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Introduction

Additive Cost Problems

We consider optimization problems with an objective function given by the
sum of a large number of component functions:

min
x

f (x) =
m∑

i=1

fi (x)

s.t. x ∈ Rn,

where fi : Rn → R, i = 1, . . . ,m are convex functions.

These arise in several important contexts.
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Introduction

Examples of Additive Cost Problems

Empirical Risk Minimization:

Data {(xi , yi )}mi=1: xi ∈ Rn is a feature
vector, yi ∈ R is target output.

minθ∈Rn
1
m

∑m
i=1 L(yi , xi , θ) + pen(θ).

Examples: LASSO, support vector machine,

logistic regression, classification...

Minimization of an Expected Value (Stochastic Programming):

minx∈X E [F (x ,w)] (w : random variable taking large finite number of values).

Distributed Optimization in Networks:

fi (x): local objective function of node i
(privately known by node i).

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30
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Introduction

Incremental Methods

We focus on problems where the number of component functions m is large,
so a full (sub)gradient step, ∇f (x) =

∑m
i=1∇fi (x), is very costly.

Motivates using incremental algorithms which process component functions
sequentially.

Reasonable progress with cheaper “incremental” steps.

Also well-suited for problems where:

fi (x): distributed and locally known by agents.
fi (x): known sequentially over time in an online manner.

Incremental Gradient: Each (outer) iteration k consists of a cycle with m
subiterations: For k ≥ 1,

xki+1 = xki − αk∇fi (xki ), for i = 1, 2, . . . ,m,

where αk is a stepsize.
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Introduction

Order for Processing Component Functions

Deterministic Orders:

Cyclic order: Incremental Gradient

Fixed arbitrary order in each cycle

Random Orders:

Sample with replacement: Stochastic
Gradient Descent (SGD)

Sample without replacement: Random

Reshuffling (RR)

Network-imposed Orders:

Deterministic with network structure.

Random (next component function sampled
from neighborhood): Markov Randomized
Incremental Methods.
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Introduction

This Talk

We study Incremental Gradient (IG) method for deterministic orders.

For smooth/strongly convex functions, we show O(1/k) rate in
distances [O(1/k2) rate in function values].
Improves on the existing O(1/

√
k) result (for non smooth functions).

Achieving this rate with IG involves knowing strong convexity constant.

We then focus on random orders, in particular Random Reshuffling (RR).

Numerically observed to outperform SGD, yet no analytical results.
We show Θ(1/k2s) rate, s ∈ (1/2, 1), with probability one in function
values.
Improves on the existing Ω(1/k) minmax rate of SGD.
Achieving this rate involves a stepsize αk = 1/ks and properly
averaging the iterates.

As a special case of IG, we study coordinate descent methods. We provide
linear rate results and problem classes for which any cyclic order is faster
than randomized order both asymptotically and non-asymptotically in the
worst-case. We also characterize the best deterministic order.
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Incremental Gradient Method

Incremental (Sub)Gradient method

Prominent algorithm that appears in many contexts:

Backpropagation algorithm for
training neural networks.

Kaczmarz method for solving linear
systems of equations aTi x = bi .
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Incremental Gradient Method

Literature: Incremental (Sub)gradient Optimization

Deterministic order: Convergence analysis under various conditions

Textbooks by Bertsekas, Polyak, Shor,...

Differentiable problems: [Luo 91], [Luo and Tseng 94], [Mangasarian and
Solodov 94], [Bertsekas 97], [Solodov 98], [Tseng 98],...

Non-differentiable problems: [Nedic, Bertsekas 00], [Kiwiel 2004], ...

Best rate known distk ≤ O(1/
√
k) under strong-convexity-type cond.

Question: Can we achieve better rates when functions fi are smooth?
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Incremental Gradient Method

Incremental Gradient with Smoothness

Assumptions:

1 (Strong convexity+differentiability) Each fi is convex and C 2 on Rn. The
sum f is c-strongly convex, i.e.

f (x)− c

2
‖x‖2 is convex.

2 (Lipschitz gradients) There exists a constant Li > 0 such that

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖, for all x , y , i = 1, 2, . . . ,m.

Then, f has Lipschitz gradients with constant at most L =
∑

i Li .

3 (Subgradient boundedness)

‖g‖ ≤ G , ∀g ∈ ∂fi (xki ), i = 1, 2, . . . ,m, k = 1, 2, . . . .

9



Incremental Gradient Method

Convergence Rate of IG with Smoothness

Theorem (Gurbuzbalaban, Ozdaglar, Parrilo 15)

Suppose Assumptions 1, 2 and 3 hold. Consider the IG method with stepsize
αk = R/k. If R > 1/c, then

distk ≤
(
LmGR2

Rc − 1

)
1

k
+ o(1/k).

This rate result highly dependent on the choice of stepsize, i.e., knowledge
of strong convexity constant c .

Similar problems with 1/k-decay step sizes widely noted in stochastic
approximation and stochastic gradient descent literatures [Chung 53],
[Frees and Ruppert 87], [Nemirovsky, Juditsky, Lan, and Shapiro 09],
[Bach and Moulines 11], [Bach 13].
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Incremental Gradient Method

Convergence Rate of IG with Smoothness

Example

Let fi (x) = x2/20 for i = 1, 2, x ∈ R. Then, we have m = 2, c = 1/5 and x∗ = 0. Take
R = 1 which corresponds the stepsize 1/k. The IG iterations are

xk+1
1 =

(
1− 1

10k

)2

xk
1 .

If x1 = 1, a simple analysis shows xk
1 = distk > Ω( 1

k1/5 ).

The stepsize αk = Θ(1/k s), s ∈ (0, 1), does not require adaptation to the strong
convexity constant, providing robust rate guarantees.

Theorem (Gurbuzbalaban, Ozdaglar, Parrilo 15)

Suppose Assumptions 1, 2 and 3 hold. Consider the IG method with stepsize
αk = R/k s , s ∈ (0, 1), with R > 0. Then

distk ≤
(
LmGR

c

)
1

k s
+ o(1/k s).
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Incremental Gradient Method

Quadratics: Order-Dependent Upper Bounds

Consider the IG method with arbitrary deterministic order σ (a fixed
permutation of {1, 2, . . . ,m}), and with stepsize αk = R/ks , s ∈ (0, 1).

Theorem (Gurbuzbalaban, Ozdaglar, Parrilo 2015)

For each i , let fi : Rn → R be quadratic functions of the form

fi (x) =
1

2
xTi Pix − qTi x + ri ,

where Pi is a symmetric square matrix, qi is a column vector and ri is a scalar.
Suppose f is strongly convex with constant c. Then,

distk ≤
RMσ

c

1

ks
+ o(1/ks), where Mσ =

∥∥∥∥∥
∑

1≤i<j≤m
Pσ(j)∇fσ(i)(x

∗)

∥∥∥∥∥.

Note that Mσ ≤
∑m

j=1 jLσ(j)G ≤ LmG .

Suggests processing functions with higher Lipschitz constants first.
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Random Orders

Random Orders: SGD vs RR

Much empirical evidence showing RR outperforms SGD, no analytical results.

Figure: The classification of RCV1 documents belonging to class CCAT. Left: SGD
achieves its Ω(1/k) rate, Right: Random Reshuffling rate of ∼ 1/k2 [Bottou 09].

Long-standing open problem: Characterization of convergence rate of RR
[Bertsekas 99], [Bottou 09], [Recht Re 2012, 2013].

Analysis hard because of dependencies of gradient errors in and across cycles.
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Random Orders

SGD: Revived Interest

Vast literature going back to [Robbins, Monro 51], [Kiefer, Wolfovitz 52].

Popular in machine learning applications due to its scalability and robustness.

Active area of research: More recent work on achievable rates, more robust
variants and second-order versions:

[Ruppert 88], [Polyak 90], [Polyak, Juditsky 92], [Bottou, LeCun 05],
[Nemirovski Juditsky, Lan and Shapiro 09], [Hazan, Kale 11], [Rakhlin,
Shamir, Sridharan 12], [Bach and Moulines 11], [Byrd, Hansen, Nocedal,
Singer 14], [Hardt, Recht, Singer 15]....
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Random Orders

Convergence Rate of SGD

For strongly convex functions, SGD has Ω(1/k) min-max lower bounds for
stochastic convex optimization [Nemirovski, Yudin 83], [Agarwal et al. 12].

Polyak-Ruppert averaging is one way of achieving this lower bound.

Choose larger stepsize αk = R/ks with s ∈ (1/2, 1).
Take time average of the iterates

x̄k =
x1 + x2 + · · ·+ xk

k

Averaged Stochastic Gradient Descent:

Theorem (Polyak, Juditsky 92)

k1/2 (x̄k − x∗)
D−→ N (0, σ)

=⇒ ∼ 1/k rate for function values.
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Random Reshuffling

Convergence Rate of SGD and RR

Under Assumptions 1, 2 + some technical conditions, we have:

Averaged Stochastic Gradient Descent:

Theorem (Polyak, Juditsky 92)

k1/2 (x̄k − x∗)
D−→ N (0, σ)

=⇒ ∼ 1/k rate for function values.

Random Reshuffling (RR):

Theorem (Gurbuzbalaban, Ozdaglar, Parrilo 15 (simplified))

ks (x̄k − x∗)→ ∇2f (x∗)−1θ∗ with probability one

for a fixed vector θ∗ = − 1
2

∑m
i=1∇2fi (x

∗)∇fi (x∗) and s ∈ (1/2, 1) .

=⇒ ∼ 1/k2s faster rate for function values. Also, ‖θ∗‖ ≤ LG (no additional m).

16



Random Reshuffling

Ilustration on a simple example

Two quadratics: f1(x) = 1
2 (x + 1)2, f2(x) = 1

2 (x − 1)2. Here, θ∗ = 0.

Figure: Left: Histograms of the approximation error ∆k = x̄k − x∗ for SGD and
RR. Right, top: Histogram of ks∆k → 0 for RR as θ∗ = 0. Right, bottom:
Histogram of k1/2∆k for SGD which is asymptotically normal.
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Random Reshuffling

Intuition: Bias-Variance Trade-Off

SGD: samples index ik uniformly and independently at iteration k.

xk+1 = xk − αk∇fik (xk) = xk − αk(∇f (xk) + E k)

where E k is the iteration gradient error.

SGD: E k = ±1 with prob 1/2. E(E k) = 0, var(E k) = 1.

The error sequence E k is a martingale difference sequence.
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Random Reshuffling

Intuition: Bias-Variance Trade-Off

xk+1
1 = xk

1 − αk(∇f1(xk
1 ) +∇f2(xk

1 ) + ek)

ek =

{
∇f2(xk

2 )−∇f2(xk
1 ) if σk = {1, 2}

∇f1(xk
2 )−∇f1(xk

1 ) if σk = {2, 1}

By gradient Lipschitzness: ek = O(αk), E(ek) 6= 0, var(ek) = O(α2
k)

RR error has reduced variance but the error sequence ek is not a
martingale difference sequence due to correlations among the inner iterates.
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Random Reshuffling

Intuition: Bias-Variance Trade-Off

xk+1
1 = xk

1 − αk(∇f1(xk
1 ) +∇f2(xk

1 ) + ek)

ek =

{
∇f2(xk

2 )−∇f2(xk
1 ) if σk = {1, 2}

∇f1(xk
2 )−∇f1(xk

1 ) if σk = {2, 1} =⇒ ek = αk vk − αk(xk
1 − x∗)︸ ︷︷ ︸

O(α2
k ) by cyclic analysis

where vk = v(σk) is a sequence independent over cycles.

By gradient Lipschitzness: ek = O(αk), E(ek) 6= 0, var(ek) = O(α2
k)

RR error has reduced variance but the error sequence ek is not a
martingale difference sequence due to correlations among the inner iterates.
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Random Reshuffling

Proof Sketch (specialize to quadratics):

Evolution of outer RR iterates is given by

xk1 − xk+1
1

αk
= ∇f (xk1 ) + ek ,

where ek is the cycle gradient error.

Averaging both sides and using ∇f (x j1) = H∗(x
j
1− x∗) (with H∗ = ∇2f (x∗)),

Ik :=

∑k−1
j=0 (x j1 − x j+1

1 )α−1
j

k
=

∑k−1
j=0 H∗(x

j
1 − x∗) + e j

k
.

Equivalently,

x̄k − x∗ = −H−1
∗ ᾱk︸︷︷︸
O
(

1
ks

)

∑
j e

j

∑
j αj︸ ︷︷ ︸

→θ∗ a.s.

+H−1
∗ Ik︸︷︷︸
O
(

log k
k

)
,

where ᾱk =
∑

j αj/k is the averaged stepsize.
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Random Reshuffling

Proof Sketch (specialize to quadratics):

O
(

log k
k

)
: follows from deterministic IG results and “lots of algebra”.∑

j e
j∑

j αj
→ θ∗ a.s.: follows from decomposing the cycle gradient error:

ek = αk vk +O(α2
k),

where vk is a sequence independent over cycles with

E [vk ] := θ∗ =
1

2

m∑

i=1

∇2fi (x
∗)∇fi (x∗).

By strong law of large numbers, we have

∑
j

ej

αj

k → E [vk ] a.s., implying

almost sure convergence of the weighted version
∑

j e
j∑

j αj
.
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Random Reshuffling

Accelerating RR Further: Bias Removal

Bottleneck term:

Deterministic bias (k) := ᾱkH
−1
∗ θ∗, θ∗ = −1

2

m∑

i=1

∇2fi (x
∗)∇fi (x∗).

Estimate bias in last cycle and subtract to get 1/k2 rate in function values!

Figure: Histograms of the suboptimality of the function values for a fixed number
of cycles. In Orange: Accelerated RR, In Blue: RR.
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Random Reshuffling

Special Case of IG: Coordinate Descent

For f : Rn → R is convex & smooth, we consider unconstrained problems:

min
x∈Rn

f (x).

CD algorithm: At each iteration k , select an index ik and approximately
minimize the objective in the ik -th coordinate:

xk+1 = xk − ηk︸︷︷︸
stepsize

[∇f (xk)]ik eik .

[∇f (x)]ik = ik -th component of the gradient ∇f (x) =: ∇fik (x)

eik = [0, 0, . . . , 1, 0, . . . 0]T = the ik -th coordinate vector

CD methods have a long history in optimization, their convergence properties
have been studied extensively in late 70’s to, 90’s: [Bertsekas Tsitsiklis 89],
[Bertsekas 99], [Tseng Luo 92], [Grippo Scandrione, 99], [Auslender 76].

Resurgence of recent interest because of their applicability in machine
learning as well as large scale data analysis and superior empirical
performance.
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Random Reshuffling

Recent Work

Choice of order ik :

Deterministic Order: Cyclic Coordinate Descent (CCD)
[Beck, Tetruashvili 13], [Sun, Hong 15]: Global rate estimates, which
suggests CCD is O(n2) times slower than RCD for strongly convex f .
Puzzling in view of the empirical faster performance of CCD over RCD
for various problems.
[Sun, Ye 16]: Provided a quadratic problem for which the O(n2) gap in
[Beck, Tetruashvili 13] is achieved.

Random Orders: Random CD (RCD), Randomly Permuted CD (RPCD)
[Nesterov 12]: Provided the first global non-asymptotic convergence
rates of RCD for convex and smooth problems.
[Lee, Wright 16]: Tight analysis for RPCD on the quadratic example of
[Sun, Ye 16].

These results suggest that CCD is slower than RCD wrt scaling in n..

Active research area including [Richtarik,Takac 11], [Scutari et al 14],
[Wright 15], [Saha, Tewari 10], [Wang Lin], [Nesterov, Stich, 17], [Liu,
Wright 16], [Lin, Lu, Xiao 14], [Hong et al 13], [Nutini et al. 15], [Necoara
et al 11],...
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Random Reshuffling

Setup

We focus on convex quadratic problems

min
x∈Rn

1

2
xTAx where A ∈ Rn×n. (1)

Assumption 1.

(i) A is invertible, i.e. µ := λmin(A) > 0.
(ii) The diagonals of A are all normalized to one1.

Ai,i = 1, for i = 1, 2, . . . , n, (2)

By (i), the problem (1) has unique solution at x∗ = 0.

Let C and R be the iteration matrices of CCD and RCD.

We consider two problem classes: i) A is an M-matrix, i.e., the off-diagonal
entries of A are nonnegative (ex: solving Laplacian-like systems), ii) A is a
2-cyclic matrix.

1This is not restrictive as we could always put A into this form by scaling x easily.
26



Random Reshuffling

CD Iterations: Close-up

CCD iterations:

Rewrite A = I − L− LT , −L is the strictly lower diagonal part of A.
With standard cyclic rule 1, . . . , n (i.e., ik = k (mod n) + 1):

x
(`+1)n
CCD = C x`nCCD, where C = (D − L)−1LT . (3)

Equivalent to one iteration of the Gauss-Seidel method for Ax = 0.

RCD iterations:

ik is random (sampled with-replacement).
The iterates evolve in expectation as

Ex (`+1)n
RCD = R Ex`nRCD with R :=

(
I − 1

n
A

)n

. (4)
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Random Reshuffling

Asymptotic Rate of Convergence - I

We use the notion of the worst-case asymptotic convergence rate that
has been studied extensively in the literature for iterative algorithms
[Ortega Rheinboldt 70], [Varga 09], [Bertsekas Tsitsiklis 89].

The reduction in distance to optimality at the worst-case for CCD:

sup
x0

∣∣∣∣x`nCCD − x∗
∣∣∣∣

∣∣∣∣x0
CCD − x∗

∣∣∣∣ = ‖C `‖, ‖C `‖1/` → ρ(C ) as `→∞.

where ρ(·) is the spectral radius.

The worst-case asymptotic convergence rate is then

Rate(CCD) := lim
`→∞

sup
x0

CCD∈Rn

−1

`
log

(∣∣∣∣x`nCCD − x∗
∣∣∣∣

∣∣∣∣x0
CCD − x∗

∣∣∣∣

)
= − log (ρ(C )) .
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Random Reshuffling

Asymptotic Rate of Convergence - II

For RCD, analogously we define

Rate(RCD) := lim
`→∞

sup
x0

RCD∈Rn

−1

`
log

(∣∣∣∣E(x`nRCD)− x∗
∣∣∣∣

||x0
RCD − x∗||

)
= − log (ρ(R)) .

The convergence of the expected distance to optimal solution∣∣∣∣E(x`nRCD)− x∗
∣∣∣∣ has been studied in the literature [Sun, Ye 16].

Our results generalizes to other notions of convergence such as the

convergence of E
∣∣∣∣x`nRCD − x∗

∣∣∣∣2.

Question: When does CCD converge faster than RCD
asymptotically, i.e. when is ρ(C ) < ρ(R)?
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Random Reshuffling

A Motivating Example

Consider the 4× 4 symmetric matrix satisfying Assumption 1 with µ = 1/2:

A =




1 0 −1/4 −1/4
0 1 −1/4 −1/4
−1/4 −1/4 1 0
−1/4 −1/4 0 1


 . (5)

Then, CCD matrix has an explicit form C =




0 0 1/4 1/4
0 0 1/4 1/4
0 0 1/8 1/8
0 0 1/8 1/8


 .

We check: ρ(C ) = 1/4 and ρ(R) = ρ
((

I − 1
4A
)4
)

=
(
1− µ

4

)4 ≥ 1−µ = 1
2 .

Therefore,

Rate(CCD)

Rate(RCD)
=
− log(ρ(C ))

− log(ρ(R))
≥ − log(1/2)

− log(1/4)
= 2

Question: Is there a more general class of such examples?
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Random Reshuffling

Convergence Rate of RCD

Lemma

Suppose Assumption 1 holds. Then, the RCD algorithm satisfies

ρ(R) =
(

1− µ

n

)n
≥ 1− µ

Proof:

By Assumption 1, µ > 0 and tr(A) = n, which implies all eigenvalues
of the matrix A/n are in the interval (0, 1).

Hence,

ρ(R) = λmax

((
I − 1

n
A

)n)
=

(
1− 1

n
λmin(A)

)n

=
(

1− µ

n

)n
.
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Random Reshuffling

M-Matrices

Definition (M-matrix)

A real matrix A with Ai,j ≤ 0 for all i 6= j is an M-matrix if A is nonsingular and
A−1 ≥ 0.

M-matrices arise in many contexts in optimization and iterative algorithms.

Ex: minimization of quadratic forms of graph Laplacians for spectral
partitioning and semisupervised learning.

Definition (Irreducibility)

A matrix A is irreducible if it is not similar via a permutation to a block upper
triangular matrix (that has more than one block of positive size).

Irreducibility: key condition for Perron-Frobenius theory.
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Random Reshuffling

Spectral Radius of CCD Iteration Matrix for M-Matrices

Theorem

Suppose Assumption 1 holds and A is an irreducible M-matrix. Then, the
iteration matrix of the CCD algorithm satisfies the following inequality

(1− µ)2 ≤ ρ(C ) ≤ 1− µ
1 + µ

, (6)

where the inequality on the left holds with equality if and only if A is a
consistently ordered matrix.

Definition (Consistent Ordering (Simplified form))

If the eigenvalues of Bα = αL + 1
αL

T are independent of α, then A is said to be
consistently ordered.

As ρ(R) ≥ 1− µ by Lemma 1, this theorem implies ρ(C ) < ρ(R).

In order to prove the lower bound of this theorem, we use a modified version
of a key result from [Varga 2009, Lemma 4.12].
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Random Reshuffling

Proof Sketch of Lower Bound in Inequality (6):
Similar to the 4× 4 example, one can show C = (I − L)−1LT ≥ 0.

By the Perron-Frobenius Theorem, λ = ρ(C ) and ∃z ≥ 0

Cz = λz ⇐⇒ (λL + LT )z = λz ⇐⇒ ρ(λL + LT ) = λ

Suffices to solve the equation ρ(λL + LT ) = λ =
√
λ ρ
(
B√λ

)
.

Lemma (Varga 2009, Lemma 4.12)

Consider Bα = αL + 1
αL

T for α ∈ (0, 1].

1 If A is consistently ordered, by definition ρ(B√λ) is a constant.

2 Else, ρ(B√λ) is strictly decreasing on λ ∈ (0, 1].

Proof idea:

Using the Perron-Frobenius Theorem, ρ(Bα) = limt→∞[tr(B t
α)]1/t .

Compute the diagonals [B t
α)]i,i as a sum of all possible walks from i to itself

in t steps.
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Random Reshuffling

Proof of Varga’s Lemma

As Bα ≥ 0 and Bα is irreducible, the largest eigenvalue of Bα has a
multiplicity of 1. Therefore,

ρ(Bα) = lim
t→∞

[tr(Bt
α)]1/t .

How find the diagonal entries of Bt
α?

Consider the graph induced by the matrix Bα and a walk w over
edges (is , is+1)t−1

s=0 such that i0 = it = i and [Bα]is ,is+1 > 0 for all s.
The weight of this walk φα(w) can be found as

φα(w) = αcwφ1(w), where cw ∈ Z and φ1(w) =
t−1∏

s=0

[B1]is ,is+1 .

Define a symmetric walk p′ with edges (is+1, is)t−1
s=0. Then, [Bt

α]i ,i
contains the weights of both p and p′ as summands. Hence,

[Bt
α]i ,i =

∑

all valid walks w

α|cp | + α−|cp |

2
φ1(w).
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Random Reshuffling

Proof Sketch of Lower Bound in Inequality (6):

Similar to the 4× 4 example, one can show C = (I − L)−1LT ≥ 0.

By the Perron-Frobenius Theorem, λ = ρ(C ) and ∃z ≥ 0

Cz = λz ⇐⇒ (λL + LT )z = λz ⇐⇒ ρ(λL + LT ) = λ

Suffices to solve the equation ρ(λL + LT ) = λ =
√
λ ρ
(
B√λ

)
.

We conclude by invoking Varga’s lemma.
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Random Reshuffling

Convergence Rate of CCD for M-Matrices

Corollary

Suppose Assumption 1 holds and A is an irreducible M-matrix. Then, CCD and
RCD methods satisfy

1 < νn <
Rate(CCD)

Rate(RCD)
≤ 2νn where νn :=

log(1− µ)

n log
(
1− µ

n

) .

νn is a monotonically increasing function of n, where ν1 = 1 and

limn→∞ νn = − log(1−µ)
µ > 1. For any µ ≤ 1

2 , we have νn ∈ [1, 3
2 ).

Corollary

Suppose Assumption 1 holds and A is an irreducible M-matrix with n ≥ 2. Then,

CCD and RCD methods satisfy limµ→0+
Rate(CCD)
Rate(RCD) = 2.

CCD has a better asymptotic worst-case convergence rate than RCD.

We quantify the amount of rate improvement and when it is achievable.
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Cyclic Matrices
Definition

A matrix H is 2-cyclic if there exists a permutation matrix P such that

PHPT = D +

[
0 B1

B2 0

]
, (7)

where the diagonal null submatrices are square and D is a diagonal matrix.

Let H be a 2-cyclic matrix that satisfy (7). Then, the graph induced by the
matrix H − D is periodic with period 2.

This definition is first introduced in [Young 50], where it had an alternative
name: Property A.

It is extended to the class of p-cyclic matrices, where p ≥ 2 in [Varga 59].

What is the relationship between 2-cyclic matrices and consistently ordered
matrices?

Lemma ([Young 71])

A matrix H is 2-cyclic if and only if there exists a permutation matrix P such that
PHPT is consistently ordered.
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Convergence Rate of CCD for Cyclic Matrices

Theorem

Suppose Assumption 1 holds and A is a consistently ordered 2-cyclic
matrix. Then, the spectral radius of the CCD algorithm is

ρ(C ) = (1− µ)2 .

Corollary

Suppose Assumption 1 holds and A is a consistently ordered 2-cyclic
matrix with n ≥ 2. Then, the asymptotic worst-case rate of CCD and
RCD satisfies

Rate(CCD)

Rate(RCD)
= 2νn where νn :=

log(1− µ)

n log
(
1− µ

n

) > 1.

The asymptotic worst-case convergence rate of CCD is more than 2
times faster than the one of RCD.
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Numerical Experiments

We consider the consistently ordered 2-cyclic matrix

A = I − L− LT , where L =
1

n

[
0 0

1 n
2× n

2
0

]
.

For n = 50, the constant νn can be calculated as follows

2νn = 2
log(1− µ)

n log
(
1− µ

n

) =
log(0.5)

50 log
(
1− 1

200

) ≈ 2.77.

Convergence to x∗. Left: Consistent ordering, Right: Inconsistent ordering.
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Figure: Distance to the optimal solution of the iterates of CCD and RCD for the
cyclic matrix in (??) (left figure) and a randomly permuted version of the same
matrix (right figure) where the y-axis is on a logarithmic scale. The left (right)
panel corresponds to the consistent (inconsistent) ordering for the same quadratic
optimization problem.
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Other related and future work

For diagonally dominant matrices, we can show CCD is faster than
RCD in a non-asymptotic sense.
We can relax the assumption about the sign of off-diagonal entries.
Applications:

Gaussian Belief Propagation: our class (M-matrices) corresponds to
non-frustrated models.
Solving Laplacian systems, consensus.

Aggregated methods:
Deterministic Incremental Aggregated Gradient [M.G., Ozdaglar,
Parrilo 15]:

Remember past, work with delayed gradients
Analysis as a dynamical system with delays, we prove linear
convergence.
Suitable for distributed optimization over networks

Proximal Aggregated Gradient Methods [D. Vanli, Supervisors: M.G.,
Ozdaglar.

Rate dependy linearly on the condition number and m.
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Conclusions

We analyzed deterministic incremental algorithms for solving additive convex
cost optimization problems under smoothness assumptions.

We presented new rate results for a variety of stepsize rules and
arbitrary orders.

We used these results to study the random reshuffling method and presented
the first analytical results for its convergence rate, which is faster than SGD.

We provided problem classes for which CCD (or CD with any deterministic
order) is faster than RCD.

We provide a family of examples for which CCD is asymptotically faster than
RCD by a factor of at least two for any dimension n.

We provided a characterization of the best deterministic order (that leads to
the maximum improvement in convergence rate).

For diagonally dominant A, we can get similar non-asymptotic results.

Reference: When Cyclic Coordinate Descent Beats Randomized Coordinate
Descent (joint work with D. Vanli and A. Ozdaglar), Submitted.

Thanks for your attention! 42
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Proof of Upper Bound

Using the same Perron-Frobenius argument,

(λL + LT )z = λz ⇒ λzTLz + zTLT z = λ,

since ||z || = 1. Defining β = zTLz = zTLT z , we get

λ =
β

1− β . (8)

Since ρ(L + LT ) = ρ(I − A) = 1− µ, then for any ||y || = 1, we have

yT (L + LT )y ≤ 1− µ.

Picking y = z yields 2β ≤ 1− µ. Using this in (8), we get

λ ≤ 1− µ
1 + µ

.
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Conclusions

We analyzed deterministic incremental algorithms for solving additive convex
cost optimization problems under smoothness assumptions.

We presented new rate results for a variety of stepsize rules and
arbitrary orders.

We used these results to study the random reshuffling method and presented
the first analytical results for its convergence rate, which is faster than SGD.

We also analyzed deterministic incremental aggregated gradient and
presented a new explicit linear rate result.

Fertile research area with a significant impact in various application domains
including large-scale networks and data processing.

Thank You!
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Conclusions

Convergence Mechanism – I

Figure: Illustration with one-dimensional quadratics [Bertsekas 15].

Farout region: All individual gradients are almost as effective as the full
gradient, pointing out in the right direction.

Confusion region: Gradients are not aligned, oscillations arise.
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Convergence Mechanism – II

The choice of stepsize αk plays an important role in the performance of
incremental methods.

A decaying stepsize is essential for global convergence to an optimal solution
of the global objective function f (x) [Luo 91]:

αk → 0,
∑

k

αk =∞.

A constant (small) stepsize ensures
convergence to a neighborhood of
the optimal solution [Solodov 98],
[Nedic, Bertsekas 00].

Iterates may converge to a
limit cycle [Kohonen 74].
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Analysis of Incremental Gradient – I

We analyze the method as a gradient method with error:

xk+1
1 = xk1 − αk

(
∇f (xk1 )− ek

)
,

ek =
m∑

i=1

(
∇fi (xk1 )−∇fi (xki )

)
.

Using smoothness, we replace ∇f (xk1 ) = Ak(xk1 − x∗), where

Ak =
∫ 1

0
∇2f (x∗ + τ(xk1 − x∗))dτ , and write for distk = ‖xk1 − x∗‖,

distk+1 ≤ ‖I− αkAk‖distk + αk‖ek‖.

We use gradient Lipschitzness and boundedness to control gradient error

‖ek‖ ≤ αkLmG .

Using strong convexity bound and αk = R
k , we have for k ≥ RL,

distk+1 ≤
∥∥∥I− Rc

k

∥∥∥distk +
LmGR2

k2
.
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Analysis of Incremental Gradient – II

Lemma (Chung 53, Polyak 87)

Let uk ≥ 0 be a sequence of real numbers. Assume there exists k0 such that

uk+1 ≤
(

1− a

k

)
uk +

d

ks+1
, ∀k ≥ k0,

where d > 0, a > 0 and s > 0 are real scalars. Then,

uk ≤ d(a− s)−1k−s + o(k−s) for a > s

uk = O(k−a) for a < s.

For s = 1, the recursion can be approximated as

uk+1 =
k∏

l=1

(
1− a

l

)
u1 +

k∑

j=1

[ k−1∏

l=j+1

(
1− a

l

)] d
j2
.

uk ≈
1

ka
u1

︸ ︷︷ ︸
transient term

+
d

a− 1

1

k︸ ︷︷ ︸
accumulated error

.
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Incremental (Sub)Gradient method

min
x

f (x) =
m∑

i=1

fi (x)

s.t. x ∈ Rn.

Idea: Sequentially take steps along the (sub)gradients of the component
functions fi .

Each (outer) iteration consists of a cycle with m subiterations: For k ≥ 1,

xki+1 = xki − αkg
k
i , for i = 1, 2, . . . ,m,

where gk
i ∈ ∂fi (xki ) is a subgradient of fi at xki , and αk is a stepsize.

Outer iteration: xk+1
1 := xkm+1 = xk1 − αk

∑m
i=1 g

k
i .

xk1 xk2 xk3 . . . xkm︸ ︷︷ ︸
one cycle

xkm+1 . . .

xk1 xk+1
1
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