganized cloud of points in 3D,1 e.g., as obtained
from Computerized Tomography (CT) scanners (Fig.2),
and illustrate some potential medical applications. Our
method addresses the requirement of computing the ���
of realistic datasets, which involve tens or hundreds of
thousands of points, in a practical time-frame (seconds).
Our approach is based on propagation along the scaffold
from initial sources of flow as a means to efficiently con-
struct it. The detection of these sources can be shown to be

1We join to this abstract a refereed conference paper under considera-
tion, which summarizes the computational aspects of our new method.

reduced to considering pairs of input points, which then
constitutes the computational bottleneck of this method
[5]. We present seven geometric principles which avoid the
consideration of those pairs of points which cannot possi-
bly lead to a shock flow. Specifically, these steps involve (i)
the “visibility” of a point from another, (ii) the clustering
of points, (iii) the visibility of a cluster from another, (iv)
the convex hull of a cluster, (v) the vertices of such convex
hulls as “virtual” points, (vi) a multi-resolution framework,
and, finally, (vii) a search strategy organized in layers.

In medical imaging and biology, the ��� is being used
in a growing number of applications, including the char-
acterization of the morphometry of bones [16], the reg-
istration of CT and Magnetic Resonance (MR) datasets
[11, 10], anatomical model matching [17], path planning
for virtual endoscopy [20, 12], the tracking of live cell
pseudopode dynamics [9], the study of growth and mor-
phogenesis [3], the study of 3D distribution of chromo-
somes [15]. Medial representations based on the ��� to
model boundaries in 2D and 3D medical images is being
explored, for example by Pizer et al. [14, 19]. Such medial
structures are found helpful in image segmentation tasks
to drive deformable templates permitting to characterize
anisotropic growth mechanisms [13]. In computational
chemistry and molecular design the ��� is used to skele-
tonize electron density maps to help automate the tracing
of the molecular chains linking different atomic centers [6].
In drug design, the ��� should be a suitable substrate for
building molecular surfaces and volumes [2], modeling re-
ceptor sites, the docking of ligands inside protein cavities
[7], the contracting geometric invariance among molecules
exhibiting similar activity, all key geometric problems in
this field [4].

While most other approaches only approximate the 3D
��� , our approach based on the shock scaffold is exact.
Furthermore, the algorithmic method based on the above
computational geometry principles leads to quasi-linear
numerical complexity in the computation of full scaffolds
(Fig.2.(e)). This method presents an alternative to the clas-
sical approaches based on computing Voronoi diagrams
( ��� ), e.g., via the QHULL algorithm [1]. Our timings are
in the same ballpark as those based on QHULL for comput-
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Figure 2: (a) 7691 point generators obtained from a CT scan of
a human aorta [18]. (b) Automatic surface recovery

��
derived

from the shock scaffold
���

[5], where white dots indicate gener-
ators. (c)

�����
for the top interior part of the aorta, and (d) for

the bottom interior and exterior part. Blue curves represent ���
ribs, while pink curves represent � � � axial curves. (e) Timing re-
sults for the shock flow method on a set of artificially generated
random samples in a 3D box; experiments performed on an SGI
Octane 2 machine running IRIX 6.5.

ing ��� , but the latter have theoretical problems in converg-
ing to the ��� [1, 5] and compute less structure. Note also
that our method for computing the shock scaffold to repre-
sent the 3D ��� provides a new alternative to compute the
��� , with a number of interesting features including the lo-
cality of computations, and the ability to deal with dynamic
inclusions and coarse-to-fine strategies.

Our presentation consists of three main parts. (i) We
summarize the definition of the shock scaffold hierarchy,
which is based on the notion of contact with maximal
spheres and singularities of shock flows [8], and explain
its relation to the ��� and ��� . (ii) We present the main
aspects of our new method to compute the shock scaffold
of unorganized points clouds in 3D [5]. (iii) We illustrate a
number of potential applications in the medical and related
fields, including the modeling of human body and tissue
structures.
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