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1 Overview

Vascular disease (such as blockage) has been a major
cause of death in the United States for a long time. Ef-
fective treatment and diagnosis procedures for this type
of diseases heavily rely on accurate 3-D images of the
interested vessel structures. Currently dominating ap-
proach for obtaining the rapidly moving vascular struc-
tures is to use one or more projections (generated by im-
age intensifier-TV (II-TV)) to reconstruct the 3-D images
(as the more advanced MRI and CT cannot yet provide
the necessary time resolution). Thus a key problem in
such reconstructions is to determine the geometry of the
imaging systems (i.e., the rotation matrix R and transla-
tion vector t relating two single-plane imaging systems).
As a promising approach, bi-plane imaging has received

considerable attention in recent years and a number of
techniques have been developed for 3-D reconstruction
[2, 4, 5, 6]. A common feature of these techniques for
determining imaging geometry is to first identify a set
of corresponding points in the two projections, and then
convert the problem of geometry determination to certain
non-linear optimization problem, and use either heuristic
algorithms or general optimization packages to find a fea-
sible solution to R and t. Unfortunately, these approaches
in general can guarantee neither the quality of solutions
nor the time efficiency, thus may not be suitable for online
imaging systems.
In bi-plane imaging, two planar images are generated

by projecting an X-ray beam (with a cone shape) from
two different locations through the 3-D object to an image
acquisition device (or screen). The beam source has a
fixed distance D to the screen, and is the origin of the 3-
D coordinate system associated with the image, where X
and Y are the coordinates of the 2-D projection images,
and Z is the normal of the screen. Due to a variety of
reasons (such as movement of the beam source and data
noise), the exact rotation matrix and translation vector
between the two coordinate systems are often unknown.
Rough estimation can be obtained by using technique in
[6]. To accurately reconstruct the 3-D structures of tiny
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vessels, high precision imaging geometry is desired.
To provide a better solution, we reduce it to the fol-

lowing geometric problem: Given two sets of 2-D points
A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bn} on two im-
age screens with each pair of ai and bi being the approx-
imation of the two projections of an (unknown) point pi
in 3-D space, also given the beam source (i.e., the origin)
oA of image A, find the most likely position of the beam
source oB and orientation of the coordinate system of B
in the coordinate system of A. It is easy to see that in an
ideal situation where ai and bi are the exact projections
of pi, it is sufficient to consider only a constant number of
corresponding pairs. In practice, however, it is often diffi-
cult to find the exact positions for corresponding pairs (as
most of the correspondance is done manually). Thus, a
number of corresponding pairs are considered for increas-
ing the accuracy.
In this paper, we present an efficient approach for solv-

ing the above problem. Our approach first reduces the
imaging geometry determination problem to a problem
of finding optimal cells in an arrangement of a set of sur-
faces in R6. Based on interesting observations, we then
simplify the rather complicated surfaces (which can not
be analytically expressed) so that each of them can be
implicitly expressed by an equation. The simplified sur-
faces are in general non-algebraic, indicating that directly
computing the arrangement could be very challenging. To
overcome this difficulty, we study the error sensitivity of
each variable in the imaging geometry and use it to par-
tition the feasible domain into smaller regions so that the
topological structure of the arrangement in each region
can be effectively captured by some lower dimensional
(e.g., 2 or 3-D) arrangements. The curves and surfaces in
these lower dimensional arrangements, although are still
non-algebraic, have “nice” properties which enable us to
efficiently find the optimal cell. Comparing with existing
approaches, our technique achieves better accuracy (as
suggested by our preliminary experimental results) and
has bounded running time. Our technique can also be
easily modified to remove a few outliers in point sets A
and B to further improve the accuracy.

2 Main Ideas

Let P = {p1, p2 · · · , pn} be the set of to-be-reconstructed
points in 3-D space. Let pai and p

b
i be the exact projec-

tions of pi on the image screen of A and B, respectively.
We define ∆ = maxni=1max{dist(ai, p

a
i ), dist(bi, p

b
i )},

where dist(.) is the Euclidean distance of two points.
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Note that pai , p
b
i and ∆ are all unknown.

To determine the best possible imaging geometry for B,
we first guess a possible value, say δ, for ∆. Clearly if δ ≥
∆, then each pai will be contained in the disk di centered
at ai and with radius δ. Thus pi is contained in the round
cone Ci apexed at the origin oA and with di as the base.
Given a solution G to the imaging geometry of B, we can
project each cone Ci to the screen of B and form a sector
Si. If G is optimal, then each bi will be contained in their
corresponding sector Si. Thus the optimality of G can
be determined by counting the number fin(A,B,G) of
points which are contained in their corresponding sectors.
Therefore, finding the most likely imaging geometry can
be reduced to finding a geometry G which maximizes the
value fin(A,B,G).

To efficiently obtain the optimal G, we consider the re-
lation of each point bi and its corresponding sector Si.
Since Si can be parameterized by the six variables of G,
it seems possible to relate the location of bi with G, and
therefore functionally determine whether a point bi is in-
side or outside Si. When bi moves inside Si, it forces the
corresponding G to move in the six dimensional solution
space. The loci of G therefore form a region Ri in R

6,
meaning that if G is inside Ri, bi will be contained in Si.
Since each of the n bi will generate a region, to maximize
the value of fin(A,B,G) it is sufficient to determine the
cell contained by the most number of Ri’s.

To make this approach feasible, we need to determine
the bounding surface of each Ri. Notice that each surface
is the loci of G while moving bi on the boundary of Si.
Thus we only need to consider the incidence of bi with
the two bounding rays of Si, and use the condition for
incidence to derive the function of the surface.

Unfortunately, the above approach does not work. This
is because the surfaces cannot be analytically expressed.
The computation of the surfaces requires to find the roots
of polynomials with degree ≥ 6, which do not admit an-
alytical formulas.

To overcome this difficulty, we approximate each round
cone Ci by a convex facet cone FCi with k facets. De-
pending on the location of G, the projection of FCi will
create up to k sectors, S1

i , S
2
i , · · · , S

k
i , on the screen of B,

with each sector Sji , 1 ≤ j ≤ k, corresponding to a pair
of edges on FCi tangent to two planes crossing oB . The
facet cone FCi also breaks each region Ri into O(k) sub-
regions R1

i , R
2
i , · · · , R

k
i , with each subregion R

j
i generated

by a sector Sji , 1 ≤ j ≤ k. A nice property of these subre-
gions is that their bounding surfaces can all be implicitly
expressed.

Directly solving the maximization problem requires to
compute the arrangements of those implicitly expressed
surfaces in R6, which seems to be quite difficult. To fur-
ther simplify the problem, we study the influence of each
variable to the solution. We show that when the 3-D ob-
ject is roughly in the middle of the image systems (which
is typically the case in practice), error is much less sensi-
tive to the three translational variables than to the rota-
tional variables.

Thus our approach is to first compute a rough estima-
tion for G by using technique in [6], which gives us a small
hyperbox H bounding the optimal solution of G. Based
on the error-sensitivity of each variable, we then parti-
tion H into a set of regions. In each region, we select
the leading rotational variable and one or two transla-
tional variables (e.g., ty or ty and tx) in terms of error-
sensitivity, and place a non-uniform grid (based on the
error-sensitivity) in the subspace corresponding to those
unselected variables. In each grid point, the six dimen-
sional arrangement is reduced to a two or three dimen-
sional arrangement. The following lemmas show some
nice properties of such arrangemnts.

Lemma 1 Let ty, tx and α ∈ {θ, ψ, φ} be three selected

variables. Then, at any fixed grid point, the bounding

surface Si is monotone in the directions of tx and ty.

Furthermore, the intersection of Si and any plane parallel

to the txty plane is a straight line.

Lemma 2 Let ta, a ∈ {x, y, z} and α ∈ {θ, ψ, φ} be the

two selected variables, then each curve is of the form Ta =
ci cos(α)+di sin(α)+ei

gi cos(α)+hi sin(α)+ji
, α ∈ [0, 2π] or [0, π], and can be break

into up to 3 continuous pieces. Any pair of curves have

no more than 4 intersections.

The above lemmas enable us to find the optimal cell
in each grid point by using some arrangement traversal
algorithms [1, 3]. To find the “global” optimal, we deter-
mine an optimal point for each grid point and return the
best as our solution.
To further reduce error, one can perform a binary

search on δ to find the smallest value such that the cor-
responding arrangement contains at least one optimal so-
lution. Since δ upper bounds the maximum error, our
approach simultaneously achieves the accuracy and effi-
ciency. Note that our algorithm can also be easily modi-
fied to remove a few outliers to further reduce error.
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