Distributed intelligence in multi-agent systems

Usman Khan

Department of Electrical and Computer Engineering

Tufts University

Workshop on Distributed Optimization, Information Processing, and Learning Rutgers University

August 21, 2017

Who am I

- Usman A. Khan
 - Associate Professor, Tufts
- Postdoc
 - U-Penn
- Education
 - PhD, Carnegie Mellon
 - MS, UW-Madison
 - BS, Pakistan

My Research Lab: Projects and demos

Trailer

SPARTN—Signal Processing and RoboTic Networks Lab at Tufts

My Research Lab: Theory

Reza (2011-15): Graphtheoretic estimation

Best paper Journal cover

Xi (2012-16): Optimization over directed graphs

4 TAC papers

Sam (2013-): Fusion in nondeterministic graphs

2 Best papers 6 IEEE journal papers

Fakhteh (2014-):
Distributed estimation cont...d

Xin (2016-): Optimization, Graph theory

My Research: In depth

- Distributed Intelligence in multi-agent systems
 - Estimation, optimization, and control over graphs (networks)
- Mobile → Dynamic
- Heterogeneous → Directed
- Applications:
 - Cyber-physical systems, IoTs, Big Data
 - Aerial SHM, Power grid, Personal exposome
 - Distributed Optimization: Path planning and Formation control

Optimization over directed graphs

Problem

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x})$$

- Agents interact over a graph
 - Directional informational flow
- No center with all information

A nice solution

Gradient Descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

No one knows the function f

Local Gradient Descent

$$\mathbf{x}_{k+1}^i = \mathbf{x}_k^i - \alpha_k \nabla f_i(\mathbf{x}_k^i)$$

- Converges to only to a local optimal
- Distributed Gradient Descent [Nedich et al., 2009]: Fuse Information

$$\mathbf{x}_{k+1}^{i} = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{x}_k^{j} - \alpha_k \nabla f_i(\mathbf{x}_k^{i})$$

Distributed Gradient Descent

Distributed Gradient Descent

Local:
$$\mathbf{x}_{k+1}^i = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{x}_k^j - \alpha_k \nabla f_i(\mathbf{x}_k^i)$$

Network: $\mathbf{x}_{k+1} = W\mathbf{x}_k - \alpha_k \nabla \mathbf{f}(\mathbf{x}_k)$

- $W=\{w_{ij}\}$ is a doubly-stochastic matrix (underlying graph is balanced)
- Step-size goes to zero (but not too fast)
- Agreement: W1 = 1
- Optimality: $\mathbf{1}_n^{\top} \nabla \mathbf{f}_{\infty} = 0$
- Lets do a simple analysis...

Distributed Gradient Descent

Distributed Gradient Descent

Local:
$$\mathbf{x}_{k+1}^i = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{x}_k^j - \alpha_k \nabla f_i(\mathbf{x}_k^i)$$

Network: $\mathbf{x}_{k+1} = W\mathbf{x}_k - \alpha_k \nabla \mathbf{f}(\mathbf{x}_k)$

Assume the corresponding sequences converge to their limits

$$\mathbf{x}_{\infty} = W\mathbf{x}_{\infty} - \alpha_{\infty}\nabla\mathbf{f}(\mathbf{x}_{\infty})$$

$$= W\mathbf{x}_{\infty} - 0 \cdot \nabla\mathbf{f}(\mathbf{x}_{\infty}) \longrightarrow (I_n - W)\mathbf{x}_{\infty} = \mathbf{0}$$

- Let W be CS but not RS $\mathbf{1}^{\top}W = \mathbf{1}^{\top}$ and $W\pi = \pi \neq \mathbf{1}$
 - ,
- Then $\mathbf{x}_{\infty}=coldsymbol{\pi}$, no agreement! •
- Let W be RS but not CS

$$W\mathbf{1}=\mathbf{1}$$
 and $oldsymbol{\pi}^{ op}W=oldsymbol{\pi}^{ op}$

- Then $\mathbf{x}_{\infty} = c\mathbf{1}$, i.e., agreement
- But suboptimal!

$$\boldsymbol{\pi}^{\top} \nabla \mathbf{f}(\mathbf{x}_{\infty}) = \sum_{i=1}^{n} \pi_{i} \nabla f_{i}(c) = 0$$

Distributed Gradient Descent

Distributed Gradient Descent

Local:
$$\mathbf{x}_{k+1}^i = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{x}_k^j - \alpha_k \nabla f_i(\mathbf{x}_k^i)$$

Network: $\mathbf{x}_{k+1} = W\mathbf{x}_k - \alpha_k \nabla \mathbf{f}(\mathbf{x}_k)$

• If W is RS but not CS (unbalanced directed graphs), agents agree on a suboptimal solution

$$W\mathbf{1} = \mathbf{1} \text{ and } \boldsymbol{\pi}^{\top}W = \boldsymbol{\pi}^{\top}$$
 $\boldsymbol{\pi}^{\top}\nabla\mathbf{f}(\mathbf{x}_{\infty}) = \sum_{i=1}^{n} \pi_{i}\nabla f_{i}(c) = 0$

Consider a modification (Nedich 2013, similar in spirit but with different execution):

$$\mathbf{x}_{k+1}^{i} = \sum_{j \in \mathcal{N}_{i}} w_{ij} \mathbf{x}_{k}^{j} - \alpha_{k} \frac{\nabla f_{i}(\mathbf{x}_{k}^{i})}{\left[\underbrace{\mathbf{y}_{k}^{i}}_{\rightarrow \boldsymbol{\pi}}\right]_{i}}$$

- Row-stochasticity guarantees agreement, scaling ensures optimality
- Estimate the left eigenvector?

Estimating the left eigenvector

- $A = \{a_{ij}\}$ is row-stochastic with $\boldsymbol{\pi}^{\top}A = \boldsymbol{\pi}^{\top}$
- Consider the following iteration:

$$\mathbf{y}_{k+1,i} = \sum_{j=1}^{n} a_{ij} \mathbf{y}_{k,j} \qquad \mathbf{y}_{0,i} = \mathbf{e}_{i}$$

$$Y_{k+1} = \begin{bmatrix} \mathbf{y}_{k+1,1}^{\top} \\ \vdots \\ \mathbf{y}_{k+1,n}^{\top} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} \mathbf{y}_{k,j}^{\top} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} \mathbf{y}_{k,j}^{\top} \end{bmatrix} = \begin{bmatrix} a_{11} \mathbf{y}_{k,1}^{\top} + \dots + a_{1n} \mathbf{y}_{k,n}^{\top} \\ \vdots \\ a_{n1} \mathbf{y}_{k,1}^{\top} + \dots + a_{nn} \mathbf{y}_{k,n}^{\top} \end{bmatrix} = AY_{k}$$

$$Y_{\infty} \triangleq \lim_{k \to \infty} Y_{k+1} = A^{\infty} Y_{0} = A^{\infty} I_{n} = A^{\infty} = \mathbf{1}_{n} \boldsymbol{\pi}^{\top}$$

- Every agent learns the entire left eigenvector asymptotically
- Similar method learns the right eigenvector for CS matrices

Optimization over directed graphs: Recipe

- 1. Design row- or column-stochastic weights
- 2. Estimate the non-1 eigenvector for the eval of 1
- 3. Scale to remove the imbalance

Side note: Push-sum algorithm (Gehrke et al., 2003; Vetterli et al., 2010)

Related work (a very small sample)

- Algorithms over undirected graphs:
 - Distributed Gradient Descent (Nedich et al., 2009)
 - Non-smooth
 - EXTRA (Yin et al., Apr. 2014)
 - Fuses information over past two iterates
 - Use gradient information over past two iterates
 - Smooth, Strong-convexity, Linear convergence
 - NEXT (Scutari et al., Dec. 2015)
 - Functions are smooth non-convex + non-smooth convex
 - Harnessing smoothness ... (Li et al., May 2016)
 - Some similarities to EXTRA

Related work (a small sample)

- Add push-sum to the previous obtain algorithms for directed graphs:
 - Gradient Push (Nedich et al., 2013)
 - Sub-linear convergence
 - DEXTRA (Khan et al., Oct. 2015)
 - Strong-convexity, Linear convergence
 - Difficult to compute step-size interval
 - SONATA (Scutari et al., Jul. 2016)
 - Functions are (smooth non-convex + non-smooth convex)
 - Sub-linear convergence
 - ADD-OPT (Khan et al., Jun. 2016) and PUSH-DIGing (Nedich et al., Jul. 2016)
 - Strong-convexity, Linear convergence
 - Step-size interval lower bound is 0
- All these algorithms employ column-stochastic matrices

Column- vs. Row-stochastic Weights

- Incoming weights are simpler to design
- For column sum to be 1, agent i cannot design the incoming weights as it does not know the neighbors of i1 and i2
 - Column-stochastic weights thus are designed at outgoing edges
 - Requires the knowledge of out-neighbors or out-degree

• $A = \{a_{ij}\}$ is row-stochastic

Left Eigenvector:
$$\mathbf{y}_{k+1}^{i} = \sum_{j \in \mathcal{N}_{i}^{\text{in}}} a_{ij} \mathbf{y}_{k}^{i}, \quad \text{(vector in } \mathbb{R}^{n}\text{)}$$

$$\mathbf{y}_{k+1}^{i} = \sum_{j \in \mathcal{N}_{i}^{\text{in}}} a_{ij} \mathbf{x}_{k}^{j} - \alpha \mathbf{z}_{k}^{i}$$

$$\mathbf{z}_{k+1}^{i} = \sum_{j \in \mathcal{N}_{i}^{\text{in}}} a_{ij} \mathbf{z}_{k}^{j} + \frac{\nabla f_{i}(\mathbf{x}_{k+1}^{i})}{y_{k+1}^{ii}} - \frac{\nabla f_{i}(\mathbf{x}_{k}^{i})}{y_{k}^{ii}}$$

- Row-stochastic weight design is simple
- However, in contrast to CS methods:
 - Agents run an nth order consensus for the left eigenvector
 - Agents need unique identifiers

- $A = \{a_{ii}\}$ is row-stochastic
- Vector form of the algorithm: arbitrary \mathbf{x}_0 , $\widetilde{Y}_0 = Y_0 = I_n$, and $\mathbf{z}_0 = \nabla f_0$

$$Y_{k+1} = AY_k, Y_{\infty} = \mathbf{1}_n \boldsymbol{\pi}^{\top}$$

$$\mathbf{x}_{k+1} = 2A\mathbf{x}_k - A^2\mathbf{x}_{k-1} - \alpha \left(\widetilde{Y}_k^{-1} \nabla \mathbf{f}_k - \widetilde{Y}_{k-1} \nabla \mathbf{f}_{k-1} \right)$$

■ In contrast, with a column-stochastic B, ADDOPT/PUSH-DIGing is:

$$\mathbf{x}_{k+1} = 2B\mathbf{x}_k - B^2\mathbf{x}_{k-1} - \alpha \left(\nabla \mathbf{f}(Y_k^{-1}\mathbf{x}_k) - \nabla \mathbf{f}_{k-1}(Y_{k-1}^{-1}\mathbf{x}_{k-1}) \right)$$

- Iterate does not result in agreement
- The function argument is scaled by the right eigenvector
- Ensures optimality

• Algorithm: arbitrary
$$\mathbf{x}_0$$
, $\widetilde{Y}_0 = Y_0 = I_n$, and $\mathbf{z}_0 = \nabla f_0$

$$Y_{k+1} = AY_k, \qquad Y_{\infty} = \mathbf{1}_n \boldsymbol{\pi}^{\top}$$

$$\mathbf{x}_{k+1} = 2A\mathbf{x}_k - A^2\mathbf{x}_{k-1} - \alpha \left(\widetilde{Y}_k^{-1} \nabla \mathbf{f}_k - \widetilde{Y}_{k-1}^{-1} \nabla \mathbf{f}_{k-1}\right)$$

- A simple intuitive argument:
- Assume each sequence converges to its limit, then

$$\mathbf{x}_{\infty} = 2A\mathbf{x}_{\infty} - A^{2}\mathbf{x}_{\infty} - \alpha \left(\widetilde{Y}_{\infty}^{-1}\nabla\mathbf{f}_{\infty} - \widetilde{Y}_{\infty}^{-1}\nabla\mathbf{f}_{\infty}\right)$$
$$(I_{n} - A)^{2}\mathbf{x}_{\infty} = \mathbf{0}$$
$$\mathbf{x}_{\infty} = c\mathbf{1}_{n}$$

Every agent agrees on c

• Algorithm: arbitrary \mathbf{x}_0 , $\widetilde{Y}_0 = Y_0 = I_n$, and $\mathbf{z}_0 = \nabla f_0$ $Y_{k+1} = AY_k, \qquad Y_{\infty} = \mathbf{1}_n \boldsymbol{\pi}^{\top}$ $\mathbf{x}_{k+1} = 2A\mathbf{x}_k - A^2\mathbf{x}_{k-1} - \alpha \left(\widetilde{Y}_k^{-1} \nabla \mathbf{f}_k - \widetilde{Y}_{k-1}^{-1} \nabla \mathbf{f}_{k-1}\right)$

- Show that c is the optimal solution
- Sum the update over k:

$$\alpha \widetilde{Y}_{M}^{-1} \nabla \mathbf{f}_{M} = \sum_{k=0}^{M-1} (A - A^{2}) \mathbf{x}_{r} + A \mathbf{x}_{M} + \sum_{k=0}^{M} (A - I_{n}) \mathbf{x}_{r} - \mathbf{x}_{M+1}.$$

$$\alpha \boldsymbol{\pi}^{\top} \widetilde{Y}_{M}^{-1} \nabla \mathbf{f}_{M} = \sum_{k=0}^{M-1} \boldsymbol{\pi}^{\top} (A - A^{2}) \mathbf{x}_{r} + \boldsymbol{\pi}^{\top} A \mathbf{x}_{M} + \sum_{k=0}^{M} \boldsymbol{\pi}^{\top} (A - I_{n}) \mathbf{x}_{r} - \boldsymbol{\pi}^{\top} \mathbf{x}_{M+1}.$$

$$= \boldsymbol{\pi}^{\top} A \mathbf{x}_{M} - \boldsymbol{\pi}^{\top} \mathbf{x}_{M+1}.$$

• Algorithm: arbitrary \mathbf{x}_0 , $\widetilde{Y}_0 = Y_0 = I_n$, and $\mathbf{z}_0 = \nabla f_0$

$$Y_{k+1} = AY_k, \qquad Y_{\infty} = \mathbf{1}_n \boldsymbol{\pi}^{\top}$$

$$\mathbf{x}_{k+1} = 2A\mathbf{x}_k - A^2\mathbf{x}_{k-1} - \alpha \left(\widetilde{Y}_k^{-1} \nabla \mathbf{f}_k - \widetilde{Y}_{k-1}^{-1} \nabla \mathbf{f}_{k-1} \right)$$

Asymptotically

$$\alpha \boldsymbol{\pi}^{\top} \widetilde{Y}_{\infty}^{-1} \nabla \mathbf{f}_{\infty} = \boldsymbol{\pi}^{\top} A \mathbf{x}_{\infty} - \boldsymbol{\pi}^{\top} \mathbf{x}_{\infty}$$

$$\alpha \mathbf{1}_n^{\mathsf{T}} \nabla \mathbf{f}_{\infty} = 0$$

$$\nabla f_1(x_{\infty}^1) + \nabla f_2(x_{\infty}^2) + \dots + \nabla f_n(x_{\infty}^n) = \nabla f_1(c) + \nabla f_2(c) + \dots + \nabla f_n(c) = 0$$

Algorithm: arbitrary \mathbf{x}_0 , $\widetilde{Y}_0 = Y_0 = I_n$, and $\mathbf{z}_0 = \nabla f_0$ $Y_{k+1} = AY_k, \quad Y_{\infty} = \mathbf{1}_n \boldsymbol{\pi}^{\top}$ $\mathbf{x}_{k+1} = 2A\mathbf{x}_k - A^2\mathbf{x}_{k-1} - \alpha \left(\widetilde{Y}_k^{-1} \nabla \mathbf{f}_k - \widetilde{Y}_{k-1}^{-1} \nabla \mathbf{f}_{k-1}\right)$

- We assumed that the sequences reach their limit
- However, under what conditions and at what rate?

Convergence conditions

Assume strong-connectivity, Lipschitz-continuous gradients, strongly-convex functions

$$\begin{array}{c} \bullet \quad \text{Consider} \ \mathbf{t}_k = \left[\begin{array}{c} \|\mathbf{x}_k - \widehat{\mathbf{x}}_k\| \\ \|\widehat{\mathbf{x}}_k - \mathbf{x}^*\|_2 \\ \|\mathbf{z}_k - \widehat{\mathbf{z}}_k\| \end{array} \right] \end{array}$$

• If some norm of \mathbf{t}_k goes to 0, then each element goes to 0 and the sequences converge to their limits

Convergence conditions

$$\mathbf{x}_{k+1} = 2A\mathbf{x}_k - A^2\mathbf{x}_{k-1} - \alpha \left(\widetilde{Y}_k^{-1} \nabla \mathbf{f}_k - \widetilde{Y}_{k-1}^{-1} \nabla \mathbf{f}_{k-1} \right)$$

Assume strong-connectivity, Lipschitz-continuous gradients, strongly-convex functions

■ **Theorem 1.** Let Assumptions A1 and A2 hold. We have

$$G_{\alpha} = \begin{bmatrix} \mathbf{t}_{k+1} \leq G\mathbf{t}_k + H_k\mathbf{s}_k, & \forall k. \\ \sigma & 0 & \alpha \\ \alpha cnl & 1 - \alpha ns & 0 \\ c(\tau + \alpha nl) & \alpha d_1 ln & \sigma + \alpha c \end{bmatrix}$$

- Lemma: H_k goes to 0 linearly
- Lemma: Spectral radius of G is less than 1

Convergence conditions

Lemma: For all values of $\alpha \in (0, \alpha_1)$, we have $\rho(G_\alpha) < 1$, where

$$\alpha_1 = \frac{\sqrt{\Delta^2 + 4cn^3l(l+s)s(1-\sigma)^2} - \Delta}{2cn^2l(l+s)} \text{ and } \Delta = cns(\tau + 1 - \sigma).$$

Recall that

$$G_{lpha} = \left[egin{array}{cccc} \sigma & 0 & lpha \ lpha cnl & 1-lpha ns & 0 \ c(au+lpha nl) & lpha d_1 ln & \sigma+lpha c \end{array}
ight], \qquad G_0 = \left[egin{array}{cccc} \sigma & 0 & 0 \ 0 & 1 & 0 \ c au & 0 & \sigma \end{array}
ight].$$

• Hence, $\rho(G_0) = 1$ because $\sigma < 1$.

Convergence Rate

Theorem 2. With the step-size, $\alpha \in (0, \alpha_1)$, the sequence, $\{\mathbf{x}_k\}$, converges linearly to the optimal solution, \mathbf{x}^* , i.e., there exist some constant M > 0 such that

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 \le M(\gamma + \xi)^k, \quad \forall k,$$

where ξ is an arbitrarily small constant.

• The rate variable γ is the max of fusion rate and the rate at which G decays

Some comparison

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x})$$

Conclusions

- Optimization with row-stochastic matrices
- Does not require the knowledge of out-neighbors or out-degree
 - Agents require unique identifiers
- Strongly-convex functions with Lipschitz-continuous graidents
- Strongly-connected directed graphs
- Linear convergence

More Information

My webpage: http://www.eecs.tufts.edu/~khan/

My email: khan@ece.tufts.edu

My Lab's YouTube channel: https://www.youtube.com/user/SPARTNatTufts/videos/

