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The model: finite hypothesis testing

Second simple model: estimate a global parameter θ∗.

• Each agent takes observations over time conditioned on θ∗.

• Can do local updates followed by communication with neighbors.

• Main focus: simple rule and rate of convergence.
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Model

• Set of n nodes.

• Set of hypotheses
Θ = {θ1, θ2, . . . , θM}.

• Observations X
(t)
i are i.i.d.

• Fixed known distributions
{fi(·; θ1), fi(·; θ2), . . . , fi(·; θM )}.

• θ∗ ∈ Θ is fixed global unknown
parameter

• X(t)
i ∼ fi(·; θ∗).

GOAL Parametric inference of unknown θ∗
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Hypothesis Testing

If θ∗ is globally identifiable, then

collecting all observations

X(t) = {X(t)
1 , X

(t)
2 , . . . , X(t)

n }

at a central locations yields a

centralized hypothesis testing problem.

Exponentially fast convergence to the

true hypothesis

Can this be achieved locally with low

dimensional observations?
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Example: Low-dimensional Observations

If all observations are not collected centrally, node 1 individually cannot learn
θ∗.

=⇒ nodes must communicate.
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Distributed Hypothesis Testing

• Define Θ̄i = {θ ∈ Θ : fi(·; θ) =
fi(·; θ∗)}.

• θ ∈ Θ̄i

=⇒ θ and θ∗ are observationally
equivalent for node i.

• Suppose
{θ∗} = Θ̄1 ∩ Θ̄2 ∩ . . . ∩ Θ̄n.

GOAL Parametric inference of unknown θ∗
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Learning Rule

• At t = 0, node i begins with

initial estimate vector q
(0)
i > 0,

where components of q
(t)
i form a

probability distribution on Θ.

• At t > 0, node i draws X
(t)
i .
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Learning Rule

• Node i computes belief vector,

b
(t)
i , via Bayesian update

b
(t)
i (θ) =

fi

(
X

(t)
i ; θ

)
q

(t−1)
i (θ)

∑
θ′∈Θ fi

(
X

(t)
i ; θ′

)
q

(t−1)
i (θ′)

.

• Sends message Y
(t)
i = b

(t)
i .
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Learning Rule

• Receives messages from its
neighbors at the same time.

• Updates q
(t)
i via averaging of log

beliefs,

q
(t)
i (θ) =

exp
(∑n

j=1Wij log b
(t)
j (θ)

)

∑
θ′∈Θ exp

(∑n
j=1Wij log b

(t)
j (θ′)

) ,

where weight Wij denotes the
influence of node j on estimate
of node i.

• Put t = t+ 1 and repeat.

Rutgers Sarwate
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In a picture

Bayesian
Update

Xi(t) ⇠ fi(·|✓⇤)

bi(✓, t) =
fi(Xi(t)|✓)P

✓0 fi(Xi(t)|✓)Qi(✓, t)

Qi(✓, t)

Qi(✓, t + 1) =
exp

⇣Pn
j=1 Wij log bj(✓, t)

⌘

P
✓02⇥ exp

⇣Pn
j=1 Wij log bj(✓0, t)

⌘ .

Average 
log-beliefs {bj(✓, t)} messages from

neighbors

local observations

Rutgers Sarwate
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An example

When connected in a network, using the proposed learning rule node 1 learns
θ∗.
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Assumptions

Assumption 1

For every pair θ 6= θ∗, fi (·; θ∗) 6= fi (·; θ) for at least one node, i.e the
KL-divergence D (fi (·; θ∗)‖ fi (·; θ)) > 0.

Assumption 2

The stochastic matrix W is irreducible.

Assumption 3

For all i ∈ [n], the initial estimate q
(0)
i (θ) > 0 for every θ ∈ Θ.

Rutgers Sarwate
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Network Divergence

The eigenvector centrality v = [v1, v2, . . . , vn] is the left eigenvector of
W corresponding to eigenvalue 1.

The central quantity of interest is what we call the network divergence

K(θ∗, θ) =

n∑

j=1

vjD (fj (·; θ∗)‖ fj (·; θ))

Rutgers Sarwate
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Convergence Results

• Let θ∗ be the unknown fixed parameter.

• Suppose assumptions 1− 3 hold.

Theorem: Rate of rejecting θ 6= θ∗

Every node i’s estimate of θ 6= θ∗ almost surely converges to 0 exponentially
fast. Mathematically,

− lim
t→∞

1

t
log q

(t)
i (θ) = K(θ∗, θ) P-a.s.

where K(θ∗, θ) =
∑n
j=1 vjD (fj (·; θ∗)‖ fj (·; θ)).

Rutgers Sarwate
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Example: Network-wide Learning

• Θ = {θ1, θ2, θ3, θ4} and θ∗ = θ1.

• If i and j are connected,
Wij = 1

degree of node i , otherwise 0.

• v = [ 1
12 ,

1
8 ,

1
12 ,

1
8 ,

1
6 ,

1
8 ,

1
12 ,

1
8 ,

1
12 ].

Rutgers Sarwate
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Example

Θ̄1 = {θ∗}, Θ̄i = Θ i 6= 1 Θ̄5 = {θ∗}, Θ̄i = Θ i 6= 5

Rutgers Sarwate
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Corollaries

Theorem: Rate of rejecting θ 6= θ∗

Every node i’s estimate of θ 6= θ∗ almost surely converges to 0 exponentially
fast. Mathematically,

− lim
t→∞

1

t
log q

(t)
i (θ) = K(θ∗, θ) P-a.s.

where K(θ∗, θ) =
∑n
j=1 vjD (fj (·; θ∗)‖ fj (·; θ)).

Lower bound on rate of convergence to θ∗

For every node i, the rate at which error in the estimate of θ∗ goes to zero
can be lower bounded as

− lim
t→∞

1

t
log
(

1− q(t)
i (θ∗)

)
= min
θ 6=θ∗

K(θ∗, θ) P-a.s.

Rutgers Sarwate
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Corollaries

Lower bound on rate of learning

The rate of learning λ across the network can be lower bounded as,

λ ≥ min
θ∗∈Θ

min
θ 6=θ∗

K(θ∗, θ) P-a.s.

where,

λ = lim inf
t→∞

1

t
| log et|,

and

et =
1

2

n∑

i=1

||q(t)
i (·)− 1θ∗(.)||1 =

n∑

i=1

∑

θ 6=θ∗
q

(t)
i (θ).

Rutgers Sarwate
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Example: Periodicity

✓1 ✓2

✓3 ✓4

node 1 can distinguish

no
de

 2
 c

an
 

di
st

in
gu

is
h

• Θ = {θ1, θ2, θ3, θ4}
and θ∗ = θ1.

• Underlying graph is
periodic,

W =

(
0 1
1 0

)
.

Rutgers Sarwate
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Example: Networks with Large Mixing Times

✓1 ✓2

✓3 ✓4

node 1 can distinguish

no
de

 2
 c

an
 

di
st

in
gu

is
h

• Θ = {θ1, θ2, θ3, θ4}
and θ∗ = θ1.

• Underlying graph is
aperiodic,

W =

(
0.9 0.1
0.4 0.6

)
.
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Concentration Result

Assumption 4

For k ∈ [n], X ∈ Xk, and for any given θi, θj ∈ Θ such that θi 6= θj ,∣∣∣log fk(·;θi)
fk(·;θj)

∣∣∣ is bounded, denoted by L.

Theorem

Under Assumptions 1–4, for every ε > 0 there exists a T such that for all
t ≥ T and for every θ 6= θ∗ and i ∈ [n] we have

Pr
(

log q
(t)
i (θ) ≥ −(K(θ∗, θ)− ε)t

)
≤ γ(ε, L, t),

and
Pr
(

log q
(t)
i (θ) ≤ −(K(θ∗, θ) + ε)t

)
≤ γ(

ε

2
, L, t),

where L is a finite constant and γ(ε, L, t) = 2 exp
(
− ε2t

2L2d

)
.

Rutgers Sarwate
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Related Work and Contribution

Jadbabaie et al. use local Bayesian update of beliefs followed by averaging the

beliefs.

• Show exponential convergence with no closed form of convergence rate. [’12]

• Provide an upper bound on learning rate. [’13]

We average the log beliefs instead.

• Provide a lower bound on learning rate λ̃.

• Lower bound on learning rate is greater than the upper bound

=⇒ Our learning rule converges faster.

Shahrampour and Jadbabaie, ’13 formulated a stochastic optimization learning

problem; obtained a dual-based learning rule for doubly stochastic W ,

• Provide closed-form lower bound on rate of identifying θ∗.

• Using our rule we achieve the same lower bound (from corollary 1)

min
θ 6=θ∗

(
1

n

n∑
j=1

D(fj(·; θ∗)||fj(·; θ))

)
.

Rutgers Sarwate
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Related Work and Contribution

An update rule similar to ours was used in Rahnama Rad and Tahbaz-Salehi, 2010

to

• Show that node’s belief converges in probability to the true parameter.

• However, under certain analytic assumptions.

For general model and discrete parameter spaces we show almost-sure exponentially

fast convergence.

Shahrampour et. al. and Nedic et. al. (independently) showed that our learning

rule coincides with distributed stochastic optimization based learning rule (W

irreducible and aperiodic)

Rutgers Sarwate
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Hypothesis testing and “semi-Bayes”

Local
Update

Social
Update

Send
Msg

Get
Data

Xi(t) {Yj(t)}

Qi(t) Qi(t + 1)

• Combination of local Bayesian updates and averaging.

• Network divergence: an intuitive measure for the rate of
convergence.

• “Posterior consistency” gives a Bayesio-frequentist analysis.

Rutgers Sarwate
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Looking forward

✓1 ✓2

✓3

✓i
✓4

• Continuous distributions and parameters.

• Applications to distributed optimization.

• Further limiting messages via coordinate descent (Sarwate and
Javidi ’15).

• Time-varying parameters and distributed stochastic filtering.

Rutgers Sarwate
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Thank You!

Rutgers Sarwate
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