Department of Electrical and Computer Engineering

Distributed intelligence in multi-agent systems

Usman Khan
Department of Electrical and Computer Engineering

Tufts University

Workshop on Distributed Optimization, Information Processing, and Learning

Rutgers University
August 21, 2017

School of
Engineering

UNIVYERSITY



Department of Electrical and Computer Engineering
Who am |

= Usman A. Khan
= Associate Professor, Tufts fﬁTufts \

&
(7)
e )
5 q WA NN ANREEn Jation
% 3
B & P
& 3 3
= Postdoc :
& &
= & X

7 )
: A, 5 \
= U-Penn NN B / =)
"""_[_ iy |_l\. .

* Education e, T A,
= PhD, Carnegie Mellon
= MS, UW-Madison __
= BS, Pakistan Piss s

P

o/

School of
Engineering

UNIVYERSITY



My Research Lab: Projects and demos
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Trailer

SPARTN—Signal Processing and RoboTic Networks Lab at Tufts
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My Research Lab: Theory

Reza (2011- Xi Sam Fakhteh Xin

15): (2012-16): (2013-): (2014-): (2016-):
Graph- Optimization Fusion in non- Distributed Optimization,
theoretic over directed deterministic estimation Graph theory
estimation graphs graphs cont...d
Best paper 4 TAC papers 2 Best papers
Journal cover 6 IEEE journal
papers
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My Research: In depth

= Distributed Intelligence in multi-agent systems
= Estimation, optimization, and control over graphs (networks)

Mobile = Dynamic
= Heterogeneous = Directed
= Autonomous = Non-deterministic

= Applications:
= Cyber-physical systems, loTs, Big Data
= Aerial SHM, Power grid, Personal exposome
= Distributed Optimization: Path planning and Formation control
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Optimization over directed graphs
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Problem
'
min f(x) = Z; fi(x)
—
f2(x) )
= Agents interact over a graph e 9

fi(x
L
= Directional informational flow
= No center with all information owo
(10—

f10(x)
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A nice solution

= Q@Gradient Descent min f(x Zf
X1 = Xi — 06V (X3) ——
@) &+ (a)
= No one knows the function f @0“0

" Local Gradient Descent
1 — 7 1
Xjp1 = X — oV fi(x})
= Converges to only to a local optimal

= Distributed Gradient Descent [Nedich et al., 2009]: Fuse Information

XEH = Z Wi X, — oV fi (x5)
JEN;
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Distributed Gradient Descent

= Distributed Gradient Descent min f(x Zf
Local: Xi;+1 = Z ’w@'jxf; - Clkvfi(xiz) ﬂ
jeEN; @) (6)(5)—(4)

Network: Xpr1 = Wxp — apVE(xg) @O“O

= W={w,} is a doubly-stochastic matrix (underlying graph is balanced)
= Step-size goes to zero (but not too fast)

= Agreement: Wi1=1
= Optimality: 1'Vf, =0

= Lets do a simple analysis...
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Distributed Gradient Descent

= Distributed Gradient Descent min f(x Zf

. ; ; —@D—W
Local: Xpp1 = Zwijxi—akvfi(xfc) ”
9—@—@

Network: Xp+1 = Wxp — apVE(xy)

= Assume the corresponding sequences converge to their limits
Xoo = WXoo — oo VE(Xx)

—> (I, —W)xoe = 0
= Wxao — 0 VF(Xo0)

= Let ¥ be CS but not RS = Let /¥ be RS but not CS
1TW:1TandW7r:ﬂ'7él Wl:landﬂ'TW:ﬂT

* Then X« = ¢, no agreement! * Then x = cl, i.e., agreement
= But suboptimalI

TVf (Xo0) Z ™V fi(c) =
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Distributed Gradient Descent

= Distributed Gradient Descent min f(x Zf
Local: Xp,, = Z wijxf; — o,V f3(x4) w
JEN, @y @B

Network: Xpr1 = Wxp — apVE(xg) @O“O

= If Wis RS but not CS (unbalanced directed graphs), agents agree on a
suboptimal solution

Wi=1landn'W=mn' 7 VE(Xoo) vafz —

= Consider a modification (Nedich 2013, similar in spirit but with different execution):

. : V fi(x
Xjyq = Z WijX;, — oek—zg k)
jeNi [ y-k ]‘l
— T

= Row-stochasticity guarantees agreement, scaling ensures optimality
= Estimate the left eigenvector?
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Estimating the left eigenvector

= 4 ={a;} is row-stochastic with mA=mn"

= Consider the following iteration:

T
Ye+1: = E i Yk.j Yoi = €
=1
T [ T ] i T T
Yk+1,1 Zj:l 15 Y, 11y Tt @Yy,
Yiy1 = : = : = : = AY},
T n T T T
| Ykt | i Zj:la’ﬂjyk,j | | 1Y Tt @Yy, |

Yoo = lim Yjiq = A®Y) = A®L, ={A® =1,7'

k—00

= Every agent learns the entire left eigenvector asymptotically
= Similar method learns the right eigenvector for CS matrices
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Optimization over directed graphs: Recipe

= 1. Design row- or column-stochastic weights
= 2. Estimate the non-1 eigenvector for the eval of 1
= 3. Scale to remove the imbalance

= Side note: Push-sum algorithm (Gehrke et al., 2003; Vetterli et al., 2010)
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Related work (a very small sample)

= Algorithms over undirected graphs:
= Distributed Gradient Descent (Nedich et al., 2009)
= Non-smooth
= EXTRA (Yin et al., Apr. 2014)
= Fuses information over past two iterates
= Use gradient information over past two iterates
= Smooth, Strong-convexity, Linear convergence
= NEXT (Scutari et al., Dec. 2015)
= Functions are smooth non-convex + non-smooth convex
= Harnessing smoothness ... (Li et al., May 2016)
= Some similarities to EXTRA
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Related work (a small sample)

= Add push-sum to the previous obtain algorithms for directed graphs:
= @Gradient Push (Nedich et al., 2013)
= Sub-linear convergence
= DEXTRA (Khan et al., Oct. 2015)
= Strong-convexity, Linear convergence
= Difficult to compute step-size interval
= SONATA (Scutari et al., Jul. 2016)
= Functions are (smooth non-convex + non-smooth convex)
= Sub-linear convergence
= ADD-OPT (Khan et al., Jun. 2016) and PUSH-DIGing (Nedich et al., Jul. 2016)
= Strong-convexity, Linear convergence
= Step-size interval lower bound is 0

= All these algorithms employ column-stochastic matrices
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Column- vs. Row-stochastic Weights

. . 0 a;, 0 a; agy, + incoming weights at 7
il i2
Ay
/l\

outgoing

= Incoming weights are simpler to design

=  For column sum to be 1, agent i cannot design the incoming weights as it
does not know the neighbors of il and i2
= Column-stochastic weights thus are designed at outgoing edges
= Requires the knowledge of out-neighbors or out-degree
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Optimization with Row-stochastic weights

= A4 ={a;} is row-stochastic

Left Eigenvector: yi 1 = Z aiiyh, (vector in R™)
JENT
Update: X%H_l = Z az-jxi — oz
JENT
- L Vi) Vix)
_ L k+1 i\Xp
Zpp = Z QijZy, + i -

= Row-stochastic weight design is simple

= However, in contrast to CS methods:
= Agents run an nth order consensus for the left eigenvector
= Agents need unique identifiers
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Optimization with Row-stochastic weights

= A4 ={a;} is row-stochastic
= Vector form of the algorithm: arbitrary x, }70 =Yy=1,, and zo = V
Yir1 = AYg, Yoo = 1,

Xk+1 = QAX;C — A2Xk_1 — (?k_1ka — i;k_1ka_1)

= |n contrast, with a column-stochastic B, ADDOPT/PUSH-DIGing is:
Xpp1 = 2Bxg— B?xp_1 — a (VE(Y, 'xp) — Vi1 (Y, x5-1))
= |terate does not result in agreement

= The function argument is scaled by the right eigenvector
= Ensures optimality
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Optimization with Row-stochastic weights

= Algorithm: arbitrary X, }70 =Yy=1,, and zo = V
Yiin = AY, Yoo = 1w
Xpi1 = 2Ax; — Azxk_l — (?k_1ka — ?k:11ka_1)

= A simple intuitive argument:
= Assume each sequence converges to its limit, then

Xoo = 24x. — A’x. — « (?OEIVfOO — }70;1me)
(I — A)*X0 = 0

Xoo = 1,

= Every agent agrees on ¢
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Optimization with Row-stochastic weights

= Algorithm: arbitrary X, }70 =Yy=1,, and zo = V
Yiin = AY, Yoo = 1w
Xpi1 = 2Ax; — Azxk_l — (?k_1ka — ?k:11ka_1)

= Show that c is the optimal solution
= Sum the update over £:

M—1 M
oYy Vi = ) (A— A% + Axar+ Y (A— L)X, — X410
k=0 k=0

M—1 M
aWTYjL?VfM = Z MX?" + 7! Axy + ZMXT — 7 X
k=0 k=0

= WTAXM — WTXM+1.

School of

Engineering 21

Tufts

UNIVERSITY




Optimization with Row-stochastic weights

= Algorithm: arbitrary X, }70 =Yy=1,, and zo = V
Yiin = AY, Yoo = 1w
Xpi1 = 2Ax; — Azxk_l — (i;k_1ka — }H}k_}lka_l)

= Asymptotically
aﬂ'Tf’OglVfoo = Tl'TAXOO - ﬂ'TXOO
ol Vi, =0
V() + Via(as) + - Via(el) = Vii(e) + Via(e) + - Vn(c) = 0
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Optimization with Row-stochastic weights

= Algorithm: arbitrary X, }70 =Yy=1,, and zo = V
Yiin = AY, Yoo = 1w
Xpi1 = 2Ax; — Azxk_l — (?k_1ka — ?k:11ka_1)

= We assumed that the sequences reach their limit
= However, under what conditions and at what rate?
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Convergence conditions

= Assume strong-connectivity, Lipschitz-continuous min f(x) =;f=r(x)
. . D—@D—Q
gradients, strongly-convex functions
_ - ()@@
Xi — Xk ||
= Consider t; = X — X*|,
Zr — Zp|

= If some norm of t, goes to 0, then each element goes to 0 and the
sequences converge to their limits
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Convergence conditions

Xk+1 = 2Axk — AQkal — (i}k1ka — ?k_11ka1)

min f(x) = > fi(x)

xER?

= Assume strong-connectivity, Lipschitz-continuous

B @)
gradients, strongly-convex functions
(D@

= Theorem 1. Let Assumptions Al and A2 hold. We have
tk+1 S Gtk + Hksk, VEk.

o 0 e

Gy = acnl 1 —ans 0

c(tr+anl) adiln o+ ac

= Lemma: /, goes to O linearly
= Lemma: Spectral radius of G is less than 1
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Convergence conditions

®  Lemma: For all values of o € (0, ), we have p(G,) < 1, where

VA2 +4endl(l+s)s(1—0)2 — A
1 p=—

«

and A =ens(7+1— o).

2en?l(l + s)
« Recall that
o 0 o o 0 0
Go = acnl 1— ans 0 : Go=10 10
c(r+anl) adin o+ ac ct 0 o

« Hence, p(Gy) = 1 because o < 1.
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Convergence Rate

®  Theorem 2. With the step-size, o € (0,a1), the sequence, {x;}, converges linearly to the
optimal solution, X*, i.e., there exist some constant M > 0 such that

Ixp — x* [l < M(y+ &%, Vk,

where £ is an arbitrarily small constant.

" The rate variable y is the max of fusion rate and the rate at which G
decays
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Some comparison

[
min f(x) = ; fi(x) owo

A Subgradient-Push
< Directed-Distributed Subgradient Descent
P>WeightBalencing Subgradient Descent

H ADD-OPT

% Push-DIGing i
@ DEXTRA

@ The proposed algorithm

10°F

Residual

10‘10 -

0 200 400 600 800 1000

School of

Engineering 28

UNIVYERSITY



Department of Electrical and Computer Engineering

Conclusions

= Optimization with row-stochastic matrices

= Does not require the knowledge of out-neighbors or out-degree
= Agents require unique identifiers

Strongly-convex functions with Lipschitz-continuous graidents

Strongly-connected directed graphs

= Linear convergence
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More Information

= My webpage: http://www.eecs.tufts.edu/~khan/

* My email: khan@ece.tufts.edu

= My Lab’s YouTube channel:
https://www.youtube.com/user/SPARTNatTufts/videos/
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