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Motivating History

While working on the structure of B, | ran
into lattice theory

Join-irreducibles and meet-irreducibles
occur naturally in this context

Seemed to be ignored in lattice theory
once they were defined

Will focus on finite lattices — can
generalize to infinite lattices

To me lattice are very much combinatorial
and geometrical objects



Quick Test for Distributivity

* The following is all that is required
(Markowsky 1972)

» Jordan-Dedekind chain condition
» Join-rank = meet-rank = length
* Previously discovered by Avann (1961)



Quick Test for Distributivity

Dark Elements Are Join-irreducibles And * Elements Are Meet-irreducibles
JD-Chain Condition and #JI = #MI = length

No! 1!
No! Too Man
Too Y

Short Join-lrreducibles



Birkhoff's Theorem

A finite distributive lattice is isomorphic to
the lattice of all closed from below subsets
of the poset of join-irreducibles

Can extend to give direct factorization
Can extend to give automorphism group

For distributive lattices poset of meet-
irreducibles = poset of join-irreducibles



Birkhoff's Theorem
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Distributivity is Too Special

* Must consider join-irreducibles and meet-
irreducibles in general

* Since elements can be both join-
irreducible and meet-irreducible it seems
natural to consider bipartite graphs



Candidates for Poset of
Irreducibles
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Candidates for Poset of
Irreducibles

* Note that the complementary extended
iInduced order shows the direct
factorization of the lattice

 Use this as the Poset of Irreducibles

« The Poset of Irreducibles was introduced
in my thesis in 1972-73



Candidates for Poset of

Irreducibles

Presented as a new approach to analysis
of lattices in 1973 at the Houston Lattice
Theory conference

Developed in a series of papers from 1973
through 1994

The complement of the Poset of
Irreducibles is referred to as the reduced
context by the Darmstadt school

Used for data mining and concept analysis



Candidates for Poset of

Irreducibles

« The Darmstadt school refuses to reference
my work even though it preceded their
work and they were aware of it

* In my opinion, the Poset of Irreducibles is
a better representation than its dual

* You can get many of their results more
simply by working with the Poset of
Irreducibles



Reconstructing the Lattice

a = {b,c} Call this Rep(a)
b = {a,c} Call this Rep(b)
¢ = {a,b} Call this Rep(c)

e

{b,c} {a,c} {a,b}

\{}/




Reconstructing the Lattice

fle d a = {f}
b = {e}
E E i c = {d}
{d.e,f
b {e f}/ {d f}}\{d e}
d C y y y
T \
{f} {e}% {d}
\{}/

A lot more can be said



More About the Poset of
Irreducibles P(L)

Possibly a compact representation of a
lattice (exponentially good in some cases)

Work with the poset of irreducibles rather
than the lattices

Gives direct factorization
Gives automorphism group

Let's use J(L) for the set of join-
irreducibles and M(L) for the set of meet-
iIrreducibles



One More Example
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Characterizing Lattices using
P(L)

 Markowsky (1973)

— Distributive Lattices
— Geometric Lattices

* Mario Petrich and | (1975) produced a
purely point and hyperplane, numerical-
parameter-free, self-dual axiomatization of
finite dimensional projective lattices



Characterizing Lattices using
P(L)
* Avann (1961), Greene & Markowsky

(1974)

« Upper Locally Distributive:
— Jordan-Dedekind
— Meet-rank = length

* Lower Locally Distributive:
— Jordan-Dedekind
— Join-rank = length



Removing the Jordan-Dedekind

Chain Condition
Clearly, length(L) <|J(L)|, |M(L)]
Some definitions
Join-extremal: length(L) = |J(L)|
Meet-extremal: length(L) = |M(L)
Extremal: length(L) = |J(L)| = |M(L)]

P-extremal means you can substitute any
of the previous three definitions

Theorem: A Cartesian product of lattices
Is p-extremal iff each factor is p-extremal



P-Extremal Lattices

Many interesting properties and generalize
decompositions of finite Boolean algebras

Cannot be categorized algebraically

Strong retracts for distributive and Tamari
lattices

Structure theorems for distributive and
locally-distributive lattices



P-Extremal Lattices

* Include distributive, locally distributive and
Tamari Associativity lattices
 Theorem: A bidigraph (X, Y, Arcs) is P(L)
for an extremal lattice Iff:
—|XI=1Y|=n
— Can number X and Y from 1 to n such that

* (x,y,) Iis an arc for all i
* if (x;y) isanarc, i 2]



P(L) for Extremal Lattices
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Embeddings of Lattices

 Theorem: Any finite lattice is isomorphic
to an interval of some finite extremal
lattice

* Corollary: Extremal lattices cannot be
characterized algebraically



Embeddings of Lattices




Coprimes and Primes

* Definition: An elementa =0 in L is called
coprime if forall xand yin L, xvy >a
implies that x >a or y > a.

* Definition: An element a =/ in L is called
prime if for all x and y in L, xAy <a implies
that x <aory <a.

» Coprimes are special kinds of join-
iIrreducibles

* Primes are special kinds of meet-
irreducibles



Coprimes and Primes

 Theorem: The following are equivalent
— L is distributive
— All join-irreducibles are coprime
— All meet-irreducibles are prime

 Theorem: L is meet-
pseudocomplemented iff each atom is
coprime

 Theorem: In a Cartesian product

elements are coprime iff one component is
coprime and the others are O



Coprimes and Primes

 Theorem: In any lattice the subposet of
coprimes Is Isomorphic to the subposet of
primes

« Corollary: In a distributive lattice J(L) is
Isomorphic to M(L)

« Extremal lattices are the combinatorial
generalization of distributive lattices



Coprime/Prime Decompositions

 Theorem: The following are equivalent:
— L contains a coprime a
— L contains a prime b

— L =[0O,b] @ [a,l] (disjoint union)



Coprime/Prime Decomposition
Summary




Additional Applications

Checking posets for « Semigroup of Binary

being lattices Relations
Analysis of the  Biological
Permutation Lattices Applications
Concept Lattices — Anti-body/Antigen
Tamari Associativity SySte,m‘f'

: — Specificity Covers
Lattices

. _ — Factor-Union Systems
Various lattice

decompositions



The Case Against Lattices

Early on | got interested in Scott's Theory
of Continuous Lattices

Bothered by the fact that many structures
of interest in computer science were not
naturally lattices

Let Str(A) be the set of all strings over the
alphabet A, and let s <t iff s is a prefix of 1.

Thus, sta < star < start, efc.



The Case Against Lattices

« However, there is no natural element x
such thata < xand b £ x, where a and b
are letters

* In general, for two different words there is
no natural way to find a third word which
has both of them as prefixes

« Similarly, if you let Pfun(X,Y) be the set of
partial functions from X into Y, with f < g iff
f(x) defined means g(x) = f(x).



The Case Against Lattices

* This is the order of more definition, but
again there is no natural way to bound two
functions that have different values at the
same point

 The usual solution was to create a lattice
by adding T and calling it the
"overdefined" element



The Case Against

One problem with using T is that it tends
to breed!

In Dana Scott's work he made extensive
use of repeated Cartesian products.

This would result in many elements having
T In at least one component

In fact, if you use (n+1) elements instead
of n you quickly run across the following
famous theorem:



k

. n_k 0
m (n+1)

Conclusion: almost all elements
are eventually bogus!



What is the Solution?

Abandon the requirement for a lattice!
What should we replace it with?

The minimal requirements seemed to be
that you needed a poset in which chains
had sups

Definition: A poset is chain-complete iff
every chain has a sup.

— There was some confusion about whether you

should require directed sets to have sups and
not just chains.



Chain-Complete Posets

| got interested in seeing how far | could
get with CPOs

First, it turns out that if every chain has a
supremum, then every directed set does
as well. (CPOs have bottom elements)

This is not as simple to establish as it
appears

| wrote a paper laying out a variety of
properties of CPOs, including fixpoint
theorems



Chain-Complete Posets

Another nice feature of the definition of
chain-completeness, is that if a lattice

happens to be chain-complete, then itis a
complete lattice.

CPOs have a nice chain-completion.

CPOs have lots of nice categorical
properties — better than complete lattices
with chain-*complete maps

* These are maps that preserve sups of arbitrary
chains including the empty chain



A Pet Peeve

* This is probably a vain hope, but | would
be a happier man if people would use

ISotone when they mean order-

preserving instead of monotone, which
can be either increasing or decreasing

* Birkhoff has had isotone in his Lattice
Theory for quite some type and once
straightened me out about using the right
term.



CPO Fixpoint Theory

For CPO with chain-continuous maps it is
easy to construct fixpoints:

0 < f(0) =f(f(0)) < ...

lim__,.f'(0) = x and f(x) = x

It turns out that continuity is not needed for
the basic fixpoint result



CPO Fixpoint Theory

* Abian and Brown proved that every
isotone self-map on a CPO has a fixpoint

* | proved that the set of fixpoints forms a
CPO in the induced order and has a least
fixpoint

* Proof does not require the axiom of choice



Useful Classes of Posets

* A poset has bounded joins iff every finite

subset that has an upper bound, has a
sup.

* If a poset has bounded joins and is a

CPO, then every set that has an upper
bound has a sup.



Useful Classes of Posets

* A posetis coherent iff every set which is
pairwise bounded has a sup

« Coherence — Bounded Joins, CPO

* Many posets of computational interest are
coherent:

— Partial functions
— Strings



Basis for a Poset

Poset of irreducible focused on a basis of
sorts for lattices

Want to explore this concept for posets

In general, a basis incorporates two
features

Independence of its elements
Generation of the total set



Basis for a Poset

« Barry Rosen and | came up with the
following definition

A subset B of a CPO P is a basis for P iff
for every CPO Q and isotone f:B—Q there
IS a unique extension of f to a continuous
function g:P—Q

* Notice how this captures the ideas of
generation and independence



Basis for a Poset

* How does this translate into more concrete
terms?

* Definition: An element, x, in a poset, P,
is called compact iff x < sup D, for some

directed subset of P implies that 3 deD
such that x < d

* In other words, the only way a sup of a
directed set can get above a compact
element is if some element of D is above
that element



Fundamental Basis Theorem

Let P be a CPO and C its subset of
compact elements

P has a basis iff

Foreach xinP,thesetC, ={yeC|y=sx}
Is directed and

sup C, = x
Note the unique basis is C



Recursively Based Posets

* Since want to have posets that are useful
iIn computer science, need to have a basis
which you can grasp computationally

* This leads to the idea of a recursively
based CPO.

« Will skip the details, but basically can
computationally answer certain questions
about basis elements and their bounds
and sups



Connection with Scott's Work

These bases for CPOs do generalize
Scott's concept of basis

One chief goal of Scott's work is to
construct domains that have the property
that D = [D—D] where [D—D] is some
appropriate set of mappings from D to D

Scott used "continuous lattices" and
confinuous maps

Can use CPOs and chain continuous
maps



Connection with Scott's Work

« Have results like the following

 If P and Q are coherent, recursively based
posets, then [P—Q] is a coherent,
recursively based poset

* The variaties of CPOs seem like the
natural environment for the theory of
computation.



Contact Information

* http://www.cs.umaine.edu/~markov

 All papers will be available on-line soon —
many are already available on-line



