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Agenda

We consider the following problem

min f (x) + h(x) (P)

s.t. Ax = b, x ∈ X

f (x) : RN → R is a smooth non-convex function

h(x) : RN → R is a nonsmooth non-convex regularizer

X is a compact convex set, and {x | Ax = b} ∩ X 6= ∅.
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The Plan

1 Design an efficient decomposition scheme decoupling the variables

2 Analyze convergence/rate of convergence

3 Discuss convergence to first/second-order stationary solutions

4 Explore different variants of the algorithms; obtain useful insights

5 Evaluate practical performance

Mingyi Hong (University of Minnesota) 2 / 56



App 1: Distributed optimization

Consider a network consists of N agents, who collectively optimize

min
y∈X

f (y) :=
N

∑
i=1

fi(y) + hi(y),

where fi(y), hi(y) : X → R is cost/regularizer for local to agent i

Each fi, hi is only known to agent i (e.g., through local measurements)

y is assumed to be scalar for ease of presentation

Agents are connected by a network defined by an undirected graph
G = {V , E}, with |V| = N vertices and |E | = E edges
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App 1: Distributed optimization

Introduce local variables {xi}, reformulate to the consensus problem

min
{xi}

N

∑
i=1

fi(xi) + hi(xi)

s.t. Ax = 0 (consensus constraint)

where A ∈ RE×N is the edge-node incidence matrix; x := [x1, · · · , xN ]
T

If e ∈ E and it connects vertex i and j with i > j, then Aev = 1 if v = i,
Aev = −1 if v = j and Aev = 0 otherwise.
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App 2: Partial consensus

“Strict consensus” may not be practical; often not required [Koppel et al 16]

1 Due to noises in local
communication

2 The variables to be estimated has
spatial variability

3 ....
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App 2: Partial consensus

Relax the consensus requirement

min
i

N

∑
i=1

fi(xi) + hi(xi)

s.t. ‖xi − xj‖2 ≤ bij, ∀(i, j) ∈ E.

Introduce “link variable” {zij = xi − xj}; Equivalent reformulation

min
i

N

∑
i=1

fi(xi) + hi(xi)

s.t. Ax− z = 0, z ∈ Z
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App 2: Partial consensus

The local cost functions can be non-convex in a number of situations

1 The use of non-convex regularizers, e.g., SCAD/MCP [Fan-Li 01, Zhang 10]

2 Non-convex quadratic functions, e.g., high-dimensional regression with missing
data [Loh-Wainwright 12], sparse PCA

3 Sigmoid loss function (approximating 0-1 loss) [Shalev-Shwartz et al 11]

4 Loss function for training neural nets [Allen-Zhu-Hazan 16]
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App 3: Non-convex subspace estimation

Let Σ ∈ Rp×p be an unknown covariance matrix, with eigen-decomposition

Σ =
p

∑
i=1

λiuiuT
i

where λ1 ≥ · · · ≥ λp are eigenvalues; u1, · · · , up are eigenvectors

The k-dimensional principal subspace of Σ

Π∗ =
k

∑
i=1

λiuiuT
i = UUT

Principal subspace estimation. Given i.i.d samples {x1, · · · , xn}, estimate
Π∗, based on sample covariance matrix Σ̂
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App 3: Non-convex subspace estimation

Problem formulation [Gu et al 14]

Π̂ = arg min
Π

− 〈Σ̂, Π〉+ Pα(Π)

s.t. 0 � Π � I, Tr(Π) = k. (Fantope set)

where Pα(Π) is a non-convex regularizer (such as MCP/SCAD)

Estimation result. [Gu et al 14] Under certain condition on α, every
first-order stationary solution is “good”, with high probability:

‖Π̂−Π∗‖F ≤ s1

√
s
n
+ s2

√
log(p)

n

s = |supp(diag(Π∗))| is the subspace sparsity [Vu et al 13]
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App 3: Non-convex subspace estimation

Question. How to find first-order stationary solution?

Need to deal with both the Fantope and non-convex regularizer Pα(Π)

A heuristic approach proposed in [Gu et al 14]

1 Introduce linear constraint X = Π

2 Impose non-convex regularizer on X, Fantope constraint on Π

Π̂ = arg min
Π

− 〈Σ̂, Π〉+ Pα(X)

s.t. 0 � Π � I, Tr(Π) = k. (Fantope set)

Π− X = 0

3 Same formulation as (P), only heuristic algorithm without any guarantee
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The literature
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Literature

The Augmented Lagrangian (AL) methods [Hestenes 69, Powell 69], is a
classical algorithm for solving nonlinear non-convex constrained problems

Many existing packages (e.g., LANCELOT)

Recent developments [Curtis et al 16] [Friedlander 05], and many more

Convex problem + linear constraints, [Lan-Monterio 15] [Liu et al 16]
analyzed the iteration complexity for the AL method

Requires double-loop

In the non-convex setting difficult to handle non-smooth regularizers

Difficult to be implemented in a distributed manner
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Literature

Recent works consider AL-type methods for linearly constrained problems

Nonconvex problem + linear constraints, [Artina-Fornasier-Solombrino 13]

1 Approximate the Augmented Lagrangian using proximal point (make it convex)

2 Solve the linearly constrained convex approximation with increasing accuracy

AL based methods for smooth non-convex objective + linearly coupling
constraints [Houska-Frasch-Diehl 16]

1 AL based Alternating Direction Inexact Newton (ALADIN)

2 Combines SQP and AL, global line search, Hessian computation, etc.

Still requires double-loop

No global rate analysis
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Literature

Dual decomposition [Bertsekas 99]

1 Gradient/subgradient applied to the dual

2 Convex separable objective + convex coupling constraints

3 Lots of application, e.g., in wireless communications [Palomar-Chiang 06]

Arrow-Hurwicz-Uzawa primal-dual algorithm [Arrow-Hurwicz-Uzawa 58]

1 Applied to study saddle point problems [Gol’shtein 74][Nedić-Ozdaglar 07]

2 Primal-dual hybrid gradient [Zhu-Chan 08]

3 ...

Do not to work for non-convex problem (difficult to use the dual structure)
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Literature

ADMM is popular in solving linearly constrained problems

Some theoretical results for applying ADMM for non-convex problems

1 [Hong-Luo-Razaviyayn 14]: non-convex consensus and sharing

2 [Li-Pong 14], [Wang-Yin-Zeng 15], [Melo-Monterio 17] with more relaxed
conditions, or faster rates

3 [Pang-Tao 17] for non-convex DC program with sharp stationary solutions

Block-wise structure, but requires a special block

Does not apply to problem (P)
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The plan of the talk

First consider the simpler problem (unconstrained, smooth)

min
x∈RN

f (x), s.t. Ax = b (Q)

Algorithm, analysis and discussion

First-/second order stationarity

Then generalize

Applications and numerical results
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The proposed algorithms
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The proposed algorithm

We draw elements form AL and Uzawa methods

The augmented Lagrangian for problem (P) is given by

Lβ(x, µ) = f (x) + 〈µ, Ax− b〉+ β

2
‖Ax− b‖2

where µ ∈ RM dual variable; β > 0 penalty parameter

One primal gradient-type step + one dual gradient-type step
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The proposed algorithm

Let B ∈ RM×N be some arbitrary matrix to be defined later

The proposed Proximal Primal Dual Algorithm is given below

Algorithm 1. The Proximal Primal Dual Algorithm (Prox-PDA)

At iteration 0, initialize µ0 and x0 ∈ RN.
At each iteration r + 1, update variables by:

xr+1 = arg min
x∈Rn

〈∇ f (xr), x− xr〉+ 〈µr, Ax− b〉

+
β

2
‖Ax− b‖2 +

β

2
‖x− xr‖2

BT B; (1a)

µr+1 = µr + β(Axr+1 − b). (1b)
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Comments

The primal iteration has to choose the proximal term

β

2
‖x− xr‖2

BT B

Choose B appropriately to ensure the following key properties:

1 The primal problem is strongly convex, hence easily solvable;

2 The primal problem is decomposable over different variable blocks.
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Comments

We illustrate this point using the distributed optimization problem

A network consists of 3 users: 1↔ 2↔ 3

Define the signed graph Laplacian as L− = AT A ∈ RN×N

Its (i, i)th diagonal entry is the degree of node i, and its (i, j)th entry is −1 if
e = (i, j) ∈ E , and 0 otherwise.

L− =

 1 −1 0
−1 2 −1
0 −1 1

 , L+ =

1 1 0
1 2 1
0 1 1


Define the signless incidence matrix B := |A|

Using this choice of B, we have BT B = L+ ∈ RN×N, which is the signless
graph Laplacian
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Comments

Then x-update step becomes

xr+1 = arg min
x

N

∑
i=1
〈∇ fi(xr

i ), xi〉+ 〈µr, Ax− b〉+ β

2
xT L−x +

β

2
(x− xr)T L+(x− xr)︸ ︷︷ ︸

proximal term

= arg min
x

N

∑
i=1
〈∇ fi(xr

i ), xi〉+ 〈µr, Ax− b〉+ β

2
xT(L− + L+)x− βxT L+xr

= arg min
x

N

∑
i=1
〈∇ fi(xr

i ), xi〉+ 〈µr, Ax− b〉 − βxT L+xr

︸ ︷︷ ︸
linear in x

+βxT Dx

D = diag[d1, · · · , dN ] ∈ RN×N is the degree matrix

The problem is separable over the nodes, and strongly convex.
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The analysis steps
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Main assumptions

A1. f (x) differentiable and has Lipschitz continuous gradient, i.e.,

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ RN .

Further assume that AT A + BT B � IN .
A2. There exists a constant δ > 0 such that

∃ f > −∞, s.t. f (x) +
δ

2
‖Ax− b‖2 ≥ f , ∀ x ∈ RN .

A3. The constraint Ax = b is feasible over x ∈ RN.
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Functions satisfying the assumptions

The sigmoid function. The sigmoid function is given by

sigmoid(x) =
1

1 + e−x ∈ [−1, 1].

The arctan function. arctan(x) ∈ [−1, 1] so [A2] is ok. arctan′(x) = 1
x2+1 ∈ [0, 1]

so it is bounded, which implies that [A1] is true.

The tanh function. Note that we have

tanh(x) ∈ [−1, 1], tanh′(x) = 1− tanh(x)2 ∈ [0, 1].

The logit function. The logistic function is related to the tanh as

2logit(x) =
2ex

ex + 1
= 1 + tanh(x/2).

The quadratic function xTQx. Suppose Q is symmetric but not necessarily
positive semidefinite, and xTQx is strongly convex in the null space of AT A.
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Optimality Conditions

The first and second order necessary condition for local min is given as

∇ f (x∗) + 〈µ∗, A〉 = 0, Ax∗ = b. (2a)

〈y,∇2 f (x∗)y〉 ≥ 0, ∀ y ∈ {y | Ay = 0}. (2b)

The second-order necessary condition is equivalent to the condition that
∇2 f (x∗) is positive semi-definite in the null space of A

Sufficient condition for strict/strong local minimizer is given by

∇ f (x∗) + 〈µ∗, A〉 = 0, Ax∗ = b.

〈y,∇2 f (x∗)y〉 > 0, ∀ y ∈ {y | Ay = 0}.
(3)
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Optimality Conditions

Define a strict saddle point to be the solution (x∗, µ∗) such that

∇ f (x∗) + 〈µ∗, A〉 = 0, Ax∗ = b,

∃ y ∈ {y | Ay = 0}, and σ > 0 such that 〈y,∇2 f (x∗)y〉 < 0.
(4)

Has strictly negative “eigenvalue” in the null space of A.

Issues related to strict saddles have been brought up recently in ML
communities; see recent works [Ge et al 15] [Sun-Qu-Wright 15]

GD-type algorithms have been developed, but mostly in unconstrained and
smooth setting [Lee et al 16] [Jin et al 17]

Question. Prox-PDA converges to strict saddle, 2nd-order stationary sols?
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The Analysis: Step 1

Our first step bounds the descent of the augmented Lagrangian

Observation. Dual variable is given as

ATµr+1 = −∇ f (xr)− βBT B(xr+1 − xr)

Change of dual can be bounded by change of primal
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The Analysis: Step 1

Let σmin(AT A) be the smallest non-zero eigenvalue for AT A

Lemma

Suppose Assumptions [A1] and [A3] are satisfied. Then the following is true

Lβ(xr+1, µr+1)− Lβ(xr, µr) ≤ −
(

β− L
2
− 2L2

βσmin(AT A)

)
‖xr+1 − xr‖2

+
2β‖BT B‖

σmin(AT A)

∥∥∥(xr+1 − xr)− (xr − xr−1)
∥∥∥2

BT B
.
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Comments

The rhs cannot be made negative

The AL alone does not descend

Need a new object that is decreasing in the order of

β
∥∥∥(xr+1 − xr)− (xr − xr−1)

∥∥∥2

BT B

The change of the sum of the constraint violation ‖Axr+1 − b‖2 and the
proximal term ‖xr+1 − xr‖2

BT B has the desired term.
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The Analysis: Step 2

Lemma

Suppose Assumption [A1] is satisfied. Then the following is true

β

2

(
‖Axr+1 − b‖2 + ‖xr+1 − xr‖2

BT B

)
≤ β

2

(
‖xr − xr−1‖2

BT B + ‖Axr − b‖2
)
+ L‖xr+1 − xr‖2

− β

2

(
‖(xr − xr−1)− (xr+1 − xr)‖2

BT B + ‖A(xr+1 − xr)‖2
)

.

Observation. The new object, β/2
(
‖Axr+1 − b‖2 + ‖xr+1 − xr‖2

BT B

)
,

increases in ‖xr+1 − xr‖2 and decreases in ‖(xr − xr−1)− (xr+1 − xr)‖2
BT B

The change of AL behaves in an opposite manner

Good news. A conic combination of the two decreases at every iteration.
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Step 3: Constructing the potential function

Let us define the potential function for Algorithm 1 as

Pc,β(xr+1, xr, µr+1) = Lβ(xr+1, µr+1) +
cβ

2

(
‖Axr+1 − b‖2 + ‖xr+1 − xr‖2

BT B

)
where c > 0 is some constant to be determined later.

Lemma

Suppose the assumptions made in Lemma 2 are satisfied. Then we have

Pc,β(xr+1, xr, µr+1) ≤ Pc,β(xr, xr−1, µr)−
(

β− L
2
− 2L2

βσmin(AT A)
− cL

)
‖xr+1 − xr‖2

−
(

cβ

2
− 2β‖BT B‖

σmin(AT A)

)∥∥∥(xr+1 − xr)− (xr − xr−1)
∥∥∥2

BT B
.
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The choice of parameters

As long as c and β are chosen appropriately, the function Pc,β decreases at
each iteration of Prox-PDA

The following choices of parameters are sufficient for ensuring descent

c ≥ max
{

δ

L
,

4‖BT B‖
σmin(AT A)

}
. (5)

The β satisfies

β >
L
2

(
2c + 1 +

√
(2c + 1)2 +

16L2

σmin(AT A)

)
. (6)
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Step 4: main result

Now we are ready to present the main result

Define Q(xr+1, µr+1) as the ‘stationarity gap’ of problem (P)

Q(xr+1, µr) := ‖∇xLβ(xr+1, µr)‖2︸ ︷︷ ︸
primal gap

+ ‖Axr+1 − b‖2︸ ︷︷ ︸
dual gap

.

Q(xr+1, µr)→ 0 implies that the limit point (x∗, µ∗) is a 1st order sol of (P)

0 = ∇ f (x∗) + ATµ∗, Ax∗ = b.
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The main result

Claim (H. - 16)

Suppose Assumption A is satisfied. Further suppose that the conditions on β and
c in (5) and (6) are satisfied. Then

1 (Eventual Feasibility). The constraint is satisfied in the limit, i.e.,

lim
r→∞

µr+1 − µr → 0, lim
r→∞

Axr → b, and lim
r→∞

xr+1 − xr = 0.

2 (Convergence to KKT). Every limit point of {xr, µr} converges to a KKT
point of problem (P). Further, Q(xr+1, µr)→ 0.

3 (Sublinear Convergence Rate). For any given ϕ > 0, let us define T to be
the first time that the optimality gap reaches below ϕ, i.e.,

T := arg min
r

Q(xr+1, µr) ≤ ϕ.

Then there exists a constant ν > 0 such that ϕ ≤ ν
T−1 .
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Extension: Increasing the proximal parameter

The previous algorithm requires to explicitly compute the bound for β

Requires global information; Alternatives?

Algorithm 2. The Prox-PDA with Increasing Proximal (Prox-PDA-IP)

At iteration 0, initialize µ0 and x0 ∈ RN.
At each iteration r + 1, update variables by:

xr+1 = arg min
x∈Rn

〈∇ f (xr), xr〉+ 〈µr, Ax− b〉

+
βr+1

2
‖Ax− b‖2 +

βr+1

2
‖x− xr‖2

BT B

µr+1 = µr + βr+1(Axr+1 − b).
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Extension: Increasing the proximal parameter

Primal step similar to the classic GD with diminishing primal stepsize 1/βr

[Bertsekas-Tsitsiklis 96]

The term βr should satisfy the following conditions

1
βr → 0,

∞

∑
r=1

1
βr = ∞.

Proof requires construction of a new potential function

Lβr+1(xr+1, µr+1) +
cβr+1βr

2
‖Axr+1 − b‖2 +

cβr+1βr

2
‖xr − xr+1‖2

BT B.

Similar convergence as Claim 1. (1)-(2); The rate (for a randomized version)

E[Q(xT , µT)] ∈ O
(

T−1/3
)

.
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Second order stationary solutions?

So far we have been focused on convergence (rate) on the 1st order solutions

Will prox-PDA stuck at strict saddle points?

We can show that with probability 1 this will not happen.

Claim (H.-Razaviyayn-Lee 17)

Under the same assumption as in the previous claim, and further suppose that
(x0, λ0) are initialized randomly. Then with probability one, the iterates
{(xr+1, µr+1)} generated by the Prox-PDA algorithm converges to a second-order
stationary solution satisfying (2b).
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Proof steps

First represent the iterates using a linear system[
xr+1

xr

]
=

[
2I − 1

β H − 2AT A− 1
β ∆r −I + 1

β H + AT A + 1
β ∆r−1

I 0

] [
xr

xr−1

]

+

[
ATb + 1

β (∆
r − ∆r−1)x∗

0

]
.

where

H := ∇2 f (x∗), dr+1 := −x∗ + xr+1

∆r+1 :=
∫ 1

0
(∇2 f (x∗ + tdr+1)− H)dt.

Then show that the above mapping is a diffeomorphism; apply Stable
Manifold Theorem to argue that strict saddle point is not stable [Shub 87]
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Generalize to (P)?
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Generalize to (P)?

Can we generalize the Prox-PDA to the following problem?

min f (x) + h(x) (P)

s.t. Ax = b, x ∈ X

With the following assumptions

B1 h(x) = g0(x) + h0(x) a non-convex regularizer; g0 is smooth non-convex,
h0(x) is nonsmooth convex (such as the MCP/SCAD regularizer)

B2 X is a closed compact convex set
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An example

Consider the following problem (adapted from [Wang-Yin-Zeng 16])

min x2 − y2, s.t. x = y, x ∈ [−1, 1], y ∈ [−2, 0]

Any point in the set [−1, 0] is optimal

Apply Prox-PDA (with x0 = 1, y0 = µ0 = 0, β = 5)
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Generalization to (P)?

What went wrong?

One can on longer establish the relationship

ATµr+1 = −∇ f (xr)− βBT B(xr+1 − xr)

Change of dual cannot be bounded by change of primal

How to proceed?
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Adding perturbation

The key idea is to perturb the primal-dual iteration

We perturb the dual update by

µr+1 = µr + ρr+1
(

Axr+1 − b− γr+1µr
)

Perturb the primal by multiplying (1− ρr+1γr+1) in front of 〈µr, Ax− b〉

Gradually reduce the size of the perturbation constant γ

Note: perturbing dual ascent- type methods has been considered for convex
problems [Koshal- Nedić-Shanbhag 11]; not perturbing primal
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The Perturbed Prox-PDA

Algorithm 3. The Perturbed Prox-PDA (P-Prox-PDA)

At iteration 0, initialize µ0 and x0 ∈ RN.
At each iteration r + 1, update variables by:

xr+1 = arg min
x∈X
〈∇ f (xr), x− xr〉+ (1− ρr+1γr+1)〈µr, Ax− b〉+ h(x)

+
ρr+1

2
‖Ax− b‖2 +

βr+1

2
‖x− xr‖2

BT B; (7a)

λr+1 = λr + ρr+1
(

Axr+1 − b− γr+1λr
)

(7b)

Intuition. Adding dual perturbation results in the decent

−ρr+1γr+1‖λr+1 − λr‖2
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Conditions on the sequences

We need the following conditions on the penalty parameter

1
ρr → 0,

∞

∑
r=1

1
ρr = ∞,

∞

∑
r=1

1
(ρr)2 < ∞

We need the following conditions on the perturbation

ρr+1γr+1 = τ ∈ (0, 1), for some constant τ.

This implies the perturbation on the “dual gradient” goes to zero
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Outline of convergence result for P-Prox-PDA

Suppose Assumption A and B are satisfied

The conditions on {ρr, βr} and {γr} given above are satisfied; Then

lim
r→∞

µr+1 − µr → 0, lim
r→∞

Axr → b, and lim
r→∞

xr+1 − xr = 0

Every limit point of {xr, µr} converges to a first order stationary point of (P)
[Hong.-Hajinezhad 17]

A randomized version of the algorithm converges with a rate

E[Q(xT , µT)] ∈ O
(

T−1/3
)

.
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Remarks

In our perturbation scheme, increasing penalty parameters and proximal
terms are used together with decreasing dual gradient perturbation

Question. Will the algorithm work if all parameters are kept constant?

Yes, converge to a ε-stationary solution

In particular, for fixed (ρ, β) we need to choose ργ = O(1), and γ = O(ε)

Definition

ε-stationary solution. A solution (x∗, λ∗) is called an ε-stationary solution if

‖Ax∗ − b‖2 ≤ ε, 〈∇ f (x∗) + ATλ∗ + ξ∗, x∗ − x〉 ≤ 0, ∀ x ∈ X. (8)

where ξ∗ ∈ ∂h(x∗).
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Applications
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A toy example

Apply the perturbed version of Prox-PDA to the example

min x2 − y2, s.t. x = y, x ∈ [−1, 1], y ∈ [−2, 0]

With ρr = r, γr = 0.001/ρr, β = 5
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Application to distributed non-convex optimization

Application of Prox-PDA type method to distributed non-convex optimization

min
i

N

∑
i=1

fi(xi) s.t. Ax = 0

Here A is the incidence matrix, B = |A|

Provide explicit update rules for each distributed node [H.- 16]
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Application to distributed non-convex optimization

The system update rule is given by

xr+1 = xr − 1
2β

D−1
(
∇ f (xr)−∇ f (xr−1)

)
+ Wxr − 1

2
(I + W)xr−1

where in the last equality we have defined the weight matrix
W := 1

2 D−1(L+ − L−), which is a row stochastic matrix.

Each agent updates by

xr+1
i = xr

i −
1

2βdi

(
∇ fi(xr

i )−∇ fi(xr−1
i )

)
+ ∑

j∈N (i)

1
di

xr
j −

1
2

 ∑
j∈N (i)

1
di

xr−1
j + xr−1

i


Completely decoupled, new update based on the most recent two iterates
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Application to distributed non-convex optimization

Interestingly, such iteration has the same form as the EXTRA [Shi et al 14],
developed for convex consensus problem

The same observation has also been made in [Mokhtari-Ribeiro 16] (in the
convex case)

By appealing to our analysis, the EXTRA works for the non-convex
distributed optimization problem as well (with appropriate β)

Converges (with sublinear rate) to both 1st and 2nd order stationary solutions

Different proof techniques

Other variants of Prox-PDA also can be specialized in this case
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Numerical result for distributed non-convex optimization

We consider a distributed non-negative PCA problem

min
z

N

∑
i=1
−z>D>i Diz + h(z)

s.t. ‖z‖2
2 ≤ 1, z ≥ 0.

h(z) is the MCP regularizer

Divide the agents randomly into three different sets: S1, S2, S3

Consider the following reformulation

min
x

N

∑
i=1
−x>i D>i Dixi +

1
|S1| ∑

i∈S1

h(xi)

s.t. ‖xi‖2
2 ≤ 1 i ∈ S2

xi ≥ 0 i ∈ S3

Ax = 0, (the consensus constraint)
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Numerical result for distributed non-convex optimization

Compare with the DSG algorithm proposed in [Nedić-Ozdaglar-Parrilo 10]

The DSG is designed for convex problems with per-agent local constraint

We generate the network according to [Yildiz-Scaglione 08]
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Numerical result for distributed non-convex optimization

Compare average performance over 100 random network generation

Both algorithms stop at 2000 iterations

Table: Comparison of perturbed prox-PDA and DSG

Stat-Gap Cons-Vio
N P-Prox-PDA DSG P-Prox-PDA DSG
5 2.1e− 19 0.1 1.4e− 18 4.5e− 5

10 1.4e− 19 0.48 1.1e− 18 4.5e− 5
20 6.7e− 18 0.05 2.7e− 16 1.7e− 4
40 2.19e− 13 0.02 3.1e− 15 6.9e− 4
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Application to sparse subspace estimation

We consider the following sparse subspace estimation (with MCP regularizer)
[Gu et al 14]

Π̂ = arg min
Π

− 〈Σ̂, Π〉+ Pα(Y)

s.t. 0 � Π � I, Tr(Π) = k. (Fantope set)
Π−Y = 0

where Pα(Π) is chosen to be MCP

Choose the following for P-Prox-PDA

X := [Y; Π], AT A =

[
I −I
−I I

]
, BT B =

[
I I
I I

]
We choose αr = r, γr = 10−3/r
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Application to sparse subspace estimation

Experiment setup following [Gu et al 14] 1

1 Construct Σ by eigen-decomposition

2 First data set. s = 5, k = 1, λ1 = 100; λk = 1, ∀ k 6= 1

3 x1 has 5 non-zeros entries, with magnitude 1/
√

5

4 Second data set. s = 10, k = 5; Top-5 λk = 100, k = 1, · · · , 4, λ5 = 10

5 Eigenvectors are generated by orthnormalizing a 10-sparse Gaussian vectors

6 SCAD regularizer, b = 3

1We would like to thank Q. Gu and Z. Wang for providing the codes.
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Application to sparse subspace estimation

We show one realization of P-Prox-PDA and the algorithm in [Gu et al 14]

Consider the scenario where n = 80, p = 128, k = 1, s = 5
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Application to sparse subspace estimation

Compare the recovery error
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Application to sparse subspace estimation

Compare the averaged performance of different algorithms

Generate 100 true covariance matrices Σ; for each Σ, generate 100 samples

Table: Subspace Estimation Error

‖Π̂−Π∗‖
Parameters PPD [Gu et al 14]

n = 80, p = 128, k = 1, s = 5 0.031± 0.01 0.033± 0.01
n = 150, p = 200, k = 1, s = 5 0.022± 0.07 0.025± 0.08
n = 80, p = 128, k = 1, s = 10 0.047± 0.01 0.063± 0.01
n = 80, p = 128, k = 5, s = 10 0.24± 0.05 0.31± 0.02
n = 70, p = 128, k = 5, s = 10 0.23± 0.03 0.33± 0.03

n = 128, p = 128, k = 5, s = 10 0.17± 0.02 0.25± 0.02
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Application to sparse subspace estimation

Compare the support recovery performance

Use True Positive Rate (TPR) and False Positive Rate (FPR)

Table: Support Recovery Results

TPR FPR
Parameters PPD [Gu 14] PPD [Gu 14]

n = 80, p = 128, k = 1, s = 5 1± 0 1± 0 0± 0 0± 0
n = 150, p = 200, k = 1, s = 5 1± 0 1± 0 0± 0 0± 0
n = 80, p = 128, k = 1, s = 10 1± 0 1± 0 0± 0 0± 0
n = 80, p = 128, k = 5, s = 10 1± 0 1± 0 0.53± 0.03 0.56± 0.04
n = 70, p = 128, k = 5, s = 10 1± 0 1± 0 0.57± 0.01 0.59± 0.02

n = 128, p = 128, k = 5, s = 10 1± 0 1± 0 0.53± 0.05 0.54± 0.01
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Conclusion

In this work we consider solving the following non-convex problem

min f (x) + h(x) (P)

s.t. Ax = b, x ∈ X

A number of primal-dual based algorithms

For smooth problems, convergence to first and second order stationary
solutions, with global rate

For nonsmooth problems, primal-dual perturbation scheme

Compact representation for distributed consensus problem
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Future Works

How about 2nd-order stationarity for non-smooth, constrained problems?

Preliminary results reported in [Chang-H.-Pang 17], use (single-sided) second
order directional derivative to characterize

The resulting condition is much more complicated than that for the
unconstrained linearly constrained case; checking those conditions could be
NP-hard; Efficient algorithms?

Stochasticity? What if objective/gradient is only known through a noisy
first/zeroth order oracle?

More applications: Mumford-Shah regularization for image processing (e.g.,
inpainting) [Möllenhoff et al 14]; Topic modeling [Fu et al 16]; etc.
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Thank You!
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The randomized algorithm

Let B ∈ RM×N be some arbitrary matrix to be defined later

The proposed Proximal Primal Dual Algorithm is given below

Algorithm 1. The Proximal Primal Dual Algorithm (Prox-PDA)

At iteration 0, initialize µ0 and x0 ∈ RN, fixed T.
For r = 1, · · · , T

xr+1 = arg min
x∈Rn

〈∇ f (xr), x− xr〉+ 〈µr, Ax− b〉

+
β

2
‖Ax− b‖2 +

β

2
‖x− xr‖2

BT B; (9a)

µr+1 = µr + β(Axr+1 − b). (9b)

Output (xt, µt), where t is uniformly randomly generated from [1, 2, · · · , T]
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