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Agenda

@ We consider the following problem

min  f(x) + h(x) (P)
st. Ax=b xe X

o f(x): RN — R is a smooth non-convex function
o h(x) : RN — R is a nonsmooth non-convex regularizer

e X is a compact convex set, and {x | Ax =b} N X # @.
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The Plan

@ Design an efficient decomposition scheme decoupling the variables
@ Analyze convergence/rate of convergence

@ Discuss convergence to first/second-order stationary solutions

@ Explore different variants of the algorithms; obtain useful insights

@ Evaluate practical performance

Mingyi Hong (University of Minnesota) 2 / 56



|
App 1: Distributed optimization

o Consider a network consists of N agents, who collectively optimize

min f(y) Zfl Ry (

yeX

where f;(y), hi(y) : X — R is cost/regularizer for local to agent i
e Each f;, h; is only known to agent i (e.g., through local measurements)
@ y is assumed to be scalar for ease of presentation

@ Agents are connected by a network defined by an undirected graph
G ={V, &}, with |[V| = N vertices and || = E edges
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App 1: Distributed optimization

@ Introduce local variables {x;}, reformulate to the consensus problem

min
{xi}
s.t.

N
Y filxi) + hi(x)
i=1
Ax =0 (consensus constraint)

where A € REXN is the edge-node incidence matrix; x := [x1,- -, xN]

T

o If e € £ and it connects vertex i and j with i > j, then A, =1 if v =1,
Aey = —1if v =j and Aepy = 0 otherwise.

(2]
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App 2: Partial consensus

@ “Strict consensus” may not be practical; often not required [Koppel et al 16]

@ Due to noises in local
communication

@ The variables to be estimated has
spatial variability
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App 2: Partial consensus

@ Relax the consensus requirement

N
min ;fi(xi) + hi(x;)

s.t. ||xi = X]'Hz < bz’j/ V(i/j) € E.

o Introduce "link variable” {z;; = x; — x;}; Equivalent reformulation

N
min Y filxi) + hi(x;)
=1
st. Ax—z=0, z€Z
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App 2: Partial consensus

@ The local cost functions can be non-convex in a number of situations

@ The use of non-convex regularizers, e.g., SCAD/MCP [Fan-Li 01, Zhang 10]

@ Non-convex quadratic functions, e.g., high-dimensional regression with missing
data [Loh-Wainwright 12], sparse PCA

@ Sigmoid loss function (approximating 0-1 loss) [Shalev-Shwartz et al 11]

@ Loss function for training neural nets [Allen-Zhu-Hazan 16]
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App 3: Non-convex subspace estimation

o Let ¥ € IRP*? be an unknown covariance matrix, with eigen-decomposition

T
Y= /\iuiui

P
i=1
where Ay > --- > A, are eigenvalues; uy, - - -, up, are eigenvectors

@ The k-dimensional principal subspace of &
k
T =Y Auu! =uu’
i=1

o Principal subspace estimation. Given i.i.d samples {xq,---,x;}, estimate
IT*, based on sample covariance matrix X
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App 3: Non-convex subspace estimation

@ Problem formulation [Gu et al 14]
= argn}iln — (E, TT) + P, (1)
st. 0=II=<1, Tr(IT) = k. (Fantope set)
where P, (IT) is a non-convex regularizer (such as MCP/SCAD)

o Estimation result. [Gu et al 14] Under certain condition on «, every
first-order stationary solution is “good”, with high probability:

. s /1og(p)
_ < e o\
[TT 11 ||F_51\/;+52 |

o s = |supp(diag(IT*))| is the subspace sparsity [Vu et al 13]
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App 3: Non-convex subspace estimation

@ Question. How to find first-order stationary solution?
@ Need to deal with both the Fantope and non-convex regularizer P, (T1)

@ A heuristic approach proposed in [Gu et al 14]
@ Introduce linear constraint X =11
@ Impose non-convex regularizer on X, Fantope constraint on I1
= argrr11_i[n — (£,11) 4 Py(X)

st. 0=<II=<1I Tr(IT) =k (Fantope set)
IT-X=0

© Same formulation as (P), only heuristic algorithm without any guarantee
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The literature
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Literature

@ The Augmented Lagrangian (AL) methods [Hestenes 69, Powell 69], is a
classical algorithm for solving nonlinear non-convex constrained problems

@ Many existing packages (e.g., LANCELOT)
@ Recent developments [Curtis et al 16] [Friedlander 05], and many more

@ Convex problem + linear constraints, [Lan-Monterio 15] [Liu et al 16]
analyzed the iteration complexity for the AL method

@ Requires double-loop
@ In the non-convex setting difficult to handle non-smooth regularizers

o Difficult to be implemented in a distributed manner
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Literature

Recent works consider AL-type methods for linearly constrained problems

@ Nonconvex problem + linear constraints, [Artina-Fornasier-Solombrino 13]
@ Approximate the Augmented Lagrangian using proximal point (make it convex)

@ Solve the linearly constrained convex approximation with increasing accuracy

@ AL based methods for smooth non-convex objective + linearly coupling
constraints [Houska-Frasch-Diehl 16]
@ AL based Alternating Direction Inexact Newton (ALADIN)
@ Combines SQP and AL, global line search, Hessian computation, etc.
@ Still requires double-loop
@ No global rate analysis
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Literature

@ Dual decomposition [Bertsekas 99]

@ Gradient/subgradient applied to the dual

@ Convex separable objective 4+ convex coupling constraints

@ Lots of application, e.g., in wireless communications [Palomar-Chiang 06]
@ Arrow-Hurwicz-Uzawa primal-dual algorithm [Arrow-Hurwicz-Uzawa 58]

@ Applied to study saddle point problems [Gol'shtein 74][Nedi¢-Ozdaglar 07]

@ Primal-dual hybrid gradient [Zhu-Chan 08]

Q ..

@ Do not to work for non-convex problem (difficult to use the dual structure)
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Literature

o ADMM is popular in solving linearly constrained problems

Some theoretical results for applying ADMM for non-convex problems

1 [Hong-Luo-Razaviyayn 14]: non-convex consensus and sharing

2 [Li-Pong 14], [Wang-Yin-Zeng 15], [Melo-Monterio 17] with more relaxed
conditions, or faster rates

3 [Pang-Tao 17] for non-convex DC program with sharp stationary solutions

@ Block-wise structure, but requires a special block

@ Does not apply to problem (P)
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The plan of the talk

First consider the simpler problem (unconstrained, smooth)

min f(x), st Ax=0b (Q)

x€RN

Algorithm, analysis and discussion

First-/second order stationarity

Then generalize

Applications and numerical results
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The proposed algorithms
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The proposed algorithm

@ We draw elements form AL and Uzawa methods
@ The augmented Lagrangian for problem (P) is given by
B
Lg(x,p) = f(x) + (u, Ax = b) + S| Ax — b|1?
where p € RM dual variable; B > 0 penalty parameter

@ One primal gradient-type step + one dual gradient-type step
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The proposed algorithm

o Let B € RM*N be some arbitrary matrix to be defined later

@ The proposed Proximal Primal Dual Algorithm is given below

Algorithm 1. The Proximal Primal Dual Algorithm (Prox-PDA)

At iteration 0, initialize #° and x* € RN.
At each iteration ¥ + 1, update variables by:

X = arg min (VF(x"),x—x") + (4", Ax — b)
x€R"

e A L (12)

]/lH_l _ ‘ur Jr‘B(Axr-‘rl . b) (lb)
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Comments

@ The primal iteration has to choose the proximal term

2

Bl — '

@ Choose B appropriately to ensure the following key properties:

@ The primal problem is strongly convex, hence easily solvable;

@ The primal problem is decomposable over different variable blocks.
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Comments

o We illustrate this point using the distributed optimization problem
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Comments

o We illustrate this point using the distributed optimization problem

@ A network consists of 3 users: 1+ 2+ 3
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Comments

o We illustrate this point using the distributed optimization problem
@ A network consists of 3 users: 1 ¢+ 2 ¢+ 3

o Define the signed graph Laplacian as L_ = ATA € RN*N
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Comments

o We illustrate this point using the distributed optimization problem
@ A network consists of 3 users: 1 ¢+ 2 ¢+ 3
o Define the signed graph Laplacian as L_ = ATA € RN*N

o lIts (i,i)th diagonal entry is the degree of node i, and its (i,)th entry is —1 if
e=(i,j) € €, and 0 otherwise.

1 10
L_.=|-1 2 -1}, Li=11 2 1
0 -1 1 011
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Comments

We illustrate this point using the distributed optimization problem
@ A network consists of 3 users: 1 ¢+ 2 ¢+ 3

Define the signed graph Laplacian as L = ATA € RVXN

Its (i,i)th diagonal entry is the degree of node i, and its (7,j)th entry is —1 if
e=(i,j) € €, and 0 otherwise.

1 -1 0 1 10
L.={-1 2 -1f, Ly=11 2 1
0o -1 1 011
@ Define the signless incidence matrix B := |A|
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Comments

We illustrate this point using the distributed optimization problem
@ A network consists of 3 users: 1 ¢+ 2 ¢+ 3

Define the signed graph Laplacian as L = ATA € RVXN

Its (i,i)th diagonal entry is the degree of node i, and its (7,j)th entry is —1 if
e=(i,j) € €, and 0 otherwise.

1 -1 0 1 10
L.={-1 2 -1f, Ly=11 2 1
0o -1 1 011
@ Define the signless incidence matrix B := |A|

Using this choice of B, we have BTB = L, € RN*N which is the signless
graph Laplacian
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Comments

@ Then x-update step becomes

N
1l = argrrg(in Y AV fi(x]), xi) + (u', Ax — b) + ngL,x + g(x —NTLy (x —x")
i=1

proximal term

N
=argmin ) (Vf;(x]),x;) + (", Ax —b) + ng(L, +Lo)x —BxTLyx"
i=1

N
= argmin Y AVFi(aD), ) + (W, Ax — b) — BxTLox" +px" Dx
i=1

linear in x
o D =diag[dy, -+ ,dn] € RN*N s the degree matrix

@ The problem is separable over the nodes, and strongly convex.
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The analysis steps
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Main assumptions

Al. f(x) differentiable and has Lipschitz continuous gradient, i.e.,

IVf(x) = VWl < Llx—yl, VxyeRY.

Further assume that ATA + BTB = Iy.
A2. There exists a constant § > 0 such that

3f > —oo, st f(x)+ gHAx—bH2 >f,Vxe RN.

A3. The constraint Ax = b is feasible over x € RV.
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Functions satisfying the assumptions

@ The sigmoid function. The sigmoid function is given by

1

T5ex € -1, 1].

sigmoid(x) =

@ The arctan function. arctan(x) € [—1,1] so [A2] is ok. arctan’(x) = x%ﬂ €10, 1]
so it is bounded, which implies that [A1] is true.

@ The tanh function. Note that we have
tanh(x) € [-1,1], tanh’/(x) =1 — tanh(x)? € [0,1].

@ The logit function. The logistic function is related to the tanh as

X

ogit(x) =~

=1+ tanh(x/2).

@ The quadratic function xTQx. Suppose Q is symmetric but not necessarily
positive semidefinite, and xTQx is strongly convex in the null space of ATA.
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Optimality Conditions

@ The first and second order necessary condition for local min is given as
Vflx*)+(u*,A) =0, Ax"=b. (2a)
(y, V2 f(x")y) 20, ¥V ye{y|Ay=0} (2b)

@ The second-order necessary condition is equivalent to the condition that
V2f(x*) is positive semi-definite in the null space of A

e Sufficient condition for strict/strong local minimizer is given by
VFiix*)+ (u*,A) =0, Ax"=b.

3
(y, V*f(x*)y) >0, V ye{y|Ay=0} )
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Optimality Conditions

o Define a strict saddle point to be the solution (x*, u*) such that

V() + " A) =0, Ax*=b,

4
Jy e {y| Ay =0}, and ¢ > 0 such that (y, V*f(x*)y) < 0. “)

Has strictly negative “eigenvalue” in the null space of A.

Issues related to strict saddles have been brought up recently in ML
communities; see recent works [Ge et al 15] [Sun-Qu-Wright 15]

GD-type algorithms have been developed, but mostly in unconstrained and
smooth setting [Lee et al 16] [Jin et al 17]

@ Question. Prox-PDA converges to strict saddle, 2nd-order stationary sols?
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The Analysis: Step 1

@ Our first step bounds the descent of the augmented Lagrangian

@ Observation. Dual variable is given as

AT r+1 Vf( ) ﬁBTB(x’H _xr)

@ Change of dual can be bounded by change of primal
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The Analysis: Step 1

o Let 0pin(ATA) be the smallest non-zero eigenvalue for AT A

Lemma

Suppose Assumptions [A1] and [A3] are satisfied. Then the following is true

—L 2L?
L xr+l, +1y X", <_<;B _ ) P
s L) < = (P = gy )| H
2,BHBTBH r+1 r r r—1 2
Omin(ATA) H(x =) = (=)
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Comments

The rhs cannot be made negative

@ The AL alone does not descend

Need a new object that is decreasing in the order of

,B H(errl _ xr) _ (xr _ xrfl)’ 2

BTB

The change of the sum of the constraint violation ||Ax"*! — b||? and the

proximal term [|x"*! — x"||2; . has the desired term.
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The Analysis: Step 2

Lemma

Suppose Assumption [Al] is satisfied. Then the following is true

:B +1 2 +1 2
S (lAx ™ = bl + 1 = x5, )

< B (I =g + 4K —bJP) 4 L P

Bl =2 ) e A =) P).

e Observation. The new object, f/2 <||Ax”rl — b2+ ||x 1 — xr||%TB>,
2

increases in [[x"*! — x||? and decreases in [|(x" — x" 1) — (¥t — &) |12,
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The Analysis: Step 2

Lemma

Suppose Assumption [Al] is satisfied. Then the following is true

:B +1 2 +1 2
S (lAx ™ = bl + 1 = x5, )

< B (I =g + 4K —bJP) 4 L P

Bl =2 ) e A =) P).

e Observation. The new object, f/2 <||Ax”rl — b2+ ||x 1 — xr||%TB>,
increases in [[x"*! — x||? and decreases in [|(x" — x" 1) — (¥t — &) |12,

@ The change of AL behaves in an opposite manner
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The Analysis: Step 2

Lemma

Suppose Assumption [Al] is satisfied. Then the following is true

:B +1 2 +1 2
S (lAx ™ = bl + 1 = x5, )

< B (I =g + 4K —bJP) 4 L P

Bl =2 ) e A =) P).

e Observation. The new object, 5/2 <||Ax”rl —b|? +[]x = xr||%TB),
increases in [[x"*! — x||? and decreases in [|(x" — x" 1) — (¥t — &) |12,
@ The change of AL behaves in an opposite manner

@ Good news. A conic combination of the two decreases at every iteration.
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Step 3: Constructing the potential function

@ Let us define the potential function for Algorithm 1 as
P (xr+1 X" yr+1) — L (xr+1 ]/l7+1) + % (”Axr+1 _ b”Z + er+1 7er2T )
cp 1Ay B ’ 2 BTB

where ¢ > 0 is some constant to be determined later.

Lemma

Suppose the assumptions made in Lemma 2 are satisfied. Then we have

1 212
P r+1 r r+1 <Pp ror=1 1y _ ‘B _
e,p (X" AT, ) < Peg (', 2", ) 2 Pomin(ATA

(B -1

) o CL> ||xr+1 _ xr”Z

2

BTB’

Mingyi Hong (University of Minnesota) 29 / 56



|
The choice of parameters

@ As long as ¢ and 8 are chosen appropriately, the function P p decreases at
each iteration of Prox-PDA

@ The following choices of parameters are sufficient for ensuring descent

5 4| BTB|
> - ——— .
b ®

@ The f satisfies

ﬁ>§<2c+1+\/(2c+1)2+0mj(6zm>. (6)
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Step 4: main result

@ Now we are ready to present the main result

o Define Q(x"*1, " *1) as the ‘stationarity gap’ of problem (P)

QU™ ) 1= [IVaLp(x™ 1, u)|? + | Ax"1 — b2
~—_———
primal gap dual gap

o Q(x"*1, ") — 0 implies that the limit point (x*, u*) is a 1st order sol of (P)

0=Vf(x*)+ATu*, Ax* =b.
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The main result

Claim (H. - 16)

Suppose Assumption A is satisfied. Further suppose that the conditions on B and
c in (5) and (6) are satisfied. Then

© (Eventual Feasibility). The constraint is satisfied in the limit, i.e.,
lim ¢t —p" — 0, lim Ax" — b, and lim ¥ —x" = 0.
r—o0 r—00

r—oco

@ (Convergence to KKT). Every limit point of {x", u"} converges to a KKT
point of problem (P). Further, Q(x"*1, ") — 0.

@ (Sublinear Convergence Rate). For any given ¢ > 0, let us define T to be
the first time that the optimality gap reaches below ¢, i.e.,

T:= argme( XLy < g
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Extension: Increasing the proximal parameter

@ The previous algorithm requires to explicitly compute the bound for

@ Requires global information; Alternatives?

Algorithm 2. The Prox-PDA with Increasing Proximal (Prox-PDA-IP)
At iteration 0, initialize 4 and x0 € RN,
At each iteration r 4 1, update variables by:

1 = arg min (Vf(x"), %) + (", Ax —b)
xeR"

‘Br+l 5 ‘Br+1 5
+ B llAx = b2+ Sy = |y
‘ur+1 — ]/lr + ﬁr+l (Axr+1 _ b).
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Extension: Increasing the proximal parameter

@ Primal step similar to the classic GD with diminishing primal stepsize 1/ "
[Bertsekas-Tsitsiklis 96]

@ The term B should satisfy the following conditions

! —0 i L 00
[Br 4 = ‘Br
@ Proof requires construction of a new potential function
C r+1par c r+1pr
ngr+1 (errl,errl) + /3 5 B ”Axr+1 o b||2—|— B 5 ﬁ ”xr _xr+1||%TB'

@ Similar convergence as Claim 1. (1)-(2); The rate (for a randomized version)

E[Q(",u") € O (T773).
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Second order stationary solutions?

@ So far we have been focused on convergence (rate) on the 1st order solutions
@ Will prox-PDA stuck at strict saddle points?

@ We can show that with probability 1 this will not happen.
Claim (H.-Razaviyayn-Lee 17)

Under the same assumption as in the previous claim, and further suppose that
(x9,A9) are initialized randomly. Then with probability one, the iterates

{(x™1, 1)} generated by the Prox-PDA algorithm converges to a second-order
stationary solution satisfying (2b).
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Proof steps

o First represent the iterates using a linear system

) 2D gH-2ATA— A —I+ gH+ATA+ A1
x" o 1 0 X1’71
T 1 oAr _ AT—1\,%
L [ATe (e —a )x}
0
where

H:=V?f(x*), di= x4+ "1

1
AT = / (V2f(x* + td" 1) — H)dt.
0

@ Then show that the above mapping is a diffeomorphism; apply Stable
Manifold Theorem to argue that strict saddle point is not stable [Shub 87]
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Generalize to (P)?




-
Generalize to (P)?

e Can we generalize the Prox-PDA to the following problem?

min  f(x) + h(x) (P)
st. Ax=0b, xe X

o With the following assumptions

B1 h(x) = go(x) + hp(x) a non-convex regularizer; gy is smooth non-convex,
ho(x) is nonsmooth convex (such as the MCP/SCAD regularizer)

B2 X is a closed compact convex set
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An example
@ Consider the following problem (adapted from [Wang-Yin-Zeng 16])

2y, st.ox=y, x€[-1,1], y€[-20]
@ Any point in the set [—1,0] is optimal

min x

o Apply Prox-PDA (with x* =1, y° = 0 =0, g = 5)

0.6 T T - 10°

0.4
0.2
0
0.2
0.4
0.6
0.8
K

1.2

—+dual-gap
—-primal-gap|
0 5 10 15 20
iteration number iteration number

-1.4
0
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Generalization to (P)?

e What went wrong?
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-
Generalization to (P)?

e What went wrong?

@ One can on longer establish the relationship
AT r+1 _ Vf( ) ,BBTB(Xr+1 7xr)

@ Change of dual cannot be bounded by change of primal
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Generalization to (P)?

e What went wrong?

@ One can on longer establish the relationship

AT r+1 _ Vf( ) ,BBTB(Xr+1 7xr)

Change of dual cannot be bounded by change of primal

@ How to proceed?
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Adding perturbation

The key idea is to perturb the primal-dual iteration

We perturb the dual update by

#r+1 = +pr+1 (Axr+1 _p_ ,y,/Hyr)

Perturb the primal by multiplying (1 — o’ "9/ "1) in front of (4", Ax — b)

Gradually reduce the size of the perturbation constant -y

@ Note: perturbing dual ascent- type methods has been considered for convex
problems [Koshal- Nedi¢-Shanbhag 11]; not perturbing primal
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The Perturbed Prox-PDA

Algorithm 3. The Perturbed Prox-PDA (P-Prox-PDA)

At iteration O, initialize yo and x9 € RN,
At each iteration r 41, update variables by:

= argmin (Vf(x"), x — ") + (1 - P (W Ax = b) + h(x)
X

pr+1 ) IBrJrl )
+ o ax b+ By — By (72)
AL = A7 ot (Axrﬂ _p— ,yr+1Ar) (7b)

@ Intuition. Adding dual perturbation results in the decent

_pr+1,yr+1 ||Ar+1 _ )\er
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Conditions on the sequences

@ We need the following conditions on the penalty parameter

1 =1 = 1
77‘_>0’ E 72001 E (pr>2<oo
r=1

@ We need the following conditions on the perturbation
PVH’)/+1 =71€(0,1), forsome constant 7.

@ This implies the perturbation on the “dual gradient” goes to zero

Mingyi Hong (University of Minnesota) 42 / 56



|
Outline of convergence result for P-Prox-PDA

@ Suppose Assumption A and B are satisfied

@ The conditions on {p", B} and {7} given above are satisfied; Then

lim "+ — 4" — 0, lim Ax" — b, and lim ¥ ™1 —x" =0
r—00 r—o00 r—o0

e Every limit point of {x”, u"} converges to a first order stationary point of (P)
[Hong.-Hajinezhad 17]

@ A randomized version of the algorithm converges with a rate

E[Q(",u") € 0 (T77).
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Remarks

@ In our perturbation scheme, increasing penalty parameters and proximal
terms are used together with decreasing dual gradient perturbation

@ Question. Will the algorithm work if all parameters are kept constant?
@ Yes, converge to a e-stationary solution
e In particular, for fixed (p, B) we need to choose py = O(1), and v = O(e)
Definition
e-stationary solution. A solution (x*,A*) is called an e-stationary solution if
|Ax* —b||> <e, (Vf(x*)+ATA* +&,x* —x) <0, VxeX. (8)

where ¢* € oh(x*).
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Applications
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A toy example

@ Apply the perturbed version of Prox-PDA to the example

min x? —yz, st.x=y, x€[-1,1], y € [-2,0]

e With p" =r, 9" =0.001/p", =5

1 : : . 10?2 : : .

—+x-iterate -—dual-gap
—-y-iterate ——primal-gap

0 102
-0.5 104
-1 10° ¥
1.5 108
-2 10710
0 5 10 15 20 0 5 10 15 20
iteration number iteration number
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Application to distributed non-convex optimization

@ Application of Prox-PDA type method to distributed non-convex optimization

min
1

N
Y fixi) st Ax=0
i=1

@ Here A is the incidence matrix, B = |A]|

@ Provide explicit update rules for each distributed node [H.- 16]

Mingyi Hong (University of Minnesota)

46 / 56



|
Application to distributed non-convex optimization

@ The system update rule is given by

A=y — ﬁD (Vf(xr) — Vf(xrfl)) + Wx" — %(I + W)x' 1

where in the last equality we have defined the weight matrix
W := $D~1(L; — L), which is a row stochastic matrix.

o Each agent updates by

xﬁl:xz—zﬁd (VAGD = VAET)

1 1 1 r 1 r- 1
+ T =5 x4 x
JEN (i)™ jEN (i)

o Completely decoupled, new update based on the most recent two iterates
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Application to distributed non-convex optimization

o Interestingly, such iteration has the same form as the EXTRA [Shi et al 14],
developed for convex consensus problem

@ The same observation has also been made in [Mokhtari-Ribeiro 16] (in the
convex case)

@ By appealing to our analysis, the EXTRA works for the non-convex
distributed optimization problem as well (with appropriate §)

@ Converges (with sublinear rate) to both 1st and 2nd order stationary solutions
o Different proof techniques

@ Other variants of Prox-PDA also can be specialized in this case
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Numerical result for distributed non-convex optimization

@ We consider a distributed non-negative PCA problem

N
min Y —z"D/ Diz + h(z)
i=1

st. |zII3<1, z>0.

@ h(z) is the MCP regularizer
@ Divide the agents randomly into three different sets: &1, S, S3
o Consider the following reformulation

THT
mm x; D; Dix; + h(x
LT oD g L M

st. x3<1 ies,
x; >0 i €83
Ax =0,  (the consensus constraint)
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Numerical result for distributed non-convex optimization
o Compare with the DSG algorithm proposed in [Nedi¢-Ozdaglar-Parrilo 10]

@ The DSG is designed for convex problems with per-agent local constraint
o We generate the network according to [Yildiz-Scaglione 08]

10° 10°
1072
o 107 5
< -
< =
2 10° ”
,é 10 %
= &)
A 4p10.
12 —P-Prox-PDA (proposed) ——P-Prox-PDA (proposed)
10779 |— DSG stepsize =1/ | ON\J @ ||= DSG stepsize 1/7
DSG stepsize 1/y/r DSG stepsize 1//7 |
10714 . . . , 40715 .
0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Number Iteration Number
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Numerical result for distributed non-convex optimization

@ Compare average performance over 100 random network generation

@ Both algorithms stop at 2000 iterations

Table: Comparison of perturbed prox-PDA and DSG

Stat-Gap Cons-Vio
N P-Prox-PDA DSG P-Prox-PDA DSG
5 2.1e—19 0.1 1.4e — 18 45¢e—5
10 1.4e — 19 0.48 1.1e — 18 45e—5
20 6.7¢ — 18 0.05 2.7e — 16 1.7e —4
40 219 -13 0.02 3.1e—15 6.9¢ — 4
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Application to sparse subspace estimation

@ We consider the following sparse subspace estimation (with MCP regularizer)
[Gu et al 14]

= argn}iln — (&, T1) + Py(Y)

st. 0=II=<1, Tr(II) = k. (Fantope set)
II-Y=0

where Py (IT) is chosen to be MCP

@ Choose the following for P-Prox-PDA
Y T, | I —I T, I I
X:=[y;1, A A—{_I Il B'B = I I

o We choose a" =1, 7" =1073/r
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Application to sparse subspace estimation

o Experiment setup following [Gu et al 14] !

@ Construct X by eigen-decomposition

@ Firstdataset. s=5k=1, Ay =100; A, =1, Vk#1

© xq has 5 non-zeros entries, with magnitude 1//5

© Second data set. s =10,k =5; Top-5 A, =100, k=1,---,4, A5 =10
@ Eigenvectors are generated by orthnormalizing a 10-sparse Gaussian vectors

@ SCAD regularizer, b =3

1We would like to thank Q. Gu and Z. Wang for providing the codes.
VR



Application to sparse subspace estimation

@ We show one realization of P-Prox-PDA and the algorithm in [Gu et al 14]

o Consider the scenario where n =80, p =128, k=1,5s=5

10°
— P- Prox-PDA (proposed)
= =[Gu et al 14] p=5
102 [Gu et al 14] p=2
=
< 10
.‘E
=
S0
=10
7]
10°®
1070
0 50 100 150 200

Iteration Number
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— P-Prox-PDA (proposed)
----- [Gu et al 14] p=5
[Gu et al 14] p=2

50 100 150 200
Iteration Number
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Application to sparse subspace estimation

o Compare the recovery error

-
On

i — 1

Mingyi Hong (University of Minnesota)

—P-Prox-PDA (Proposed)
o [GU 14] With p=5
[Gu 14] with p=2

100 150 200

Iteration Number
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Application to sparse subspace estimation

@ Compare the averaged performance of different algorithms

@ Generate 100 true covariance matrices X; for each X, generate 100 samples

Table: Subspace Estimation Error

[[TT— I

Parameters PPD [Gu et al 14]
n=280,p=128k=1,s=5 0.031+0.01 0.033=+0.01
n=150,p=200,k=1,5=5 0.022+£0.07 0.025+0.08
n=280,p=128,k=1,s =10 0.047£0.01 0.063 +0.01
n=80,p=128,k=55s=10 024+£0.05 0.31=£0.02
n=70,p=128,k=5,s=10 023+£0.03 0.33=£0.03
n=128,p =128,k =5,5=10 0.17=£0.02 0.25 +0.02
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Application to sparse subspace estimation

@ Compare the support recovery performance

@ Use True Positive Rate (TPR) and False Positive Rate (FPR)

Table: Support Recovery Results

TPR FPR

Parameters PPD [Gu 14] PPD [Gu 14]
n=80,p=128k=1,s=5 1+0 1+£0 0+0 0+0
n=150,p=200,k=1,s=5 1£0 1+0 0+0 0+0
n=80,p=128k=1s=10 1£0 140 0+0 0+0
n=80,p=128,k=5s=10 1+£0 1£0 053+£0.03 0.56=+0.04
n=70,p=128,k=5s=10 1+£0 1£0 057£0.01 0.59=£0.02
n=128,p=128k=55s=10 14+0 1£0 053+£0.05 054+0.01
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Conclusion

In this work we consider solving the following non-convex problem

min  f(x) + h(x) (P)
st. Ax=b xcX

A number of primal-dual based algorithms

@ For smooth problems, convergence to first and second order stationary
solutions, with global rate

@ For nonsmooth problems, primal-dual perturbation scheme

Compact representation for distributed consensus problem
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Future Works

@ How about 2nd-order stationarity for non-smooth, constrained problems?

@ Preliminary results reported in [Chang-H.-Pang 17|, use (single-sided) second
order directional derivative to characterize

@ The resulting condition is much more complicated than that for the
unconstrained linearly constrained case; checking those conditions could be
NP-hard; Efficient algorithms?

@ Stochasticity? What if objective/gradient is only known through a noisy
first/zeroth order oracle?

e More applications: Mumford-Shah regularization for image processing (e.g.,
inpainting) [Méllenhoff et al 14]; Topic modeling [Fu et al 16]; etc.
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Thank You!
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The randomized algorithm

o Let B € RM*N be some arbitrary matrix to be defined later

@ The proposed Proximal Primal Dual Algorithm is given below

Algorithm 1. The Proximal Primal Dual Algorithm (Prox-PDA)

At iteration 0, initialize yo and x0 € RV, fixed T.
Forr=1,---,T

X = arg min (VF(x"),x—x") + (4", Ax — b)
x€R"
+Eax bl 4 B w3y (02)
Vr-‘rl _ ‘ur + ‘B(Axr-‘rl _ b) (gb)

Output (x*, u'), where t is uniformly randomly generated from [1,2,-- -, T]
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